Under review as a conference paper at ICLR 2024

A APPENDIX

A EXPERIMENT

A.1 DATASETS

Brain dataset is derived from a real-world fMRI brain scans dataset In this dataset, nodes represent
brain tissues, and edges capture nodes’ activation time similarity in the examined period. The node
attributes are generated from the fMRI signals | Xu et al. (2019). Given the temporal graph, our goal
is to predict the functionality of each node, which is one of the 10 categories.

DBLP is an extracted co-author network from DBLP website [} where nodes are authors and edges
represent co-authorship relationships. The extracted authors are from 5 research areas Xu et al.
(2019), serving as our class labels. Note attributes are word2vec representations of titles and ab-
stracts from related papers.

Reddit dataset is extracted from a popular online platform Reddit ’|[Hamilton et al.|(2018)), where
nodes represent posts, and edges are constructed between nodes having similar keywords. The node
attributes are word2vec representations of the comments of a postXu et al. (2019), and node labels
correspond to one of the 4 communities or “subreddits” to which the post belongs.

PeMS04 & PeMS08 These two datasets represent traffic sensor networks in two distinct districts
of California during various months. In this context, each node symbolizes a road sensor, while the
edge weights denote the geographical distance between two sensors (with uniform weights across
all snapshots). Every sensor captures average traffic statistics such as flow, occupancy, and speed
over a 5-minute interval. The datasets utilized in this study are identical to those in Gao & Ribeiro
(2022), where we exclusively forecast attribute values for a single future snapshot.

England-COVID This temporal graph dataset is taken from |Gao & Ribeiro|(2022)), which is created
by aggregating information from the mobility log released by Facebook under Data For Good pro-
gram|’|for England[Panagopoulos et al.|(2021). The nodes are cities, and the edges are transportation
statistics between them. Given a temporal graph of length 7, which represents the past week, we
need to predict the infection rate of the next day.

A.2 EXPERIMENT SETUP

We follow the procedure from|Gao & Ribeiro|(2022) and utilize the provided codeas the code base
to compare all the baselines and our method. Specifically, we first split the dataset into three portions
with ratios 70%-10%-20% for training, validation, and testing, respectively. Splitting is based on
nodes for transductive tasks and time for inductive tasks. We then normalize node attributes and
edge attributes with the 0-1 normalization method. We train on the training portion, find the best
hyperparameters using the validation set, and report the performance on the test set. We also use
ROCAUC score to evaluate classification tasks and mean average percentage error (MAPE) for
regression tasks.

A.3 HYPERPARAMETER

For detailed baselines’ architecture, please refer to|Gao & Ribeiro| (2022). Notice that, for all the
methods and all task, we fixed the embedding size as 16, and we searched the learning rates from
0.1, 0.01, and 0.001. For Brain10, we observed that our method converged slowly, then we let it run
for 1000 epochs. For DBLPS and Reddit4, we let all the methods run 500 epochs for 5 times for
each learning rate and report the performance on the test set where the performance of the validation
set is the best. For regression datasets, we run 100 epochs for England-COVID and 10 epochs for
PeMS04/PeMS08. The hyperparameter our model 1, € {0.5,0.7,0.9,1}, 72 € {0.001,0.01,0.1}.

"https://tinyurl.com/y4hhw8ro

Zhttps://dblp.org/

3https://www.reddit.com/
*https://dataforgood.fb.com/tools/disease-prevention-maps/
>https://www.dropbox.com/s/gqtzpngjSvaah9s/ICML2022-Code-Submit.zip

12

Under review as a conference paper at ICLR 2024

LEMMA 1 & THEOREM 2

Lemma 3 [f ||.|| is the matrix operator norm on R™"*™, then, for any matrix A € R™"*™,

Apr(A) < || Al

Proof 1 Let \ be the eigenvalue of A, and let x # 0 be the corresponding eigenvector. From
Ax = Az, we have

AX = 2\X
where each column in X is x. Further, we have
IAIX] = [[AX]] = [[AX]| < [[A]l[|X]]
Since || X|| > 0, taking the maximal X gives the result.

Lemma 1 The equilibrium equation z = o (M z+b) has a unique fixed point solution if ||| M || op <
1, where ||.||op is the operator norm, and o (-) is an element-wise non-expansive function.

Theorem 2 Let 0 be an element-wise non-expansive non-linear function. The coupled equilibrium
equations satisfy the well-posedness condition, namely |||W|||op||Allop < 1. There exists rescale
coupled equilibrium equations, which satisfy |W ||oo||Allop < 1, and the solutions of these two
equations are equivalent.

After applying Lemma 3, Lemma 1 and Theorem 2 are directly from |Gu et al.| (2020). For Lemma
1, they use a constructive method to prove: generate a sequence via fixed-point iteration, and then
this sequence converges to a unique fixed point due to the contractive property. For Theorem 2, they
show there exists the corresponding diagonal matrix to rescale the result.

PROOF OF THEOREM 1

Proof 2 By Lemma. |1| the well-posedness requirement for Formula. () is |||M||op| < 1. Since
Formula. @) and are equivalent, the well-posedness requirement for Formula. is also
[Mlllop < L.

M
[0 My ~ - _[m oo
LetM.—[M O]whereM.— 0 .0 .LetM.—{O Ml.Then
0o ... M

~ 10 I ~ 0 1
LT T A P TP P

= [1M][lop = max{ll[Mi[llop, ..., | Melllop}

This means if all subsystems satisfy the largest eigenvalue constraint, then the coupled equilibrium
equation has a fixed point solution by Lemma 1.

PROOF OF LEMMA 2

Proof 3 Recall that we have the following formula
zj = o(Mjpro(Mjir—y -+ 0(Mjy1z; +vee(VXji1)) - +vec(VXjir_1)) +vec(VX;yr))

< Suppose formula @ converges to 21, ..., 2y, and for any arbitrary j, formula (E]) converges to z;,
where z; # 2;. If we substitute 2; into formula @, we obtain a sequence {%}, ...,z 21, ..., 2] — 1}.
This sequence also serves as a fixed-point of formula (E]) given that Z; is the fixed-point of formula
and formula (B) is a composition of different levels of GCN. According to our assumption, for-
mula (9) converges to a unique solution, implying that these two expressions share the same fixed
point. = part follows a similar line of reasoning.

13

Under review as a conference paper at ICLR 2024

B NAIVE GRADIENT DESCENT

Recall that the parameters satisfy the following equations
FQ(Z, w, V) = 2y — O'(MQZl + VeC(VXg)) =0

Fr(z,W,V) =2y —o(Mrzr_1 + vee(VX7)) =0
Fi(z,W,V) =2 — o(Myz + vee(VX1)) =0

In total, there are ¢nd equations (nd components inside each z). We can calculate the gradient
via implicit differentiation. For any equation Zf] =a(>, >, WﬁZ’“ 1‘451] +>, V;lekj), taking
derivative with respect to W. Let W, denote the b-th row c-th column of the weight matrix at a-th

layer.

oz,

. k—1
3I/VZa —03,(4,7) (Z%k&n cn 1Ak +ZZ i 8ZVV“)0

Let H* := (Zk=1A*)T and e, be the a column vector that has value 1 at b-th entry but 0 at others.

Oz, 0zp—1
o — vec(o},) © (5akeb ® H* 4+ M* Wi) =0
Further,
8zk ’ k k 8zk 1
— H I+M =
awa k ® (6ak &1+ a . 0 (9)

Similarly, we can compute the gradient of Zikj w.rt. Q..

YA 3
L k k k _
6%0 Jk (27]) <5b2X + Wl 8Wbc A >
azk ’ T kazk_l N
To k@((X J'el+M =) =0 (10)

C ABLATION STUDY

In this section, we will delve into the various configurations of our model. Drawing from the prop-
erties mentioned earlier, our model can be represented by the formula (2). We have made the de-
liberate decision to assign different weights (17) to each timestamp while maintaining weight-tied
for V. Alternatively, the model comprises 7" layers of GCN and one linear layer. The linear layer
serves to aggregate static information, while the GCNs handle dynamic information. To validate our
architecture choice, we conducted a thorough comparison of our model against other configurations:

* Tie both: model consists of one layer of GCN and one linear layer.
* Tie W: model consists of one layer of GCN and 7T linear layer.
* Untied: model consists of 7" layer of GCN and 7T linear layer.

The results are presented in Table |4, As observed, the tie-both model exhibits the poorest perfor-
mance. We believe this is due to the limited number of free variables available for tuning, which
makes the training process challenging. In our approach and the tie-W method, we achieve very
similar results. Our model utilizes 7" layers of GCN for dynamic information and one linear layer
for static information, while the tie-WW method employs one GCN and T linear layers. The simi-
larity in results suggests that these models may be equivalent. The untied method achieves the best
result, although the improvement is negligible. However, it doubles the parameter size, resulting in
significant computational overhead. Hence, we opt for the current configuration, as it delivers good
performance while minimizing parameter size, especially since the number of attributes may exceed
the hidden dimension.

14

Under review as a conference paper at ICLR 2024

Table 4: Evaluating different variants of our model. Presenting AUC results on Brain10 datasets

AUC

Tie both | 95.2940.26

IDGNN | 95.87+0.13
Tie W | 95.87+0.08
Untied | 95.90£0.08

Layers | GCN-GRU | T-GCN | IDGNN
8 0.6217 0.9934 | 1.1113
16 0.5204 0.8719 | 1.0982
32 0.0077 0.7176 | 1.0019

Table 5: Smoothness of embeddings. (The larger the better)

D EMBEDDING VISUALIZATION

In this section, we explore an interesting aspect of our method that can provide empirical insights
into its ability to mitigate oversmoothing. We conduct experiments on a synthetic dataset that bears
resemblance to toy datasets.

The dataset comprises 10 snapshots, with each snapshot representing a clique of 10 nodes. Each
node is associated with 10 attributes. The nodes fall into two distinct classes, but we deliberately
conceal the label information in the attributes of the first snapshot. Specifically, the first two dimen-
sions of the attributes represent the one-hot encoding of the labels, while the remaining dimensions
are set to zero. Additionally, we assign unique IDs to the nodes in sequential order. Nodes with IDs
ranging from O to 4 belong to class 0, while those with IDs ranging from 5 to 9 belong to class 1.
To assess the effectiveness of our method, we visually compare the embedding results with those
obtained from TGCN.

Upon examining the visualizations, we observe that our model’s embeddings exhibit gradual
changes, whereas TGCN’s embeddings remain consistent for nodes belonging to the same class.
From a node-centric perspective, TGCN’s embeddings seem reasonable. Nodes of the same class
possess identical features and exhibit the same topological structure. Therefore, it is logical for them
to share a common embedding. However, our embeddings tend to differentiate each individual node.
We believe that this characteristic plays a role in mitigating the oversmoothing problem within our
model.

Furthermore, we conduct an additional experiment on quantitatively evaluating our model’s ability
to tackle over-smoothing. This experiment is conducted on the binary toy dataset: the toy data
we constructed consists of a dynamic graph with a maximum of 64 snapshots (adapt to layers),
with each snapshot being a clique of 10 nodes. Each node has 10 associated attributes. The task is
binary classification where each node’s class information is hidden in its first time-stamp’s attributes.
Attributes of other time stamps are randomly sampled from the normal distribution. All methods
are trained with a maximum of 2000 epochs and a learning rate of 0.001. At last, we evaluate their
smoothness by Mean Average Distance (MAD). Results are summarized as follows

E COMPLEXITY

For an arbitrary temporal graph, we denote the total number of snapshots as 7', the total number
of nodes as n, the number of edges of time ¢ as E, and F,g4, as the number of aggregated edges,
which satisfies E,qq < Y, Bt or Eqgq = »_, E;. Some basic complexities: GRU, self-attention,
and LSTM have complexity O(7"?) if the input sequence has length 7'; GCN and Spectral GCN have
complexity O(nd? + Ed); GAT has complexity O(nd + Ed?). The complexities of all models are
summarized as follows

Based on the complexity results, IDGNN is faster than EvolveGCN-O, EvolveGCN-H, GCN-GRU,
GCRN-M2, and DCRNN due to the absence of RNN in our model. TGN and TGAT are the slowest
since they have Fd? terms. For GRU-GCN, its runtime depends on the magnitude of E;

15

Under review as a conference paper at ICLR 2024

-25

-0.75
-2.0

- 0.50

0.25

0.00

5

6

-0.25

-0.50

8

=]
w
7
'
) IIII

9
9

-
N -
w

-0.75
- 0.0

(a) Our model (b) TGCN

Figure 2: The embedding visualization of our method and TGCN

EvolveGCN-O
EvolveGCN-H

Td*+Tnd* +), E.d
Td* +Tnd*+), Ed
d

o()
o()
GCN-GRU O(Td* + Tnd* + Y, Eyd)
DySAT O(Td? + Tnd+ Y, Exd?)
GCRN-M2 O(Td* + Tnd* +), Eyd)
DCRNN O(Td? + Tnd? + Y, Eyd)
TGAT O(Tnd + ", Ed?)
TGN O(Eqaged + Tnd® + 3", Eyd?)
GRU-GCN | O(E,44d + Tnd? + TE,4,d?)
IDGNN O(Tnd? + ", Exd)

Table 6: Summary of all models’ complexities

16

Under review as a conference paper at ICLR 2024

Jr

S

Figure 3: Model overview

ACC

1.0

0.8

1/

0.4 -

0.2
— IDGNN
— TGCN
0.0 —— GCN-GRU

T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000

Figure 4: Additional result.

F MODEL OVERVIEW

Here, we draw a model diagram for our training algorithm. The blue line denotes the forward
process, and the orange dashed line denotes the backward process.

G HESSIAN VECTOR PRODUCT

To compute the product of Hassian and a vector: Hv, and H = %. We compute the product by

DFNT
Hv = %. In this way, we are not explicitly computing the Hessian.

H ADDITIONAL RESULT ON TOY DATA

This synthetic experiment shifts label information from time stamp 1 to time stamp 5. This ad-
justment ensures uniform difficulty in utilizing label information across all models. Implementing
this change postpones our method towards achieving 100% accuracy by approximately 50 epochs.
However, even with this modification, the baselines still struggle to fit the data.

Shttps://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html

17

https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html

	Introduction
	Related Work
	Methodology
	Implicit Model for Dynamic Graphs

	Training
	Efficiently Update via Bilevel Optimization

	Experiments
	Over-smoothing and long-range dependency on toy data
	Regression
	Classification
	Efficiency

	Conclusions
	Appendix
	Experiment
	Datasets
	Experiment setup
	Hyperparameter

	Naive Gradient Descent
	Ablation Study

	Embedding Visualization
	Complexity
	Model Overview
	Hessian Vector Product
	Additional Result on Toy Data

