
A EXPERIMENT DETAILS

A.1 MODEL LAYERS IN OUR METHOD

The U-Net of Stable Diffusion (SD) v1.5, SD 2.1, and SD XL 1.0 share a similar convolution
layer layout. We explain which layer to use re-dilated or dispersed convolutions without a loss
of generality. We follow the naming of layers in diffuers1. A list of convolution layers contained in
a U-Net block is shown in Tab. 1. The attention projection layers and convolution shortcut layers
will not use re-dilation or dispersion since the convolution kernel in these layers is 1×1. Note that
the first and the last convolution in the U-Net (conv in and conv out) will not use our method since
they do not contribute to generating image contents. Also, the spatial part of the text-to-video model
we used shares the same architecture as the SD. Therefore, layers of the following mentioned are
also the same as our video experiment.

Layer name Exist in all blocks Use our method

attentions.0.proj in ! %

attentions.0.proj out ! %

attentions.1.proj in % %

attentions.1.proj out % %

attentions.2.proj in % %

attentions.2.proj out % %

resnets.0.conv1 ! !

resnets.0.conv2 ! !

resnets.0.conv shortcut % %

resnets.1.conv1 ! !

resnets.1.conv2 ! !

downsamplers.0.conv % !

Table 1: The layers to use our method in a U-Net block. The second column shows the existence
condition since some layers cannot be seen in specific U-Net blocks.

A.2 HYPERPARAMETERS
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Figure 1: Reference block names in the following experiment details. The fractional multiples above
blocks are the spatial pixel number of feature maps within the block compared to the network input.
i.e, the input latent has 642 spatial dimension, then the size of feature maps in DB3 to UB0 is 82.

1https://github.com/huggingface/diffusers
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We explain our selection for hyperparameters in this section. All samples are generated using the
default classifier-free guidance scale of the corresponding pre-trained model (i.e. SD 1.5 and SD
2.1 use 7.5, SD XL 1.0 uses 5.0). Our SD 2.1 experiments use a similar setting to SD 1.5. We
list the hyperparameters for SD 1.5 only for brevity. The evaluation settings for SD 1.5 are shown
in Tab. 2, 3, 4, 5. The settings for SD XL 1.0 are shown in Fig. 6, 7, 8, 9. A reference for
block names and their exact location in the U-Net can be found in Fig. 1. The tables show detailed
settings about which block to use re-dilation conv and dispersed conv. Dilation scale rb. means
the dilation scale for re-dilated blocks and dilation scale db. defines the dilation scale for dispersed
blocks. If the sampling uses noise-damped classifier-free guidance, we construct a ϵθ(·) with strong
denoising capability by turning some outskirt blocks that use re-dilated and dispersed convolution
to the original blocks. The chosen ones that become the original blocks are listed in noise-damped
blocks.

Params Values
latent resolution 4×128×128
re-dilated blocks [DB3,MB,UB0]
dilation scale rb. [2, 2, 2]
dispersed blocks ∅

progressive %

noise-damped cfg. %
inference timesteps 50

τ 30

Table 2: 10242 SD 1.5 experiment settings.

Params Values
latent resolution 4×160×160
re-dilated blocks [DB3,MB,UB0]
dilation scale rb. [2.5, 2.5, 2.5]
dispersed blocks ∅

progressive %

noise-damped cfg. %
inference timesteps 50

τ 30

Table 3: 12802 SD 1.5 experiment settings.

Params Values
latent resolution 4×128×256
re-dilated blocks [DB0,DB1,DB2,DB3,MB,UB0,UB1,UB2,UB3]
dilation scale rb. [2, 2, 2, 2, 2, 2, 2, 2, 2]
dispersed blocks ∅

progressive %

noise-damped cfg. !
noise-damped blocks [DB0,DB1,DB2,UB1,UB2,UB3]
inference timesteps 50

τ 30

Table 4: 2048×1024 SD 1.5 experiment settings.

Params Values
latent resolution 4×256×256
re-dilated blocks [DB0,DB1,UB2,UB3]
dilation scale rb. [2, 4, 4, 2]
dispersed blocks [DB2,DB3,MB,UB0,UB1]
dilation scale db. [2, 2, 2, 2, 2]

dispersed kernel size 3× 3 → 5× 5

progressive !

noise-damped cfg. !
noise-damped blocks [DB0,DB1,UB2,UB3]
inference timesteps 50

τ 35

Table 5: 20482 SD 1.5 experiment settings.

A.3 SYNCHRONIZE STATISTICS BETWEEN TILES IN GROUPNORM
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Params Values
latent resolution 4×256×256
re-dilated blocks [DB3,MB,UB0]
dilation scale rb. [2, 2, 2]
dispersed blocks ∅

progressive %

noise-damped cfg. %
inference timesteps 50

τ 30

Table 6: 20482 SD XL 1.0 settings.

Params Values
latent resolution 4×320×320
re-dilated blocks [DB1,DB2,DB3,MB,UB0,UB1,UB2]
dilation scale rb. [2, 2, 2.5, 2.5, 2.5, 2, 2]
dispersed blocks ∅

progressive %

noise-damped cfg. !
noise-damped blocks [DB1,DB2,UB1,UB2]
inference timesteps 50

τ 30

Table 7: 25602 SD XL 1.0 experiment settings.

Params Values
latent resolution 4×256×512
re-dilated blocks [DB1,DB2,DB3,MB,UB0,UB1,UB2]
dilation scale rb. [2, 2, 2, 2, 2, 2, 2]
dispersed blocks ∅

progressive %

noise-damped cfg. !
noise-damped blocks [DB1,DB2,UB1,UB2]
inference timesteps 50

τ 30

Table 8: 4096×2048 SD XL 1.0 experiment settings.

Params Values
latent resolution 4×512×512
re-dilated blocks [DB2,UB1]
dilation scale rb. [2, 2]
dispersed blocks [DB3,MB,UB0]
dilation scale db. [2, 2]

dispersed kernel size 3× 3 → 5× 5

progressive !

noise-damped cfg. !
noise-damped blocks [DB2,UB1]
inference timesteps 50

τ 35

Table 9: 40962 SD XL settings.

Tiled Decode Ours

Figure 2: Direct tiled decode causes abrupt
changes in tile borders and different color
tones in tiles. We synchronize the statis-
tics in VAE GroupNorm between tiles to
address this problem.

When the generated image size is large (i.e., > 2048×
2048), the VAE of SD requires enormous VRAM for
decoding and is usually not applicable on a personal
GPU. A simple solution is decoding in tiles. However,
tiled decoding usually causes abrupt changes between
different tiles as shown in Fig. 2. To solve this, one
can make overlapped regions between tiles and inter-
polate on the overlapped regions. However, another
problem of tiled decoding is the inconsistent color tone
between tiles. We figure out this is caused by the in-
dependent computation of GroupNorm (GN) layers in
VAE between tiles. We propose to synchronize the fea-
ture statistics in GN in different tiles. Specifically, we
compute the mean and std using all tiles instead of us-
ing only current ones. As shown in Fig. 2, it eliminates
the color tone difference efficiently.

B RE-DILATED ATTENTION

QKV Attention

split

convolutional kernel

Kernel Re-DilationAttention Re-Dilation

merge

“Women watches diamond quartz Rhinestone Wrist Watch”

𝐡

𝐡!

Figure 3: Illustration and re-
sults of two re-dilations.

Here, we introduce the experimented re-dilated attention. We aim
to keep the original receptive field of attention, e.g., the attention
token quantity. Thus, before calculating the attentional features, we
first split the input feature map into four slices (the resolution is 4x
higher than the training), and for each slice, we flat them into token
sequences and feed them into the QKV attention. After the atten-
tion calculation, we merge them back to form the original feature
arrangement. This operation strictly controls the token length of at-
tention to be the same as training. However, this cannot solve the
structure issue of the generated image, as shown in the 2nd row of
Fig. 3. However, when applying the redilation on the convolutional
kernel, the structure is totally correct. This demonstrates that the
key cause of structure repetition lies in convolutional kernels.
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C MORE COMPARISONS

Method FIDr KIDr pFIDr pKIDr sFIDr sKIDr Time (s) #param
SD XL 18.50 0.005 29.63 0.014 16.68 0.007 6.5 3.5B

SD 2.1+SR 15.39 0.005 17.30 0.005 14.57 0.007 9.5 (1.5+8) 2.2B
Ours (SD 2.1) 18.73 0.005 20.97 0.005 10.17 0.004 5.6 1.3B

Ours (SD 2.1)+ LR 9.96 0.003 19.27 0.007 11.05 0.004 6.3(1.5+4.8) 1.3B

Table 10: Comparison results with state-of-the-art image generation models and super-resolution
(SR) model under the resolution of 10242. Time indicates the second used for synthesizing one
image on one A100 GPU with 16-bit precision). #param stands for the number of model parame-
ters. pFIDr and pKIDr represent patch-FID and patch-KID, respectively. pFIDr Chai et al. (2022),
pKIDr Chai et al. (2022), sFIDr Nash et al. (2021), and sKIDr Nash et al. (2021) are used to mea-
sure the texture details of generated samples.

We make a comprehensive comparison regarding general generation quality (FIDr, KIDr), texture
details (pFIDr, pKIDr, sFIDr, sKIDr), inference time and number of model parameters with SD+SR
and high-resolution image generation method SD XL, as shown in Tab. 10. Specifically, pFID/pKID
avoids the downsampling operation and instead uses cropping in the metric calculation. sFID/sKID
uses the features before the global average pooling to retain low-level details in the feature for the
metric calculation, as well as avoids downsampling. The evaluation dataset is a 30k subset from
Laion-5B with a resolution larger than 10242.

Results show that our training-free method (with no low-resolution reference image) achieves al-
most the comparable generation performance compared with well-trained SD+SR. Additionally, we
achieve better texture details than SD + SR (see the sFID and sKID metrics, as well as the user study
in the main paper). With the low-resolution generated samples as guidance, our method achieves
much better results than SD+SR. At the same time, our method has 59% inference time and 59%
model parameters less than SD+SR, showing our better efficiency. Compared with SD XL, we
achieve both better metrics and lower inference time and parameter numbers.

D MORE ABLATIONS

We conduct additional ablation experiments to investigate the impact of increasing inference reso-
lutions. As depicted in Figure 4, it is evident that as the inference resolution increases, the degree of
structure distortion becomes more pronounced. Despite these challenges, our method is capable of
effectively addressing and mitigating these issues, even in extremely demanding settings.
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Figure 4: Performance change when increasing the image resolution. When increasing the resolu-
tion, the problem becomes more challenging. Our method is still capable of addressing these issues
and maintaining a correct image structure.

4



E LIMITATIONS

Ensuring the accuracy of the local structure remains challenging, as demonstrated in Figure 5, partic-
ularly with regard to intricate details like the fingers of the robot and the legs of the chairs. It is worth
noting that this issue is not exclusive to our method but also exists in the original lower-resolution
model. As our approach is training-free, it inherits the limitations of the original model.

Ours SD 2.1 original Ours

1 1 2

2

Figure 5: Failure cases on local structures. Our method has failures in the local structure of the
generated image. We observed that the original lower-resolution model also struggled with this
problem.

F CLOSED-FROM SOLUTION FOR DISPERSED CONVOLUTION

We follow the notation in our main paper. Given a convolution layer with kernel k ∈ Rr×r and
a target kernel size r′. We find a dispersion transform R ∈ Rr′2×r2 to get a dispersed kernel
k′. Considering an input feature map h ∈ Rn×n, we ignore the bias in convolution, since it will
not influence our results. Then structure-level calibration and pixel-level calibration can form an
equation set:

interpd(fk(h)) = fk′(interpd(h))

ηfk(h) = ηfk′(h), (1)

where interpd(fk(h)) ∈ Rnd×nd, fk(h) ∈ Rn×n. The equation set has (nd)2 + n2 equations.
Each equation is made up of the sum of terms kijhij (elements in k and h) where the coefficient
of the terms are linear combinations of Rij (elements in R) and constants. For example, when
n = 3, r = 3 and r′ = 5, the 5-th equation in pixel-level calibration is:

k11h11 + k12h12 + k13h13 + · · ·+ k33h33 =

(R7,1k11 +R7,2k12 +R7,3k13 + · · ·+R7,9k33)h11+

(R8,1k11 +R8,2k12 +R8,3k13 + · · ·+R8,9k33)h12+

· · ·+
(R19,1k11 +R19,2k12 +R19,3k13 + · · ·+R19,9k33)h33 (2)

We rearrange the equation and get:
(1−R7,1)k11h11 + (−R7,2)k12h11 + · · · (1−R19,9)k33h33 = 0. (3)

To ensure this equation for all kijhij , one can let every coefficient be zero. Getting a linear equation
set for the 5-th equation in pixel-level calibration.

R7,1 = −1

R7,2 = 0

· · ·
R19,9 = −1

(4)
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We do this for every equation in Eq. (1) to derive a larger set of linear equations of Rij . Note
that the equation sets are linear equations of Rij and have no h or k, making it applicable to all
conv kernels and any input feature. Let’s go back to the general case where R ∈ Rr′2×r2 . Let
Astructure denote the coefficient of the linear combination for Rij in structure-level calibration, and
let bstructure denote the right-hand-side constants in the equation set of structure-level calibration.
Similarly, we define Apixel, bpixel, and we construct a least square problem.

Ax = b, A =

[
Astructure

ηApixel

]
, b =

[
bstructure
ηbpixel

]
,x =

 R1,1

R1,2

· · ·
Rr′2,r2

 . (5)

The solution is x = (ATA)−1AT b. This can be easily solved by math software, i.e., MATLAB.

G SEARCHING RE-DILATION SCHEDULE

We first test a series of hand-crafted hyperparameters and figure out some empirical results: 1) Using
re-dilation/dispersion in inner U-Net blocks and using original convolution in outer U-Net blocks
produces good results. 2) Sharing the same re-dilation scale in a block instead of using different
re-dilation scales for every convolution layer within a block produces better results.

Then, we search for hyperparameters using an automatic strategy. For each target resolution, we
sample 50 examples from LAION-5B to build an evaluation set. The MSE loss of noise estimation,
used in the training of diffusion models, serves as a metric for the hyperparameter search at each
diffusion timestep. The hyperparameter that achieves the lowest loss is chosen for the corresponding
timestep.

To speed up the search process, we prune the hyperparameter set using the previously established
empirical rules. The pruning method is as follows: 1) Use the same re-dilation scale in all con-
volution layers within a block. 2) The blocks within a start block and an end block will use re-
dilation/dispersion. For example, SD v2.1 blocks are shown in Fig. 1. If the start block is DB2 and
the end block is UB1, then the blocks that use re-dilation/dispersion are DB2, DB3, MB, UB0, and
UB1. 3) If the search includes noise-damped classifier-free guidance, then the blocks that use re-
dilation/dispersion in ϵθ is a continuous subset of the blocks that use re-dilation/dispersion in ϵ̃θ. For
example, if ϵ̃θ re-dilation/dispersion blocks are DB2, DB3, MB, UB0, UB1, that in ϵθ can be DB3,
MB, UB0. 4) The maximum re-dilation scale does not exceed the enlargement scale of the target
resolution (i.e., generating a 2048×2048 image using a 512×512 model, the maximum re-dilation
scale is 4). The search step of the re-dilation scale is 1.
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H OTHER VISUALIZATIONS

16:9 (1024×576)

“A rabbit is skateboarding on the snowy mountain” “a fancy hotel room”

11.5:1 (2944×256)

“A rabbit is riding a bicycle in New York Street”

2:1 (2048×1024)

“A corgi sits on a beach chair on a beautiful beach, with palm trees behind, high details.”

2:1 (1024×2048)

1:1 (1024×1024) 1:1 (1024×1024)

“A rabbit is skateboarding in Time Square”

3:4 (960×1280)

“watercolor illustration of Eiffel 
tower, surrounded by flowers”

“river in dream land”

Figure 6: More generated results with our method and SD 2.1 with arbitrary aspect ratios and sizes.
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3:4 (960×1280)

“A picturesque mountain scene with a clear lake reflecting the surrounding peaks”

2:1 (2048×1024)

“A squirrel eating an acorn in a forest”“A fox peeking out from behind a bush”

2:1 (2048×1024)

2:1 (2048×1024)3:4 (960×1280)

“A beautiful sunset over a calm ocean with a 
lighthouse in the distance”

“A rustic wooden cabin nestled in a snowy forest” 1:1 (2048×2048)1:1 (1024×1024)

“A butterfly landing on a sunflower“

“A robot bird walking in technology 
exhibition hall, cyberpunk”

1:1 (1024×1024)

Figure 7: More generated results with our method and SD 1.5 with arbitrary aspect ratios and sizes.
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1:1 (4096×4096)1:1 (2048×2048)

1:1 (2048×2048)

2:1 (4096×2048) 1:1 (2048×2048)

2:1 (4096×2048)2:1 (2048×2048)

"A panda contentedly munches on bamboo leaves, enjoying a tranquil afternoon"

“A robot bird walking in technology exhibition hall, cyberpunk”

”A statue of John Dalton”

”HD Print 5 pcs Modular alien totem art canvas 
painting modern home decor wall art picture print for 
living room”

“Close-up of green salad Lollo Biondo with tomatoes and 
radishes in a white bowl on wooden table and pitcher of oil 
stock photo”“Spring Magnolia and Thistle bouquet. Featuring bronze magnolia leaves, woodland greeneries, pussywillow, blush”

“Watercolor Painting / Handmade / Gift / Wall Hanging / Home Decor / Landscape / Nature / Size: Height 12.9 
Inches X Width 10 Inches”

Figure 8: More generated results with our method and SD XL 1.0 with arbitrary aspect ratios and
sizes.
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