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ABSTRACT

The Hopfield network has been the leading model for associative memory for over four
decades, culminating in the recent 2024 Nobel Prize. However, the vanilla version of
the Hopfield network has a capacity that scales with the number of connections per
neuron. In the mammalian brain, that’s about 1,000, leading to a capacity of about 50
memories in a spiking network—regardless of its size. Therefore, it cannot possibly
account for the capacity of human memory. To address this limitation, various modifi-
cations to the Hopfield network have been proposed. One promising variant is Dense
Associative Memory, which significantly increases capacity and could be implemented
in a two-layer architecture consisting of memory and feature neurons. However, from
the point of view of biological plausibility, this comes with a downside: during recall
of a specific memory, all neurons but one cued neuron (a neuron that is associated with
the recalled memory) in the memory layer are silent, whereas in the brain, neurons are
rarely silent for extended periods. This is not easy to fix: the memory layer contains
a large number of neurons, and allowing non-cued neurons (neurons that are not as-
sociated with the recalled memory) to exhibit even low firing rates can introduce an
unacceptable level of noise, preventing the perfect recall of the cued memory. To ad-
dress this challenge, we propose a novel architecture that introduces nonlinear dendrites
in the Dense Associative Memory network. This model supports a capacity that is poly-
nomial in the number of memory neurons while enabling non-cued memory neurons to
be unsilenced. The proposed architecture adheres to other key biological constraints,
including the presence of both excitatory and inhibitory populations that obey Dale’s
law and maintain non-saturated firing rates and sparsity in the connections. These prop-
erties enhance the model’s biological plausibility while achieving polynomial capacity,
bridging the gap between theoretical and biological constraints on associative memory.

1 INTRODUCTION

Associative memory models as a variant of an attractor network could be powerful analogs for understand-
ing human memory (Wills et al. (2005)). However, current models face significant limitations regarding
capacity and biological plausibility. In the case of the standard Hopfield Network, memory capacity is
constrained by the number of synaptic connections. Since the brain has sparse connections, the number of
synaptic connections is far fewer than the number of neurons, resulting in an impractically low memory
capacity (Roudi & Latham (2007)).

To address the limitation on capacity, Krotov and Hopfield (Krotov & Hopfield (2016)) introduced the
Dense Associative Memory model, also known as the Modern Hopfield Network, which dramatically
increases capacity. However, this network still falls short in its ability to describe biological networks at
a true microscopic level. Specifically, it incorporates many-body synaptic terms (synapses that are shared
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between more than two neurons) in the equations governing its dynamics, which limits its biological
plausibility.

Later, Krotov and Hopfield proposed a more biologically plausible implementation of Dense Associative
Memory, which uses only two-body synapses (Krotov & Hopfield (2021)). This model divides neurons
into two populations: memory neurons and feature neurons. While the network’s capacity grows expo-
nentially with the number of feature neurons, it is still limited by the number of memory neurons (Krotov
(2021)). Additionally, a major biological concern arises during memory recall, where most memory neu-
rons, which are not associated with the recalled memory, remain silent, contradicting the well-established
observation that a large group of neurons in the brain rarely stay completely inactive. Other models that
attempt to enhance associative memory capacity also fail to meet critical biological constraints, including,
but not limited to, making the majority of neurons silent, not adhering to Dale’s law, firing at saturation
level, or losing capacity under sparsity of connections (Chandra et al. (2025), Kozachkov et al. (2023)).
As such, they cannot serve as potential models for human memory.

In this paper, we propose a novel architecture for an associative memory network that enhances Dense
Associative Memory with nonlinear dendritic computation (Poirazi et al. (2003)). This expanded model
supports a polynomial capacity by distributed encoding of memories and key biological plausibility con-
straints, including: it does not require all non-cued neurons to be silent; neurons are allowed to have a low
but nonzero firing rate; there are both excitatory and inhibitory populations in the network; all neurons
obey Dale’s law and fire at a non-saturated rate; and it supports sparsity in synaptic connections.

2 MODEL

To address challenges on capacity and biological plausibility, we introduce a new architecture for asso-
ciative memory (Figure 1a). The network consists of two excitatory populations, E1 (memory) and E2

(feature), inspired by Dense Associative Memory. One key biological plausibility issue we address is
avoiding the requirement that all non-cued neurons be silent when recalling a memory. This is achieved
by augmenting each feature neuron with ND nonlinear dendritic branches.

When recalling a memory without dendrites, a feature neuron would receive noisy input from many non-
cued memory neurons and a signal from only a few neurons coding for the recalled memory, all arriving
at the soma. This would make it difficult to distinguish signal from noise unless the associated neurons
fire at an exceptionally high rate. With dendrites, each branch processes input from only a small subset
of memory neurons reducing noise variance and enhancing signal clarity. Therefore, this architecture
improves the robustness of memory retrieval in the presence of noise from non-cued neurons, without
requiring excessively high firing rates for the cued neurons.

To ensure that branches of E2 neurons receiving input from non-cued E1 neurons have minimal effect on
the soma, the input to these branches must be very small, while E1 neurons adhere to Dale’s law. This is
achieved by introducing the inhibitory population I1 , which ensures that the input to non-active branches
remains very small if they do not receive input from a cued neuron (see Appendix).

For the same reason, since all memory neurons—even when not cued—receive input from feature neu-
rons, we need to ensure that non-cued E1 neurons maintain low activity and receive a small total input.
This is achieved by introducing the inhibitory population I2 into the model. The presence of these in-
hibitory groups stabilizes the network, preventing runaway activity and pathologically high firing rates as
well. The firing rate dynamics of neurons in each population are described as follows:

τE1

dνE1
i

dt
= F

(
hE1
i

)
− νE1

i , (1a)

τE2

dνE2
i

dt
=

1√
ND

ND∑
di

JE2D
idi

G
(
hE2

di

)
− νE2

i , (1b)

τI1
dνI1i
dt

=
[
hI1
i

]+
− νI1i , (1c)

τI2
dνI2i
dt

=
[
hI2
i

]+
− νI2i . (1d)

Here, τQ is the time constant for each population Q, and hQ is the synaptic drive to neurons in Q popu-
lation for Q ∈ {E1, E2, I1, I2}, described as.
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Figure 1: (a) The network architecture on the left, and its excitatory subnetwork on the right. (b) A
sample activation of E1 (memory) and E2 (feature) neurons during memory recall . Red dots represent
cued E1 neurons that are actively engaged in recall, while black dots denote non-cued neurons, which
remain inactive but are not artificially silenced. (c) The percentage of perfectly recalled memories as a
function of the number of neurons encoding each memory, k. The network maintains high recall accuracy
for k ≤ 4, resulting in a capacity of O(N4

E1
). (d) The percentage of perfectly recalled memories as a

function of the induced noise level in feature neurons.

hE1
i =

1√
cNE2

NE2∑
j

cE1E2
ij JE1E2

ij νE2
j − 1√

cNI2

NI2∑
j

cE1I2
ij J̃E1I2

ij νI2j −

1√
cNI1

NI1∑
j

cE1I1
ij J̃E1I1

ij νI1j + hE1
i,ext, (2a)

hE2

di
=

1√
cNE1

ND

NE1∑
j

cDE1

dij
JDE1

dij
νE1
j − 1√

cNI1

ND

NI1∑
j

cDI1
dij

J̃DI1
dij

νI1j + hE2

di,ext
, (2b)

hI1
i =

1

cNE1

NE1∑
j

cI1E1
ij JI1E1

ij νE1
j − 1

cNI1

NI1∑
j

cI1I1ij J̃I1I1
ij νI1j , (2c)

hI2
i =

1

cNE2

NE2∑
j

cI2E2
ij JI2E2

ij νE2
j − 1

cNI2

NI2∑
j

cI2I2ij J̃I2I2
ij νI2j . (2d)

And, F , and G are nonlinearities, defined as follows:
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G(z) =


gmin if z ≤ gt
α(z − gt) + gmin if 0 < α(z − gt) < gmax − gmin

gmax if α(z − gt) ≥ gmax − gmin

(3a)

F (z) =


rmin if z ≤ ft
(z − ft) + rmin if 0 < (z − ft) < rmax − rmin

rmax if (z − ft) ≥ rmax − rmin

(3b)

Here, α is a positive constant. gmin and gmax represent the minimum and maximum dendritic currents,
respectively, while rmin and rmax denote the minimum and maximum firing rates, which are 1 Hz and
100 Hz, respectively. The parameters gt and ft must be determined based on stability criteria to ensure
stable fixed points in the dynamics (see Appendix). The threshold-linear operator [z]+ is defined as
[z]+ = z if z > 0 and 0 otherwise.

The selected nonlinearities play a crucial role in satisfying key biological constraints. Specifically, they
ensure that non-cued neurons maintain a nonzero firing rate. The maximum firing rate is set high (rmax =
100 Hz), and the fixed points of the dynamics are stabilized within the linear regime. As a result, neurons
remain in an unsaturated operating state even when they participate in the recall of a memory.

JQR
ij represents the synaptic weight from the jth neuron in population R to the ith neuron in population

Q. Similarly, JDR
dij

denotes the synaptic weight between neuron j in population R and the dendritic
branch di of neuron i in population E2. The term JE2D

idi
represents the dendritic weight of the dith branch

of neuron i in the E2 population.

All JQR
ij are random and positive. Additionally, they are non-symmetric, except for the weights between

E1 and E2 neurons, which are dependent, that is, if neuron i in population E1 is connected to neuron j
in population E2 via branch νj , then

JE1E2
ij = JE2D

jνj
. (4)

Furthermore, all neurons in the network obey Dale’s law.

Here, cQR
ij determines whether neuron j in populations R is connected to neuron i in population Q defined

as:

cQR
ij =

{
1 with probability c

0 with probability 1− c
(5)

Similarly, cDR
dij

determines whether neuron j in populations R is connected to the dendritic branch di of
neuron i in population E2, for R ∈ {E1, I1}, and is defined as:

cDR
ij =

{
1 with probability c

ND

0 with probability 1− c
ND

(6)

The appropriate distribution and scaling of the weights ensure that when a memory is recalled, the average
synaptic drive to the cued E1 neurons is positive, while the drive to the non-cued E1 neurons is negative.
Similarly, a dendritic branch receiving input from a cued E1 neuron experiences a net positive current,
whereas a non-activated branch receives a negative. Additionally, the weights are scaled such that the
variance of the synaptic drive to each neuron remains independent of the number of postsynaptic neurons
(see Appendix).

3 RESULT

Each neuron in the E2 population receives excitatory inputs from both cued and non-cued neurons in the
E1 population, which are allowed to have a low, nonzero firing rate. Additionally, E2 neurons receive
inhibitory inputs from I1 neurons. If a dendritic branch does not receive a large input from a cued
E1 neuron, its total input remains very small and, therefore, it does not significantly affect the soma.
However, branches connected to cued E1 neurons receive strong positive input. Consequently, the activity
of E2 neurons is primarily determined by their connectivity with cued E1 neurons, even in the presence
of substantial noise from non-cued neurons.
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Because the dependency in recurrent weights from E2 to E1 (Equation 4), the input to the cued E1

neurons becomes more aligned with these recurrent weights, resulting in a stronger recurrent input. The
input to the non-cued memory neurons, however, remains small, as the weights are not aligned with the
input from E2. This mechanism enables perfect recall of the cued memory: only the neurons encoding
the cued memory have a high firing rate (red dots in Figure 1a), while the rest maintain a low firing rate
(black dots in Figure 1b).

In the proposed model, each memory can be encoded in 1, 2, ..., or k neurons in the E1 popula-
tion, which k depends on network parameters. Therefore, the capacity—the number of stable fixed
points—corresponds to the number of possible ways memories can be encoded in the memory layer,
is

capacity ∼ β1

(
NE1

1

)
+ · · ·+ βk

(
NE1

k

)
∼ O(Nk

E1
),

where βk is the percentage of memories that can be perfectly recalled when the memory is encoded in k
neurons in the E1 layer. Figure 1c shows that, for an example fully connected network with NE1

= 1000
(memory neurons) and NE2

= 2000 (feature neurons), the network is able to perfectly recall a large
number of memories for k up to 4.

Beyond capacity, robustness—defined as the size of the basin of attraction for each fixed point (mem-
ory)—is also critical. Figure 1d shows that the fixed points of the dynamics have a large basin of attrac-
tion. Here, E2 neurons are initialized with a noisy memory, i.e., features associated with a memory plus
a noise ∼ Uniform(0, σ). Given the large number of E2 neurons, this noise level is substantial, further
demonstrating the robustness of memory recall.

4 DISCUSSION

In this paper, we propose a novel architecture for associative memory by augmenting Dense Associative
Memory with nonlinear dendrites. Our model achieves two crucial properties: high-capacity storage with
large basins of attraction, and biological plausibility. Unlike previous implementations of Dense Asso-
ciative Memory models—which rely on a single active memory neuron per memory during recall—our
approach allows for the simultaneous activation of multiple (1 ≤ k ≪ ND) memory neurons. This
distributed representation enables each memory neuron to participate in encoding multiple patterns, re-
sulting in an efficient storage capacity of ∼ O(Nk

E1
). This marks a significant improvement over earlier

implementations, which lacked such an efficient, distributed memory framework.

To address a key biological constraint—the unsilencing of non-cued neurons during memory recall—we
leverage dendritic computations, a fundamental property of real neurons. In our model, dendritic nonlin-
earities filter out noise from non-cued memory neurons before it reaches the soma, preventing interference
while allowing these neurons to remain active. This mechanism aligns with experimental observations
that large groups of neurons rarely remain completely silent for extended periods. Additionally, our model
incorporates other crucial biological features. Specifically, it ensures the presence of both excitatory and
inhibitory neurons, adherence to Dale’s law, operation at non-saturated firing rates, and robustness of
capacity to sparse connectivity.

Our proposed model establishes a robust foundation for associative memory networks, offering a bio-
logically plausible framework with polynomial capacity. However, several open questions remain. Are
synaptic weights in the memory network relatively stable, or do they change dynamically over time as
new memories are added? If the weights are fixed, how does the brain associate different memories with
these fixed points? Conversely, if the weights are dynamic, what learning rule governs their updates?
Addressing these questions requires further investigation into the neural circuits that support attractor
networks.
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A APPENDIX

In this section, we provide details on the stability analysis of the memories.

The firing rate dynamics of neurons in each population are described by Equation 1. Without loss of
generality, we set hE1

i,ext and hE2

di,ext to zero for the remainder of the analysis, and we assume memories
are encoded in a single memory neuron. The same reasoning applies when memories are encoded in
1 < k ≪ ND neurons in the E1 population.

The weights are scaled such that when a memory is recalled, the average synaptic drive to the cued E1

neurons is positive, while the drive to the non-cued E1 neurons is negative and nearly balanced. Similarly,
a dendritic branch receiving input from a cued E1 neuron experiences a net positive current, whereas a
non-activated branch receives a negative and nearly balanced input drive. Furthermore, the weights are
scaled so that the variance of the synaptic drive to each neuron remains independent of the number of
postsynaptic neurons. We will further demonstrate this point later. The required scaling are therefore as
follows,

J̃E1I2
ij ∼

√
NE2

NI2

JE1I2
ij (7a)

J̃E1I1
ij ∼

√
NE2

NI1

JE1I1
ij (7b)

J̃DI1
dij

∼

√
NE1

NI1

JDI1
dij

(7c)

J̃I1I1
ij ∼ 1

cNI1

JI1I1
ij (7d)

J̃I2I2
ij ∼ 1

cNI2

JI2I2
ij (7e)

All JQR
ij are assumed to be random and positive, drawn from a uniform distribution with mean J . Ad-

ditionally, they are non-symmetric, except for JE1E2
ij , which are dependent on dendritic weights, as de-

scribed in 4 and are drawn from a gamma distribution.

krBy substituting the scaled weights, the synaptic drive to the inhibitory neurons can be approximated as:

hI1
i =

1

cNE1

NE1∑
j

cI1E1
ij JI1E1

ij νE1
j − 1

cNI1

I1∑
j

cI1I1ij J̃I1I1
ij νI1j

≈ cI1E1
ij JI1E1

ij νE1
j +O

(
1√
cNE1

)
− cI1I1ij

1

cNI1

JI1I1
ij νI1j −O

(
1

cNI1

√
cNI1

)
≈ cJνE1

j , (8a)

hI2
i =

1

cNE2

NE2∑
j

cI2E2
ij JI2E2

ij νE2
j − 1

cNI2

I2∑
j

cI2I2ij J̃I2I2
ij νI2j

≈ cI2E2
ij JI2E2

ij νE2
j +O

(
1√
cNE2

)
− cI2I2ij

1

cNI2

JI2I2
ij νI2j −O

(
1

cNI2

√
cNI2

)
≈ cJνE2

j . (8b)

And by assuming that the inhibitory neurons have a faster dynamics compare to the excitatory neurons,
we can reduce the four dimensional equation 25 to a two dimensional equation:
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τE1

dνE1
i

dt
= F

(
hE1
i

)
− νE1

i , (9a)

τE2

dνE2
i

dt
=

1√
ND

ND∑
di

JE2D
idi

G
(
hE2

di

)
− νE2

i , (9b)

νI1i =
[
hI1
i

]+
≈ cJνE1

j , (9c)

νI2i =
[
hI2
i

]+
≈ cJνE2

j . (9d)

And the synaptic drives could be approximated as:

hE1
i =

1√
cNE2

NE2∑
j

cE1E2
ij JE1E2

ij νE2
j − 1√

cNI2

NI2∑
j

cE1I2
ij J̃E1I2

ij (cJνE2
j )

− 1√
cNI1

NI1∑
j

cE1I1
ij J̃E1I1

ij (cJνE1
j ), (10a)

hE2

di
=

1√
cNE1

ND

NE1∑
j

cDE1

dij
JDE1

dij
νE1
j − 1√

cNI1

ND

NI1∑
j

cDI1
dij

J̃DI1
dij

(cJνE1
j ). (10b)

by substituting the scaled weights we will get:

hE1
i =

1√
cNE2

NE2∑
j

cE1E2
ij JE1E2

ij νE2
j − 1√

cNI2

NI2∑
j

cE1I2
ij (

√
cNE2

cNI2

〈
JE1E2
ij

〉
i,j

JE1I2
ij )(cJνE2

j )

− 1√
cNI1

NI1∑
j

cE1I1
ij (

√
cNE2

cNI1

JE1I1
ij )(cJνE1

j ), (11a)

hE2

di
=

1√
cNE1

ND

NE1∑
j

cDE1

dij
JDE1

dij
νE1
j − 1√

cNI1

ND

NI1∑
j

cDI1
dij

(

√
cNE1

cNI1

JDI1
dij

)(cJνE1
j ). (11b)

And , the synaptic drives will be simplified as:

hE1
i =

1√
cNE2

NE2∑
j

cE1E2
ij JE1E2

ij νE2
j − cJ2

√
cNE2

〈
JE1E2
ij

〉
i,j

νE2
j −O(

√
NE2

NI2

)−

cJ2
√

cNE2ν
E1
j −O(

√
NE2

NI1

)

∼ 1√
cNE2

NE2∑
j

cE1E2
ij JE1E2

ij νE2
j − cJ2

√
cNE2

(〈
JE1E2
ij

〉
i,j

νE2
j + νE1

j

)
, (12a)

hE2

di
=

1√
cNE1

D

NE1∑
j

cDE1

dij
JDE1

dij
νE1
j − cJ2

√
cNNE1

ND
νE1
j −O(

√
NE1

NI1

). (12b)

Now we want to ask whether and under what condition there are Equibliria in the network associated with
stored memories such that when a memory is perfectly recalled, one neuron in E1 population is highly
active νE1

µ = ν∗E1
µ , where rmin ≪ ν∗E1

µ ≪ rmax, all other E1 neurons remain are at a low activity equal

to νE1

j ̸=µ = rmin, for j ̸= µ ∈ (1, 2, . . . , NE1
). In this case, νE1

j ≈ rmin. For simplicity, for the rest of
analysis we set rmin = 1, and J = 1. if neuron µ in E1 is connected to neuron i in E2 via branch νi,
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then the synaptic drive to the activated branch νi, and other will be

hE2
νi

=
1√
cNE1

ND

cNDE1
νiµ JDE1

νiµ ν∗E1
µ +

1√
cNE1

ND

NE1∑
j ̸=µ

cDE1
νij

JDE1
νij

− c

√
cNE1

ND
−O(

√
NE1

NI1

) ≈

1√
cNE1

ND

cDE1
νiµ JDE1

νiµ ν∗E1
µ +

√
cNE1

ND
+O(1)− c

√
cNE1

ND
−O(

√
NE1

NI1

). (13a)

hE2
νi

≈ 1√
cNE1

ND

cDE1
νiµ JDE1

νiµ ν∗E1
µ −O(

√
NE1

NI1

) + (1− c)

√
cNE1

ND
(13b)

hE2

di
=

1√
cNE1

ND

NE1∑
j ̸=µ

cDE1

dij
JDE1

dij
− c

√
cNE1

ND
−O(

√
NE1

NI1

) ≈
√

cNE1

ND
+O(1)− c

√
cNE1

ND
−O(

√
NE1

NI1

).

(13c)

hE2

di
≈ −O(

√
NE1

NI1

) + (1− c)

√
cNE1

ND
(13d)

With an appropriate choice of gt in Equation 3, we can ensure that in the steady state, only the active
branch receives a large input, while the remaining branches receive small inputs and do not significantly
affect the soma,

α(hE2
νi

− gt) > 0 ⇒ G(hE2
νi

) = cDE1
νiµ gmax + (1− cDE1

νiµ )gmin (14a)

hE2

di
− gt < 0 ⇒ G(hE2

di
) = gmin. (14b)

Therefore in the steady state,

ν∗E2
i =

1√
ND

JE2D
iνi

(
cDE1
νiµ gmax + (1− cDE1

νiµ )gmin

)
+

1√
ND

D∑
di

JE2D
idi

gmin, (15)

Now, let’s consider the excitatory input to the cued neuron µ, the first term in equation12a, remembering
that, JE1E2

µi = JE2D
iνi

, Equation 4,

1√
cNE2

NE2∑
j

cE1E2
µj JE1E2

µj νE2
j ≈ 1√

cNDNE2

NE2∑
j

cE1E2
µj JE1E2

µj

(
JE2D
jνj

cDE1
νjµ gmax

)

+
1√

cNDNE2

NE2∑
j

cE1E2
µj JE1E2

µj

ND∑
dj

JE2D
jdj

gmin

 , (16)

=
1√

cNDNE2

NE2∑
j

JE1E2
µj

(
JE1E2
µj cDE1

νjµ gmax

)

+
1√

cNDNE2

NE2∑
j

cE1E2
µj JE1E2

µj

ND∑
dj

JE2D
jdj

gmin

 , (17)

≈
〈(

JE1E2
ij

)2〉
i,j

√
cNE2

ND

√
ND

gmax +O

(
1

ND

)
+〈

JE1E2
ij

〉
i,j

√
cNDNE2gmin +O(1). (18)

≈
〈(

JE1E2
ij

)2〉
i,j

√
cNE2

ND

√
ND

gmax +
〈
JE1E2
ij

〉
i,j

√
cNDNE2gmin

(19)

9



New Frontiers in Associative Memory workshop at ICLR 2025

Following the same approximation, the excitatory input to the non-cued neuron i ̸= µ is:

1√
cNE2

NE2∑
j

cE1E2
ij JE1E2

ij νE2
j ≈

(〈
JE1E2
ij

〉
i,j

)2 √cNE2

ND

√
ND

gmax +O

(
1

ND

)
+〈

JE1E2
ij

〉
i,j

√
cNDNE2gmin +O(1). (20)

1√
cNE2

NE2∑
j

cE1E2
ij JE1E2

ij νE2
j ≈

(〈
JE1E2
ij

〉
i,j

)2 √cNE2

ND

√
ND

gmax +
〈
JE1E2
ij

〉
i,j

√
cNDNE2

gmin

(21)

By defining, (See Equation 12a and Equation 16):

θ =
〈
JE1E2
ij

〉
i,j

√
cNDNE2

gmin − cJ2
√
cNE2

(〈
JE1E2
ij

〉
i,j

νE2
j + νE1

j

)
(22)

=
√
cNE2

(
−cJ2

(〈
JE1E2
ij

〉
i,j

νE2
j + νE1

j

)
+
〈
JE1E2
ij

〉
i,j

√
NDgmin

)
(23)

we can finally express the synaptic drive in equation 12a to the cued and non-cued neurons as:

hE1
µ ≈

〈(
JE1E2
ij

)2〉
i,j

√
cNE2

ND

√
ND

gmax + θ, (24a)

hE1

i̸=µ ≈
(〈

JE1E2
ij

〉
i,j

)2 √cNE2

ND

√
ND

gmax + θ. (24b)

Finally chosing the right distribution over JE1E2
ij and setting the appropriate ft for the F nonlinearity in

equation 3b, we can make sure that there is an equiblirium such that:

ν∗E1
µ = F

(〈(
JE1E2
ij

)2〉
i,j

√
cNE2

ND

√
ND

gmax + θ

)
=

〈(
JE1E2
ij

)2〉
i,j

√
cNE2

ND

√
ND

gmax + θ − rt + rmin,

(25a)

ν∗E1

i̸=µ = F

((〈
JE1E2
ij

〉
i,j

)2 √cNE2

ND

√
ND

gmax + θ

)
= rmin. (25b)

And since around the equilibrium,

∂G(hE2

di
)

∂hE2

di

= 0,
∂F (hE1

i̸=µ)

∂hE1
i

= 0,
∂F (hE1

µ )

∂hE1
µ

= 1, and
∂hE1

µ

∂νE1
µ

< 0, (26)

the equilibria are stable.
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