OmniVL: One Foundation Model for Image-Language
and Video-Language Tasks
Supplementary Material

A Specification for the Visual-grounded Alignment / Generation Decoder

As mentioned in the paper, the visual-grounded alignment decoder is applied to enable the deep inter-
action of multimodal information with cross-attention blocks, while the visual-grounded generation
decoder is adopted to generate natural languages conditioned on the visual input. We further specify
their architectures in Figure 1.
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Figure 1: Architecture of the visual-grounded alignment / generation decoder.

Note that both visual-grounded alignment decoder and visual-grounded generation decoder are
initialized with the Bert-base model [2], which stacks 12 transformer layers.

B Image/ Video Question Answering

Image / video question answering requires the model to answer a question according to a given image
/ video, which models the complex interaction between visual and linguistic representations. During
finetuning, we rearrange the pre-trained model, as shown in Figure 2.
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Figure 2: Architecture of the visual-grounded alignment / generation decoder.

Our setup is based on the following considerations. We first input the image / video to unified visual
encoder, the output of which will be combined with the text features of the questions through the
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visual-grounded alignment decoder. Based on these deeply fused representations, we finally generate
the predicted answers with the visual-grounded generation decoder.

C Finetuning Setups

In this section, we describe the settings used when fine-tuning the pretrained models on various
downstream tasks.

C.1 Image-Language Tasks
For image-text retrieval and image captioning, we resize the images to 384 x 384, while for visual

question answering, we resize the images to 480 x 480, following [4]. We use RandomAugment [1]
for data augmentation. The default settings for finetuning on each dataset are shown in Table 1.

Table 1: End-to-end finetuning configurations for image-language downstream tasks.

Config COCO (retrieval) & Flickr30k | COCO (captioning) ‘ VQA
optimizer AdamW AdamW AdamW
base learning rate le-5 le-5 2e-5
weight decay 0.05 0.05 0.05
learning rate schedule linear decay linear decay linear decay
batch size 512 512 256
training epochs 10 10 10

C.2 Video-Language Tasks

For all video-language downstream tasks, we resize video frames to 384 x 384. During fine-tuning,
we randomly sample N frames from each video, where N = 8 for text-to-video retrieval, N = 16
for video question answering following [3], and N = 24 for video captioning. We perform uniform
sampling during inference. Similar with image-language tasks, we also adopt RandomAugment [1]
for data augmentation. The default settings for finetuning on each dataset are shown in Table 2.

Table 2: End-to-end finetuning configurations for video-language downstream tasks.

Config | MSRVTT (ret) | DiDeMo | MSRVTT (QA) | MSVD (QA) | Youcook2
optimizer AdamW AdamW AdamW AdamW AdamW
base Ir Se-6 le-5 Se-6 le-5 le-5
weight decay 0.05 0.05 0.05 0.05 0.05

Ir schedule linear decay linear decay linear decay linear decay | linear decay
batch size 32 32 32 32 32
training epochs 6 6 10 10 10

D More Comparison Results on Vision-language Tasks for Different
Pretraining Paradigms

We demonstrate more comparison results using different pretraining paradigms (i.e., image-only,
video-only, joint pretraining from scratch, and our decoupled pretraining) on various vision-language
downstream tasks in Table 3. Details of the pretraining data can be found in Table 4. Moreover, an
“img2vid” strategy is also adopted for further comparison, where we start with image-only pretraining
and then implement video-only pretraining. We can see our decoupled joint pretraining paradigm
achieves consistently better results on all the downstream tasks.



Table 3: More comparison results on various vision-language tasks for different paradigms.

COCO (5K test set) Flickr30K (1K test set)
Method TR IR TR IR
Image-only 80.9 948 975 632 852 913| 96.6 99.8 1000 87.2 975 98.8
Joint 502 756 849 350 627 739| 672 834 92.1 565 634 71.7
Img2Vid 797 948 9777 61.8 847 909| 958 99.6 99.9 765 973 982
Decoupled Joint| 82.1 959 98.1 64.8 86.1 91.6| 97.3 999 100.0 87.9 978 99.1
Text-to-Video Retrieval Zero-shot Retrieval
Method MSRVTT DiDeMo MSRVTT DiDeMo
Video-only 13.7 335 419 182 43.6 525| 67 194 294 7.1 18.1 27.8
Joint 23.6 49.7 615 28.1 52.8 644| 155 39.6 534 19.2 427 519
Img2Vid 425 713 799 51.1 76.6 82.8| 383 56.1 644 375 62.0 72.6
Decoupled Joint | 47.8 74.2 83.8 524 795 854| 42.0 63.0 73.0 40.6 64.6 743
NoCaps COCO Caption
Method in-domain  near-domain  out-domain overall Karpathy test
C S C S C S C S | B@4 C
Image-only 100.2 144 1072 14.6 102.7 13.8 1055 14.4| 393 131.6
Joint 100.0 141 957 13,6 774 11.6 930 134| 29.6 94.6
Img2Vid 99.2 14.1 1027 142 985 134 101.5 14.0| 38.6 129.5
Decoupled Joint | 104.6 15.0 108.3 149 1063 14.2 107.5 14.7| 39.8 133.9
Method test-dev test-std Method MSRVTT MSVD Method B@4 C
Image-only 77.55 77.53 Video-only 15.8 17.3 Video-only 356 0.29
Joint 47.78 47.80 Joint 38.8 39.2 Joint 447  0.55
Img2Vid ) 7743 7743 Img2Vid 42.8 48.3 Img2Vid 7.80 1.05
Decoupled Joint 78.33  78.35  pecoupled Joint ~ 44.1 51.0  Decoupled Joint 872 1.16

Table 4: Pretraining data used for different pretraining paradigms.

Method Image-Text Image-Label Video-Text Video-Label
Video-only - - 2.5M 0.3M
Image-only 14M 1.3M - -

Joint 14M 1.3M 2.5M 0.3M
Img2Vid 14M 1.3M 2.5M 0.3M
Decoupled Joint 14M 1.3M 2.5M 0.3M

E Image/Video Captioning Examples

We show some image and video captioning results generated by our method in Figure 3 and Figure 4,
respectively. We can see that the captions generated by OmniVL are both natural and abundant.
Specifically, for the image captioning, when the visual information in the images is relatively simple,
the generated captions are relatively general (line 2 and line 3). While when the contents are rich,
OmniVL can generate more fine-grained descriptions (line 1). Fo video captioning, OmniVL could
accurately describe the actions (e.g., “add” and “pour’) and objects (e.g., “lemon juice” and “fried
chicken”) in videos. The visualization results demonstrate the superior multimodal generation

capability of OmniVL.



a living room filled with
furniture and a flat screen tv.

a woman wearing a brown
hat and a red shirt.

a red and blue motorcycle
parked in front of a grassy
field.

a man standing next to a red
car in a parking lot.

a light that is shining in the
dark.

a group of people standing on
top of a lush green.

Figure 3: Some captions generated by OmniVL.

pour the sauce on the fried chicken

Figure 4: Some video captions generated by OmniVL.
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