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Abstract

Understanding convergence of stochastic gradient descent (SGD) based optimiza-
tion algorithms can help deal with enormous machine learning problems. To ensure
last-iterate convergence of SGD and momentum-based SGD (mSGD), the existing
studies usually constrain the step size ¢, to decay as Zzz efl < +00, which
however is rather conservative and may lead to slow convergence in the early stage
of the iteration. In this paper, we relax this requirement by studying an alternate

step size for the mSGD. First, we relax the requirement of the decay on step size to
S €24m0 < 400 (0 < 19 < 1/2). This implies that a larger step size, such as
€ = ﬁ can be utilized for accelerating the mSGD in the early stage. Under this
new step size and some common conditions, we prove that the gradient norm of
mSGD for a class of non-convex loss functions asymptotically decays to zero. In
addition, we show that this step size can indeed help make the iterates of mSGD
converge into a neighborhood of the stationary points quicker in the early stage. Fi-
nally, we establish the convergence of mSGD under a constant step size €,, = € > 0
by removing a common requirement in the literature on strong convexity of the
loss functions. Some experiments are given to illustrate the developed results.

1 Introduction

The booming development of machine learning over the past decade relies on the employment of
effective optimization algorithms for training parameterized machine learning models (e.g., neural
networks). A large number of such optimization algorithms are based on gradient descent (GD). The
optimization problem in machine learning can be cast as minimizing a loss function g(#) € R over
the choice of an /NV-dimensional real-valued parameter vector 0, i.e., by solving the problem

0" = in g(0). 1
arg min g(0) (D

This problem can be solved with a typical GD algorithm through an iteration of the form
Ony1 = 0n — EnVang(GnL 2

where 6, is the estimate of 6* at step n, €, is a positive step size (learning rate) to be designed, and
Vo, g(0) stands for the gradient of ¢g(6,,) at step n. Under certain technical conditions, 6,, in (2)
can asymptotically (as n — oo) converge to the optimal solution §*. However, (2) is not efficient in
machine leaning applications with enormous training data. To accelerate (2), one attempt is stochastic
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gradient descent (SGD) originating from [1]. Instead of calculating Vo, g(6,,) over all the training
data, SGD computes gradient estimate Vg, g(6.,,&,) by sampling a subset of data (following the
distribution of sampling noise {¢,,} and then updates the iterate as follows

9n+1 = en - EnVQng(ena gn) (3)

In addition to sampling noise, &,, can be used to model any external noises arising from the gradient
computation.

However the price to pay for this data efficiency is that the employment of stochastic gradients (3)
displays a relatively slow convergence rate during the learning process. In order to improve the
convergence rate of SGD, momentum-based stochastic gradient descend (mSGD), which reduces the
update variance by averaging the past gradients ([2]), has been proposed. A typical iteration form of
mSGD is as follows ([3, 4]):

Up = QUp—1 + Envéng(efu gn)a 0n+1 = 05 — U, 4)

where o € [0,1) and €,, > 0 are momentum coefficient and step size (learning rate), respectively. An
alternative formulation of mSGD, named stochastic heavy ball (SHB) [5, 6], has also been proposed
as follows

Un = annfl + (1 - Bn)VGV,Lg(QTL?é—n)a 9n+1 - en — TnUn, (5)

where /3, € (0, 1) and ~y,, are momentum coefficient and step size. It has been shown that mSGD
and SHB are essentially equivalent [7]. In recent years, mSGD has been widely employed in
many applications of deep learning such as image classification [8], fault diagnosis [9], statistical
image reconstruction [10], among others. Moreover, a number of variants on momentum have been
emerging, see, e.g., synthesized Nesterov variants [11], robust momentum [12], and PID-control
based methods [13]. The importance of momentum in deep learning has been illustrated in [4]
through experiments.

There has been a long line of literature analyzing the convergence of SGD and mSGD algorithms.
Regarding SGD, authors in [14] studied the last-iterate convergence when the step size is chosen to
decay as 1/n. Authors in [15, 16] established the last-iterate convergence of SGD for strongly convex
loss functions without the bounded gradients assumption. For the normalized mSGD (SHB), Polyak
[2, 17] and Kaniovski [18] established the convergence (subsequence convergence and convergence
of time averages) properties for convex loss functions. Igor Gitman [5] provided convergence results
of mSGD (SHB) for non-convex loss functions under a somewhat restrictive requirement on uniform
boundedness of a noise term E(|| Vg, g(0,&,) — Vo, g(0,)]]) < 4. It has been pointed out [4, 19] that
the designs of momentum coefficients in [2, 5, 17, 18] may not be consistent with the requirements
of some practical applications. The last-iterate convergence of mSGD for non-convex loss functions
has recently been established in [7, 20] with the step size condition Z:fl e% < 400, which has
been widely utilized in stochastic optimization [1, 15, 16, 21]. However, this condition requires the
step size to decay relatively fast, so it may lead to slow convergence especially in the early stage
of the iteration. With the requirement that the loss function is strongly convex, [22] showed that
the last-iterate of mSGD can converge to a neighbor of the stationary point when the step size is a
constant.

2 Problem of interest and contributions

In this paper, we consider the problem of last-iterate convergence of mSGD under relaxed require-
ments on step size. Specifically, we seek to relax the condition Z:{g e% < +o00[1,7,15, 16, 21]
that has been required in the literature for proving last-iterate convergence of mSGD. We consider
two possible step sizes: step size that decay as €, = ﬁ and constant step size €, = ¢ > 0. Using
such larger step size is expected to lead to the last iterate of mSGD (i.e., 6,,) converging faster. We
note that since the SGD (3) is a special case of mSGD (4), the developed results in this paper for
mSGD also work for SGD.

The contributions of this paper are summarized as follows:

1) Under the setting of step size decaying as €,, = ﬁ, we prove that the gradient norm of mSGD for

a class of non-convex loss functions asymptotically decays to zero. This result is more general than
mean-square gradient convergence established in [20]. In fact, this result holds for any step sizes of



the form Z:ﬁ €210 < 400 (0 < g < 1/2), which is a superset of the widely required condition
Z+°° €2 < 400 [1,7, 15, 16, 21]. Given this relaxed step size condition, one can run mSGD by

n=1"n
employing a larger step size like €,, = ﬁ for last-iterate convergence.

2) Under some mild conditions, we provide an estimate of the convergence rate of mSGD. Further-
more, under a probability-based metric, we show that the new step size can help to improve the
convergence speed in the early stage of the iteration.

3) Under the setting of constant step size, first we prove that given any small neighborhood of
stationary points, it is feasible to design a step size, such that there is a convergent iterate subsequence
of mSGD staying within the neighborhood almost surely. In addition, we prove that the mean-square
gradient can be arbitrary small by tunning the step size. Comparing with [22], we remove the
requirement of strong convexity on the loss functions.

Regarding the definitions on sequence convergence, the following ones from literature are typical.
For a stochastic variable sequence {¢,} € RY with 0 as the unique limit point, the sequence is
said to satisfy last-iterate convergence if lim,,_, ; » ||n || = 0, a.s.; and time-average (mean-square
convergence) if lim, o0 2 37" E(|[&]|?) = 0. It can be proved that last-iterate convergence
implies time-average convergence under the general setting of the considered problem.

Paper outline. The rest of the paper is organized as follows. In Section 3, we provide the main results
of the paper on last-iterate convergence of mSGD under decaying step size and constant step size,
respectively. In Section 4, two simulation experiments are given. Conclusion is made in Section 5.
The main proofs are given in Appendix.

3 Main results

In this section, we provide the main results of this paper on the last-iterate convergence for mSGD (4)
under two possible step sizes: step size that decays as ¢, = ﬁ and constant step size €, = ¢ > 0.

3.1 Convergence of mSGD under decaying step size

The following assumptions are needed in this paper.
Assumption 3.1. Loss function g(0) in (1) satisfies the following conditions:

1. Noise sequence {&,} are mutually independent and independent of 01 and vy, such that
9(0) = E¢, (9(0,&)) forany 6 € RN,

2. g(0) is a non-negative and continuously differentiable function. The set of its stationary
points J = {0]||Vog(0)|| = 0} is a bounded set which has only finite connected components
J1, ooy Jn. In addition, there is €1 > 0, such that for any i and 0 < d(0, J;) < €y, it holds
that |g(0) — gi| # 0, where g; = {g(0)|0 € J;} is a constant.

3. There are two constants M' > 0 and a' > 0 such that for any § € RN andn € N,

Ee, ([|Vag(0,62)[") < M'|[Vog(®)|* + 4" ©)

4. The gradient Vq(0) satisfies the Lipschitz condition, i.e., there is a constant ¢ > 0, such
that for any x,y € RY,

[Vag(z) = Vyg(y)|| < cllz —yll.

Conditions 1 and 4 in Assumption 3.1 are common in the literature [1, 15, 16, 21]. [7] required
a condition on strong growth, i.e., B¢, ||Ve, 9(6,&,) 1> < Mo||Vag(6)|?, which however makes it
close to the deterministic case. In contrast, condition 3 allows more randomness of data sampling.
Condition 2 is a mild condition for the reasons as follows. In some works, the non-negative condition

may be replaced by a lower bound condition g(6) > Iy > —oc. These two conditions are essentially
equivalent, since one can construct a new loss function g = g — [y under the lower bound condition,
such that the new loss function is non-negative. The rest of condition 2 is quite general, since it
allows the loss function to have multiple stationary points and to be non-convex.



Assumption 3.2. In the mSGD (4), momentum coefficient o € [0, 1) and the sequence of step size €,, is

positive and monotonically decreasing to zero, such that Zn 1 €n = +00 and Z:z €2+m < 400,
where 0 < 1y < 1/2 is a constant.

In Assumption 3.2, the momentum coefficient o € [0, 1) is a constant. Comparing with the setting in

[5, 6,17, 18], where a™ tends to 1 or 0, constant momentum coefficient is more common in practice
[4, 7, 19]. Regarding the step size condition, it is more general than the one in many existing works

on last-iterate convergence of SGD and mSGD [1, 7, 15, 13, 16, 21], i.e., Z+°° 2 < 400, which

n=1n
is obtained from Assumption 3.2 if 7]0 = 0. Under the step size condition in Assumption 3.2, one

can choose larger step size like €, = f’ which however is not feasible in the commonly required

condition Zn 1 €2 < +o00. Since the new step size can decay more slowly than the existing one,
it provides more space for step size fine tuning, such that the algorithm can quickly converge to a
neighborhood of the stationary point [23, 24, 22].

Then we attain the first main result in this paper on last-iterate convergence of mSGD under the step
size condition in Assumption 3.2.

Theorem 3.1. Consider the mSGD in (4) with any vy € RN and 6; € RN. Under Assump-
tions 3.1 and 3.2, the gradient norm tends to 0 almost surely, i.e.

nhm Vo,9(0n)] =0a.s..

Due to page constraint, the complete proof is given Appendix. Here, we provide a proof outline to
present the main proof ideas.

Proof Sketch of Theorem 3.1: We aim to prove that Vy_g(6,,) — 0 a.s. via the following key steps.

Step 1: In this step we aim to prove E (ezo g(Gn)) is uniformly upper bounded. We present this result
as Lemma B.8 in Appendix.

Step 2: We prove there exists a subsequence of Vy_g(6,,) which is convergent to 0 a.s.. It is

attained by proving 3% €1+20(|V, ¢(6,,)[|? < +00 a.s.. We present this result as Lemma B.10
in Appendix.

Step 3: We aim to extend the subsequence convergence in Step 2 to asymptotic convergence. The
basic idea is to prove that the adjacent terms g(6,,) and g(6,,41) are “close" enough, such that

g(en—i-l) - g(en) S ]%ei'f'Q'fIO + Qn7

where k > 0 is a constant and {Q.} is a sequence, such that Z:ﬁ @y, converges a.s.. This result is

presented in Lemma B.11.

Step 4: Finally, we use some techniques to attain the result of asymptotic convergence
n—oo

Vo, 9(6:)]] — 0 a.s..

In the last-iterate convergence analysis of mSGD, there are several technical challenges when we

try to extend the condition Z:: €2 < +oo to Zn ) €2+ < +oo with 0 < 79 < 1/2. One
of the challenges is: When we try to prove anl Cn = n:l > €V, 9(0,)T (Va, 9(0n, &) —

Vo, g(6,)) is convergent a.s., which is the vital step to get the last-iterate convergence, we usually
use the Martingale convergence theorem, through which we just need to prove Z S EER) s
convergent. If the condition S €2 < 400 holds, we can get S E(¢2) < 300 K €, < +00

(K is a constant) directly. However under the new condition Z:O? %*50 we can not use this
approach. Instead, we introduce a more technical approach to handle this problem.

Comparing with the corresponding result in [7] (Theorem 1 in [7]), we relax the condition on the
decay of step size. Under this new condition, one can utilize step size with more slow decaying speed
in the iteration of mSGD. Let o = 0 in mSGD, then we can get a similar result for SGD

Corollary 3.1. Consider the SGD in (3) with any 6, € RN. Under Assumptions 3.1 and 3.2 with
a = 0, the gradient norm tends to 0 almost surely, i.e.

nhm Vo,9(0n)] =0a.s..



In the following, we aim to estimate the last-iterate convergence rate of Vy _g¢(6,,). Instead, the
convergence rate of E ([[Vgg(6,,)|?) is quite meaningful. In general, if we need to estimate the
convergence rate of the last iterate, we need a probability — retention assumption, i.e., Vkg > 0,
Ja > 0, making P(||0,.]| > a) ~ P(||01]] > koe€3, ..., |0n]] > koe2), and we usually need some
extra assumptions to establish a quantitative relationship between g and Vg. Existing works were
established usually under the strongly-convex assumption [25, 26, 13], local P-L condition [7], or
convex loss function satisfying some stability conditions, e.g., E ||V, g(0,)]|?> < § < +oo. However,
these assumptions are rather relatively strong, especially the stability condition which is very difficult
to verify. In our paper, we need a milder assumption than the above conditions as follow.

Assumption 3.3. Regarding the loss function g(0) defined in (1), there exists 69 > 0, Ty > 0,
such that for any 0 € {0|||Vag(0)|*/(g9(0) — g*) < o}, it holds that g(0) < T, where g* =
infpern g(0)

This assumption requires the value of the loss function ¢g(f) to be bounded in the set S =
{0|IVag(0)|1?/(g9(0) — g*) < &o}. The motivation of this assumption is: For a stochastic algo-
rithm, there is always a probability at which the iterates are far away from the true value. Since
second-derivative information has a more positive effect on convergence (such as strongly convex
loss functions), this condition restricts iterates which are far away due to extreme noise, so that it does
not have a significant effect on global updates. This requirement is milder than the strong convexity
condition, which is commonly used in existing works [25, 26, 13] for the analysis of the last-iterate
convergence. In addition, this assumption allows the loss function to be non-convex, and does not
need the local P-L condition used in [7] on the second derivative information near stationary points.
Note that Assumption 3.3 can be satisfied by many loss functions commonly encountered in machine
learning. First of all, many common loss functions are bounded [27-30], and thus satisfy Assumption
3.3. For unbounded loss functions, there are a number of instances satisfying Assumption 3.3. For
linear regression functions, since they are strongly convex, it is easy to verify the assumption. In the
Appendix, we explain (not in a strict but an illustrating manner) this assumption can also be satisfied
by a two layer neural network with Relu active function under a square loss function.

In the following theorem, we provide an estimate of the convergence rate for the mSGD in (4).

Theorem 3.2. Consider the mSGD in (4) with a unique stationary point 0*. Then for any vy € RY
under Assumptions 3.1-3.3 and probability-retention assumption. Then exists a > 0, for any
IV, g(61)||% there is

B (1¥a00,)2) = O (¢~ w557 F ) (S aterir S 1) ), 0

i=1

where ¢ = min{a /2Ty, 260}

Comparing with [7], we remove the strong growth condition, i.e., E¢ 0,6)]? <
M||Vg(0))?, and relax the step size condition to be 3217 €2+ (0 < § < 1/2). In the
comparison with [20], we do not require the convexity of loss function or E ||V, g(0,)|*> < G.
In addition, we relax the step size condition in [20]. There are quite a few results on the average
iterates in the literature, such as [13 31, 32]. In [13, 31, 32], the convergence rate O( ) of mSGD

is established with the step size f According to our result, let €,, = it holds that

%
E(Vo,9(6,)]*) (fz ol o(=)

It can be proved that the convergence rate of average iterates is also O (%) .
n

From (7), we see that larger step size may not lead to larger convergence rate. This is reasonable,
since the convergence rate reflects how fast the iterate 6,, converges when n — -+oo and a larger step
size usually makes the iterate converges to a neighborhood of stationary point quicker. We have the
following theorem on this point.

Theorem 3.3. Consider the mSGD in (4) with any vy € RN . Under Assumptions 3.1-3.3, given any
a>0,if||[Ve,g9(01)||? > a, then it holds that

P(r@® >p) = o(e*ﬁ iz )



where (%) = min,,~o{||Ve, g9(0,)||?> < a} and ¢ = min{a/2Tp, 260 }.

Theorem 3.3 provides a probability description of how fast the iterates of mSGD converge into the
preset neighborhood of stationary points. It can be illustrated as follows. It follows from Theorem 3.3
that

N ___2¢ no
P(r@ <n)>1—kje G- 2ie “
where k; > 0 is a constant. From the inequality, as n increases, the event ||V, g(6,,)||> < a occurs

with a higher and higher probability tending to probability 1. The influence of momentum coefficient

« and step size €, is also quantified. We note that with the measure in Theorem 3.3, the convergence to
a neighborhood of the stationary point is faster than under the traditional condition Zool €2 < +o0
by settlng the step size with a relatively slow decay speed as Zzoﬁ €2t% (0 < 6y < 1/2), such as
€n = \/ﬁ and ng = 1/4. Similar results (the large step size can make the iteration quickly converge

to a neighborhood of stationary point, but may converge slowly in the late stage of the algorithm)
appear in [23, 24, 22] through experiments.

3.2 Convergence of mSGD under constant step size

In the previous subsection, we establish the last-iterate convergence of mSGD under a relaxed decay
condition on step size. In this subsection, we study the convergence of mSGD under a constant step
size €, = € > 0. We start with the following result on subsequence convergence.

Theorem 3.4. Consider the mSGD in (4) with any vo € RN and 6, € RN. Under Assumption 3.1,

for any ¢ > 0, there exists u(c'o) > 0, such that forany 0 < €, = € < u((f), it holds that

2
vaii)g(ei(ci))u < g, as.
where {6‘ } is a subsequence {0, }.

Proof. Due to page constraint, the complete proof is given Appendix. Here, we provide a proof
outline to present the main proof ideas.

To study the mSGD with constant step size, we notice that the impact of the noise cannot be totally
eliminated through the step size. But when ||Vg_g(6,,)|| is relatively large (meaning the distance
between 6, and the stationary point 6* is relatively large), it holds that E¢,, (||Vg, g(6n,&,)|?) <

M'||Vg, g(0,)|1> + @/ < (M’ + k)||Ve,g(6,)|/>. This implies that with a proper step size ¢, the
noise can be controlled. As a result, the algorithm can be stabilized around a stationary point. In the
following, several key steps in the proof are provided.

Step 1: We define an event by A = ={IVe.9(61)]1* > ¢, [[Va,9(62)1> > o, ..., [[Ve,9(6,)]* >

} and a characteristic function of this event by I fl °)

Step 2: We prove that the probability of Agf’) is tending to 0 as n — oo. First, we attain a recursion
formula:

E (I{19(01+1)) — E (I7g(6)))

t
<= ' U E (V0,9(00) ) = Yt e = kM'E)E (1) |V 0,9(6) ).
=2

By taking the sum of multiple inequalities as above, we have
t
STE (19)1V0,9(0)|7) < +o.
i=2

This leads to
E (I9)]|Va,9(6:)]%) — 0

From the Chebyshev inequality, we attain P(A) — 0.
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Figure 1: Training loss-iteration chart on the Boston house-price data.

Step 3: Step 2 implies that with probability 1 there exists at least one instant n at which
Ve, 9(0,)]> < ¢. We note that for the time instant m at which ||Vg,_ g(6,,)[|> > ¢, we can
use a new start point. By repeating the process of Step 2, we attain the conclusion of this theorem.

O

Theorem 3.4 shows that under the common conditions in the literature, the constant step size can
guarantee the subsequence convergence of mSGD (4) in any small neighborhood of stationary point.
In addition, we have a similar result on E (||Vg, g(6,,)]|?) as follows.

Proposition 3.1. Suppose {0,,} is a sequence generated by (4) with any 6; € RY and vy € RY.
Under Assumptions 3.1 and 3.3, if (1) has a unique solution 0* and inf 49 g+)~5, [|Vog(0)||* >
0 (Voo > 0), then for any ¢o > 0, there exist scalars ,ug’%) > 0 and ng > 0, such that for any
€p=€< ugpo) and n > ny, it holds that

E ([ Ve, 9(0n)lI*) < 0.

This result is a substantial extension of the existing results on SGD with constant step size to mSGD.
Comparing with the results in [22], we remove the requirement of y-strong convexity on loss function.

4 Experiments

Since this paper focuses on convergence analysis on the well-known mSGD, two relatively simple
experiments on regression and classification tasks are given respectively to show the effectiveness of
the results.

4.1 Regression task

In this subsection, we study a house price prediction problem with neural networks trained by mSGD.

Network Architectures. We respectively employ a 3-layer and a 4-layer fully-connected neural
network with ReLu active function and squared loss function.

Implementation. We implement two neural networks to train on this dataset using Keras. The first
neural network consists of three fully connected layers with 13, 8, and 1 neurons. The second neural
network consists of four fully connected layers with 13, 32, 16, 1 neurons, respectively. We initialize
the weights use glorot uniform algorithm. We use mSGD with a mini-batch size of 16, and use mean
square error loss function to train the model. The momentum term coefficient is 0.9 and the model is
trained for up to 1000 epochs. The training takes about two hours at a time in 3080GPU. We do not
use dropout.
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Figure 2: Training and prediction performance on CIFAR-10.

Dataset. The training dataset we use is from Boston House Price Dataset®. This dataset is a regression
prediction dataset, which consists of 506 sets of data with dimension 13. During the training process,
we randomly divide 30% as the test set and normalize the data before training.

Results. We use the mSGD in (4) under three different step sizes respectively: €,, =

and €, = ﬁ The experiment results are given in Figure 1. The figure shows that 1) the loss

decays to zero under the three step size settings; 2) €, = n%—, can make the loss tend to a small
neighborhood of zero fastest among the three step size settings. This conforms to the theoretical
analysis in Theorems 3.1-3.3.

1 _ 1
n’ €n = no-7°

4.2 Classification task

In this subsection, we study an image classification problem with neural networks trained by mSGD.

Network Architectures. We employ a 20-layer ResNet network. The convolutional layers mostly
have 3x3 filters and follow two simple design rules: (i) for the same output feature map size, the
layers have the same number of filters; (ii) if the feature map size is halved, the number of filters
is doubled so as to preserve the time complexity per layer. We perform downsampling directly by
convolutional layers that have a stride of 2 and padding with valid. The network ends with an average
pooling layer and a 10-way fully-connected layer with softmax.

Implementation. We implement the ResNet20 network using Keras. We initialize the weights use
glorot uniform algorithm. We use mSGD with a mini-batch size of 64, momentum coefficient 0.9
and use categorical crossentropy loss function to train the model. The models are trained for up to
1000 epochs, taking about two hours at a time in 3080GPU. We do not use dropout.

Dataset. We use two different datasets CIFAR-10 and CIFAR-100°. CIFAR-10 consists of 50k
training images and 10k testing images in 10 classes. CIFAR-10 is a color image dataset close to
ubiquitous objects, and the image size is 32x32x3. CIFAR-100 consists of 50k training images and
10k testing images in 100 classes. Each category contains 500 training images and 100 testing images.
CIFAR-100 is a color image dataset closer to ubiquitous objects, and the image size is 32x32x3.
Normalize the dataset between 0-1 before training.

Results. We use the mSGD in (4) under three different step sizes: ¢, = % €n = ﬁ and ¢, = ﬁ
The experiment results are given in Figure 2 and Figure 3. The figures show that 1) the loss decays to
zero and the accuracy goes up to 1 under the three step size settings; 2) €,, = ﬁ can make the loss
tend to a small neighborhood of zero and make the accuracy tend to a small neighborhood of 1 fastest
among the three step size settings, followed by the setting of €,, = ﬁ These results conform to the
theoretical analysis in Theorems 3.1-3.3.

https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
Shttps://www.cs.toronto.edu/~kriz/cifar.html
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Figure 3: Training and prediction performance on CIFAR-100.

5 Conclusion

In this paper, we studied the last-iterate convergence of momentum-based stochastic gradient descent
(mSGD) under relaxed conditions on step sizes. First, under the relaxed condition Z:g €2t <
+00 (0 < my < 1/2), we proved the last-iterate convergence of mSGD for a class of non-convex loss
functions. In addition, we showed that this step size can indeed help to improve the convergence
speed in the early stage of the algorithm by quantifying the influence of the step size and momentum
coefficient. This implies that a larger step size, such as €,, = ﬁ can be utilized with guaranteed

convergence. We also proved that the algorithm with a constant step size (i.e., €, = € > 0) can
ensure the last-iterate convergence of mSGD without requiring the strong convexity assumption on
loss functions.
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Appendix

A An illustration example for Assumption 3.3

In the following, we show that Assumption 3.3 can be met in simple neural networks by using a two layer neural
network with Relu active function under a square loss function. First we have that

Nz‘yz Wml)‘ )

then we can calculate its partial derivatives with respect to § and W

dg(0, W)
97 NZ yi — 0 o(Wzy))o(Was),

89 0 W)
=% Z — 0o (Wz:)) (0 © Twa,>0)T;

For illustration, we just consider the situation Wthh only has one date, i.e., N = 1. We derive that
ag(0, W) ||* _ || 996, W) ||* N ’ dg(0, W) ||?

a6, W) 00 ow
+4ly = 60T (Wa)’116 © Lwa,zol P2l* = 4(le(W2)[* + 10 © Lwa, >0l *l|2]1%) [y — 67 o (Wa)|*.

As a result, [|Vog(0)[*/g9(0) = 4(lo(Wax)|* + 110 © wa,zo0l?||z]|*). When 4(|lo(Wz)|* + (|0 ©

Lz, zol?l2]2) < 80, we obtain [[67a(Wa)[|? < 1/2(o(Wa)[? + 0 © Twa,ol*[l2]|?) < 2d0. This
ensures that g(6, W) bounded.

=dly — 0T o(Wa) o (Wa)|?

B Useful lemmas

To prove the main results, we need the following lemmas, where Lemmas B.1-B.5 are from the literature and
Lemmas B.6-B.11 are first introduced in this paper with proofs given in the next section.

Lemma B.1. (Lemma 1.2.3, [33]) Suppose f(z) € C' (x € RY) with gradient satisfying the following
Lipschitz condition |V f(z) — Vf(y)|| < c|lz — yl|, where ¢ > O, then for any =,y € RN, it holds that

c c
FW)+ VW) @ —y) = glle —yll* < f@) < FW) + VW) (@ —y) + 5llz — vl

Lemma B.2. (Lemma 10, [7]) Suppose f(z) € C* (xz € RN) with f(x) > —oo and its gradient satisfying
the following Lipschitz condition ||V f(z) — V f(y)|| < cllz — y||, where ¢ > 0, then ¥ zo € RY, there is

2 *

[VF@o)||” < 2¢(f(wo) = £7),

where f* = inf ¢ gn f(2).
Lemma B.3. (Lemma 4, [7]) Suppose f(x) € C* (x € RY) with gradient satisfying the following Lipschitz
condition |V f(z) — V()| < ¢|lz —y||, where ¢ > 0, and the set S = {z|V f(z) = 0} is bounded and only
has finite connected components {S1, Sa, ..., Sm }. Furthermore, assume there exists € > 0, such that for any
i=1,2,...,mandz € {x|0 < d(z,S;) < €}, it holds that | f(x) — fi| # 0, where f; = f(x) for x € S..
Then for any i = 1,2, ..., m, if there is €, > 0 satisfying d(z, S;) < €, it follows that

2

[Vf(@)|” < 2¢|f(2) - fil.

Lemma B.4. [34] Suppose that {z,,} € RY is an Lo martingale difference sequence, and (zn, Fn) is an
adaptive process. Then it holds that ;- , xr < 400 a.s., if

ZE(H%LHQ) < 400, or ZE (Han2|]‘—n—1) < 4oo. a.s.

n=1

Lemma B.5. (Lemma 6, [7]) Suppose that {x,} € RY is a non-negative sequence of random variables, then it
holds that y°7 , tn < +00 a.s.,if o0 (E (xn) < +o0.
Lemma B.6. If0 < p < 1and 0 < o < 1 (o # p) are two constants, then for any positive sequence {{r },

there is
n k n
n—k k—1i » n—i
g m E o i =R g K",
k=1 i=1 i=

where 1 < R < 1/(1- H(WO_l)), and k = max{yu, o} and wo = log, min{y,c}.
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Lemma B.7. Let 0 < 7 < 1 be a constant, then for any sequence {&,} satisfying €, — 0, it holds that
ree & =0, where ) = ST — (1) (1= 7))én.

Lemma B.8. Consider the mSGD in (4). If Assumptions 3.1-3.2 hold, then for any 61 € RY, v € RY, there

is a scalar T'(01,vo), such that E (€7°g(0n)) < T(01,vo) for anyn > 1.

Lemma B.9. Suppose {v,} is a sequence generated by mSGD in (4). Under Assumptions 3.1-3.2, it holds
that 325 E (€270 ||vn ||?) < c(vo, 01), and 3125 €270 ||l ||* < +00 a.s., where c(vo, 01) is a constant only
related to vo and 0.

Lemma B.10. Suppose {0, } is a sequence generated by mSGD in (4). Under Assumptions 3.1-3.2, it holds
that: forn > 1,

n

D oa T E(IVe,9(0:)]%) < Blvo,61) < +oo, D& (| Ve,g(6:)]* < +oo,

t=1 t=1
where B(vo, 01) > 0 is a constant only related to vo and 0.

Lemma B.11. Suppose {0, } is a sequence generated by mSGD in (4). Under Assumptions 3.1-3.2, it holds
that: forn > 1, .
9(On+1) = g(60n) < ke; 2™ + Qu, ®)

where k > 0 is a constant and {Qn} is a sequence, such that Iz Q. exists and is finite a.s..
B.1 Proof of Lemma B.6

The proof of this lemma needs some identical transformations. We assume & > o (the case p < o is the same),
and let wo = log,, o > 1. Then we derive

Zlun kzo_k zd) ZZMn k k: 11/) Zzun k k: 11/) Zzun k+wo(k— z)w

k=1 i=1 i=1 k=i i=1 k=i
(wo—1)(n—i+1)

= ;u"’“‘” ;W“”’“wi = ;unwoil _1“_ (@0=T) o™y = RZ“” Wi,

where 1 < R < 1/(1 — x“0~Y) and k = max{u, o} and wo = log,, min{y, o}.

B.2 Proof of Lemma B.7

We calculate Y ;" cié) as follows

Zc(e) Z(;Ti “i>_ liTgt:Z<irH>éi— liTét

2 (L) rien (X

t=1

_ n t+1 n 1 r n
_Z( )étle_Tétzfl_TZTn_tét.

t=1 t=1

tA

= 0. It holds that

So we just need to prove limy, s o0 | o7, 77

n—[v/n] n n—[v/n] n
R GRED VR E ED SRS T D ol
t=1 t=[n—+/n]+1 t=1 t=[n—+/n]+1

Dueton — /n — +oo, Voo > 0,3 No > 0, when t > Ny — [v/No|, it holds that |é&;| < co. So when
n > Ny, it holds that

n

n—ta
>, T

t=n—[y/n]+1

n

oo
_ go
< Z " t0'0<0()z7‘t:1
t=0 -

t=n—[v/n]+1

On the other hand
—[v/n]

n—[v/n] n—1
"oy | < ko T = T =0,
> Z ko >
t=1 t=[v/n]
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where ko > 0 is a constant. As aresult, V oo > 0,3 N1 > 1, when n > Ny, it holds that | > [Vl pn—te | <
09. Then when n > max{ Ny, N1}, it holds that

n

= n—ta n—ta n—ta 2— T
Z’T tetg Z T tt Z T tet <17T0'0.
t=1 t=[n—y/n]+1
Due to the arbitrariness of oo, we know
ZT" te, =0
t=1
Thus, it holds that ;" ; 9 = 0.
B.3 Proof of Lemma B.8
Recall the mSGD algorithm in (4)
Un = QUp—1 + Enveng(eny én) (9)
9n+1 = Qn — Un. (10)

Equation (9) is equivalent to
Un = aVn-1 + €.V, 9(0n) + €0 (Vo, 9(0n, €n) — Vo, 9(0n)).
Under Assumption 3.1 4), it follows from Lemma B.1 that
c c
— Vo,9(0:) v — §\|’Ut||2 < 9(0u41) — 9(0:) < =V, g(00) v + §||Ut||2~ an

In this subsection, we just use the right side of (11). The left side will be used in the next subsection. Consider
Vo, 9(60:) T in the following

Vo, 9(0:) ve = (Vo,g(0:)) (awe—1 + € Ve, g(0e, &)
= a(Vo, ,9(0:-1) + Vo, g(0:) — Vo, 1 9(0:-1)) vi-1 + €Vo,9(0:) Vo, g(01, &)
= av@t—1g(‘9i—1)Tvi—1 + a(Vth(et) - v9t71g(0t—1))Tvt—1 + €tVth(9t)TVgtg(0t,ft).

Recursively applying the above equation yields

V9tg(gt)-r = v919(91 v + Z « V9z+1g(01+1) VOig(ei))T’Ui
) i=1 (12)
+ Z &€V, 9(0:) Vo, 9(6i, &)
i=2
Substitute (12) into (11), then we have
E (9(0:+1) — 9(6:))
t t
—<a'"'E (Vglg(éh)Tm) + CZ o' T'E (Jus]|?) - ZatiieiE ||V@1.g(9,-)||2 13
i=1 i=2

t
<—a'T'E (Vglg(éh)Tvl) + cz o 'E (||v,||2)
i=1

From Lemma B.3, it follows that Ee,, (|[Ve, 9(0n,&n)|>) < M'(|Ve, g(6n)]]> + a’ <2eM'(g(0n) — g*) +
a' < M(g(0n) +1) (M always exists). Given ¥ 1o > 0, we denote Z(t) := [/~ (1 + Moe; ™), where

cM

Moo= A= ani—ay’

in which § > 0 is a constant and M is defined above. Here we define Mo, Z(t) and ¢ to ease the proof. From
Assumption 3.2, it holds that 3" €77 < o0, which ensures >_,-° Moe; 7" < +o0. From a general
inequality In(1 + 0) < 0 for § > —1, we get

+oo oo
) < H 14 Moe; ™) = exp { Z In(1+ M0€2+"0)} < exp { Z M062+"0} < o0,
k=1 k=1 k=1
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which means that Z(t) is uniformly upper bounded. Then multiplying Z (¢ + 1) on both sides of (13), taking the
mathematical expectation and noting €; > €;41 yield

Z(t+ 1D E (¢/3,9(0:1) — °9(61))

t
_ (14)
<—Z(t+1)a" € E (Vo,g(01) 'v1) + ¢ o' Z(i + 1) E (] ||us]*),

i=1

where the inequality is due to ;41 < ¢ and Z (i + 1) < Z(4).

Next, we aim to analyze ¢ >;_, o' ~*Z(i + 1) E (¢]°[|v;||?) in (14). It is proved in Appendix B.4 that
20+ DE (€ ui]]?)

[ 1 : i—
< a1 Z(1)€e" E fuo||* + s >R GEN Z(k £ 1) E (| Vo, 9(0%) — Vo, 9(0k. &)
k=1

2 i— 7 7
- Za(1+6)( k)Z(k' + 1) (IE (Ellcifog(ewrl)) _E (‘511c+ 709(9@)).

-
k=1
15)
Taking a weighted sum of (15) yields
t
S a2+ 1) E (€ uil?)
=1
t . .
<> T a T Z()E (e [[vol?)
1=1
A (146 (i—k) 2+no 2 (16)
+) a s da . " Z(k+1)E (|IVe,9(0k) — Vo, 9(0k, &)
=1 k=1
t i
—q 2 i—k 7 m
- o <a15 22k 1) <E (e 11°9(Ok41)) —E (e ]09(‘9’“))>)
i=1 k=1
=A+B+C.
Derive that
; 5i t 2 a'a’ 2
A= (e )a 2 E (@ un]?) < {255 Z0)E (luol), (1)
i=1
1 t 2 )
B = o THEUh (ei+"°Z<k + D E (|| Vo, 9(6k) - vekgwk,fk)m)
i=1 k=1
1 t
t—k 24 2
< a5 (1= ab) ; & " Z(k+ 16, E ([ Ve,9(0k) — Ve, 900k, &)°), (18)
9 t t )
C = 5 Z Z at—k+5(z—k)Z(k, +1) (IE (ellcrl?og(gk+1)) _E (Elchrnog(ek)))
k=1 i=k

t Ltk
— —% Z (Z a‘”) atikZ(k +1) (]E (eii’}"g(@kﬂ)) —-E (e,ljm’g(gk))). (19)
k=1 \i=0

Substituting (17)—(19) into (14) yields

Z(t+1)E ((6311’“9(9t+1) - ei*”“g((’t)))

-1 5
<—Z(t+1)a e E (Vo g(61) 1) + %2(1) E (57 [|vo]|?)
C : t—1 . 2+no 2 (20)
+mza Z(i+1)e; ™ E (Ve 9(0:) — Vo, 9(6:,&)|°)
=1

_ % :1 (tz:iaé’“)atiZ(i + 1)(IE (e,17°g(0i11)) —E (ﬂ”"og(@i)))'

k=0
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Construct a sequence {V,, } as follows

n 1 n—t
Vi, :Z (2—04) Z(t—i—l)E((etlI}mg(HtH) —et1+"°g(9t))>. 2))

t=1
By substituting (20) into (21) following the way of (17)—(19), we have

ca"a’(2 — a)

vn S%Z(l)eéﬂo E (Vo,9(61) v1)| + mz(lm(eé”‘)ﬂvdﬂ
c ~ 1 ni 2410 5
+ 041_6(170[5)(17&)2 Z (270() Z(t+1)€t+ E(||V9tg(9t)—Vgtg(0t7§t)|| )

t=1
n

e -0 ) 2 (B ERe00) —E (T a0) )

t=1

where f(n — t) is defined as follows,

fln—1t)= 9 (a(2fa))kfa§i(a1+5(2 a))k

Move the last term to the left-hand side of the above inequality, then we have

> (520) " 2t 1B (o0 - Y g0))

t=1

"2 — nad(2 —
S%Z(l)\ E (ESOVelg(Gl)Tvl)( + %2(1) E (ef° |lvo]?) 22)
c n 1 n—t .
T A1) (I —a) ; (2 - a) Z(t+1)e; "™ E (||Vo,9(0:) — Vo, 901, &)1I°),
where
n— o 26,0 f(n —t
eV = (6? + ;T(—Oéé))). (23)

Because of a < 1, it holds that f(n —¢) > 0 and eé"_l) > 1. It follows from Assumption 3.2 that

c - 1 n 24+ 2
Z 1 | -
e 2 (aa) 2 DI E(I9ha0) ~ Vas0)l)
" . et - 24)
<> (525) 2+ DM el (14 Blo(00).
where
cM
Moo= S —ai=ar
Calculate f(n — t), then we obtain
n—t . n—t .
fln—1t)= (2= )" — o’ Z (a1+6(2 —a)) >0.
k=1 k=1



It holds that

) (2 - a)nitZ(t +1)E (eii)lg(em) - egn—”g(et)))

Z(t +1)Moe; "™ e (1 + E(g(6:)))

(73

(322)" ze+ 0B (404 s600)

( ) Z(t+ 1)(1+ Mo2™) E <e§”*1>(1 +g(0t))) 25)
rn-n(722) @ -

=3 (55s) AR (0000

_ Zn: (2 ! a>n_tz(t +1)(1+ Mo, ™) E (ei"_l) 1+ 9(9t))>~

Substituting (24) and (25) into (22) yields

zn: (2 i O[)nitz(t +1HE (ez(fi)l (1+ 9(9t+1)))

- i (2 i a)nitZ(t +1)(1 4 Moe2™ ™) E (eg"*” (1+ g(@t))) (26)
" :1* @ ca™a? (2 — «
S%Z(l)eéﬂo E (Vo,g(61)"v1) +mz(l)ﬁ(%+"°llvo\l2)~

According to the definition of Z(¢), we have

+oo +o0o
Z(t) = [[(+ Moet) = (1 + Moe; ™) J] (1+ Moep™) = (1+ Moe; ™) Z(t + 1).
k=t k=t+1

Let

n 1 n—t ”
Fo=) (2_a) Z(t+1)E(eiﬁl(wg(@m))),
t=1

and it follows from (26) that

n—1
Fn—Fn1 Szo(ehvo) <( L ) + Otn) , 27

2 -«

where Eo(eh v0). Denote p = E { D orey Moe; T } By taking the summation of (27), we obtain

_ +oo 1 n—1
Fn§F1+kOZ<<2_a) +an>.

t=1

Thus, we derive that

1

1 E(9(0n41)) < i B (1+ g(0nt1)) <p<ﬂ

)”“mn+nﬁ@mza+M%H»>

n 1 n—t "

<pZ (m) Z(t""1)E(€§+)1(1+g(9t+1)))
t=1

< pkF, < T(Gl,vo),

where T'(61, vo) is a constant determined by vo and 6.
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B.4 Proof of (15)

We consider
&11°9(0i1) — & T0g(6:)
=6, (g(0i+1 — 9(6:)) + (17" — &™) g(0:)
<€6; ™ (g(Bir1) — g(6:))
C 1

—e; 10V, 9(0:) vi + §€i+"° [[os |”

IA

(28)
= (el V0,900,600 = (€ V0, 9(00) — 70 Vi, 9(0:,6) Tvs + Gl

= ae; ol v — 7ol + €770 Vo, 9(6:) — Vo, (65, &)

— (™ avi_y + €20V, g(6:)) " (Ve,9(0:) — Vo,g(6:,6:))) + 56?"0 l[oil|?,

where the first inequality is due to €; < €;—1 in Assumption 3.2, and the last equality is from (10). Since &; and
0; are independent, taking the mathematical expectation of (28) and noting that

E ((ei”ﬁaw-l +T0V,9(6:) " (Ve,9(6:) — veigwi,&)))) =0,
yield

E (€;{1°9(0i11)) —E (e g(6:))

29
<ael B(v]vie1) — € E (o) + €T B (Hveig(ei) - vgig(ei,gi)HQ) + 5 T E (Juill?). @)
Moreover, it holds that
E (/Ve,9(6:) — Vo,9(6:,&)°)
=E ([ Vo,9(0:, &)II”) — E (I[Vo,9(0:)]%)
1
:gE(Hvi—amilH?) —E ([ Ve,9(8:)°) (30)

=2 (B Q1?) + & (Joal?) - 20EGT0is) ) - B (I90,0060)1).

Combining (29) and (30), we get
E (6;11°g(0i+1)) —E (¢, g(6:))
24no

1 -
<-3 (E (e ™ loil*) — 0* B (e§i¥°\|vH||2)) — S E(IVe,900)1°) + 5 E (l0il) (31

2
62+n0

+ =5 E(IVo.9(0:) = Vo, 9(0:, &)%)

Since €¢; — 0, given any § > 0, there is an integer 49 > 0, such that for i > i, 1 — ce; > a1_5(5 > 0). Since
1o is finite, without loss of generality, we assume 7o = O for convenience, i.e., 1 — ce; > al"s(é >0)(i > 1).
Thus, we have

E (€;{1°9(0i11)) —E (e; 7" g(6:))
o’ 10 |1, 112 148 1 (1+mo 2 ezt 2
< - (]E(ei [vi]|?) — &' E (¢,7°|[vi—1 | )) + -5 E (IIVe,9(6:) — Vo,9(0:, &)%)

(32)

Multiplying both sides of (32) by Z (i + 1), and noticing that Z (i) > Z(i + 1), we have

(Z(i + D E (¢°||oil*) - o' Z()E (62731”1)1'*1H2)>

2 . E?+’70 .
< - o2+ ) B (@00m) ~ E(70009) ) + S5 2+ DB (190,900 ~ Vo,0(0:.6)1).

Then (15) is obtained by recursively applying the above inequality.
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B.5 Proof of Lemma B.9

From (31), we have

E (671Lﬁ °9(0nt1)) —E (672" g(61))

2 n n 2427,
<—72E 0 o) + S E (@ o)~ D E (190,000 %) Z IR (lee]?)
t=1 t=1
n €§+2?70 )
+ 22 E(I900(00) = Voug(00,€0)1).

(33)
It follows from Assumption 3.1 3) and Lemma B.8 that
" E ([ Vo, 9(6:) — Vo, 9(0:,€)1°) < €/°E (|Ve,9(0:) — Vo, g(0e, &)|I?) MT (61, v0) < +oo.
Because of 31 | ;7" < 400, there is a scalar M > 0 such that for Vn

2+2n¢ n o 2+mo

3 S E(|[Ve,g(6:) — Vo,g(Be, &)%) < MT(61,00) > <

t=1 t=1

< M < 4o0.

Then it follows from (33) that

1 n
3 Z(l —a? - cer) E (ef"°||vt||2)
=1
2
_ o
<M + & g(61) — €, E (9(0n+1)) + - E (072 lvoll? = €72 ||vnl?)

€ 2n9 9
- E(IVag(00)) < K

where K is a positive scalar. Since €, — 0 when n is large enough, it holds that é(l —a?) <1—-a®—ce,.

Without loss of generality, assume (1 — a®) < 1 —a® — ceZ forn > 0,50 37 E (67 ||ve]|?) < £255 <
+00. By Lemma B.5, we obtain 37", € [|v¢|? < +o0.

B.6 Proof of Lemma B.10

Through Taylor expansion, we derive that

t199(0e+1) — €™ g(6:)

T
=€V, 9(0e,)" (041 — 0:) = =€V, 9(0:) vr + €™ (Ves,g(%) - Vetg(et)) (Oe41 — 02).
(34)
We first focus on the term €.7° Vg, g(6;) 7 v¢. It holds that

€7"Vo,9(0:) v = €™ (Vo,9(0:))" (avr—1 + €: Ve, g(01, 1))

= ;™ (Vo,_,9(0:-1) + Vo,g(6:) — Vo,_,9(0:-1)) vi1 + €, V4,9(0:) Vo, 9(61, &)

= ae;"\ Vo, ,9(0:-1) "vi1 + a€l™ (Vo,9(0:) — Vi, 9(0:-1))Tve1 + €720V, 9(6:) Vi, (61, &)
+ (™ = €") Vo, g(0:-1) v
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By substituting the above equation into (11) and noting —(Vo,g(6:) — Vgi_lg(éiq))Tvi,l < HVgig(Hi) -
Vo,_19(0i-1)||[lvi-1]| < cllve-1]]%, we obtain

€199(0e1) — € g(0:)

<—a' ™V, g(61) o1 — Zoét €T 0,9(0:) Vo, 9(0:, &) + *Q"”Hv I
1=2
t—1 ,
=2 TG (Vo,g(0:) = Vo,_,9(0-1)) vra
i=1
» (35)
+ Zat 6?’70 6?1701)V9t71g(9t_1)-r1}t_1
t ) t ]
<= a1V, g(01) v = Yo TGOV, g(0:) Ve, 9(0:,6) + ¢ Do e fui?
i=2 i=1
t .
+3 0t T — )2V, g(000)],
where ¢’ is a constant which does not affect the result. It follows that
éiTlg(enH)
=e1"g(01) + > (7759(0r41) — €27 g(6:))
t=1
1—a” 1—a"
—61 °g(61) — 1—a Efnovelg(%)TUl + ﬁﬁiﬁnovhg(@l)vﬁg(@l, 1) (36)
- Z 1+27}0 Vetg(et)vgtg(ot: ét + CH Z 62"0 Hle

i=1

+") (6™ = €)% Ve, 1 g(0:-1)|1%,
i=2
where ¢” is a constant which does not affect the result. Take the mathematical expectation of (36), and notice
Assumption 3.1 1), then we have

2710
Qe 1
B (9(0n41)) <A™ E (9(61)) + T0 Vo, 9(00) 0n | + el P E (Vo 9(6) )
n t
=" (e = (6" = ")) E (Vo 9(0:)]17) + ¢ D> ™ E(floil?),
t=1 =1

where ¢”’ is a constant which does not affect the result. From Lemma B.9, it follows that for some positive

constant @,
n

' e?"OE(HthQ) < Q.
t=1
Since (e} 727 — (77 — €29)?) can be controlled by koe; 7>, it holds that

Zetl“"o E (Ve 9(6:)|°) <% < +oo, (37)

where Q' is a constant. From Lemma B.S5, we have 3°1 | e, 72|V, g(6:)[|> < 400 a.s..

B.7 Proof of Lemma B.11

It follows from (11) and (12) that
9(0t41) — g(0r)

t
'V, g( 01 cZat Yo Zat_ieiHveig(@i)W
i—2

t
+ Y eV, 9(0:)" (Vo,g(6:) — Vo,g(6:, &)
=2
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Then in light of (16), we get that
t
> a T ul?
=1
t t
<D ol uo|* 4 o0 YTV Vo,9(61) — Vo,g(0:, )7
i=1 i=1

t
(i
—o1 > a1 g(0k1) — eng(Or)),
i=1
where o¢ and o1 are two constants not affecting the analysis. Then we make some transformations to obtain

t
o0y oI, g(6:) — Vo, 9(60:, )|
=1

t
]—"n> + oo Z a(1+5)(t_i)efMi,

i=1

t
=0 > al IR (|1V6,9(60:) - Vo,9(0:. )
=1

where
M; =E (|[Vo,9(0:) = Vo,9(0: &)
From Assumption 3.1 3), it follows that

Fu) = IV0,9(6) = Vo, (0., €)1

t t
o0 aTITIER (Hvaig(@i) = Vo, 9(0s, &)Hz‘fn) <ooMo Y oIV g(60))]?
i=1 =1

t
+ad Z a(“‘s)“_i)e?.

=1

Then we derive that
t
t—i 2
> ot |
i=1

t t
<D o uol* +ouMo 3 a0 Vo, g(00)I1

i=1 =1
t ¢
+d Za(lﬂs)(t*i)e? — o Z (19— (€k+1g(9k+1) _ Ekg(elc))~
i=1 i=1

It holds that
g(Or41) — g(0r)

t
koo™ +kia’ + oMo Yy oI V0,960

i=1

t t
+a' QN E o 37 QD (6 g(04) — eng(0) — @t e[ Ve, g(0:)]

=1 1=1 1=2
t
+ 0 eV, 9(0:)" (Vo,9(0:) — Vo, 9(0:,&)).
1=2

It follows from some transformations that

’

a

9(0ie1) = 9(0) < ———5a ™+ Qu, (%)
1—alt?

where

t
» 1 _
Qs = a’(Za(”‘”“ e _ 1—7041%6?) 4 kot 4 ot
i=1

t t
+ oo M, Za(l-s-é)(t_z)eivaig(oi)w — 0 Za(1+6)(t_z) (€k+1g(9k+1) _ €k9(9k))

i=1 =1

+>a' T eVe,9(0:)" (Vo,9(0:) — Vo,g(6:, &)

=2
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Next we will prove that Z 1 Q¢ exists and is finite a.s.. First through Lemma B.7, we get

1
(A+8)(t=) 2 —
S (3 i) o

t=1

Obviously
—+oo
Z (kanl + k1at) < 4o00.

=1
For the term oo Mo S°F_ a1 +D=D 2|17, ¢(0;)||2, from (B.10) and 0 < 7o < 1/2, we derive
=1 i

—+o0 t o M —+oo
—i 04V10

ZUOMOZQ(1+6)(t Z)E?HVQQ(&)HZ T 1 gl 6?\|V919(9t)“2
= i=1 t=1

—+oo

oo M

< ﬁ €%+2nOHVth(9t)H2 < 400 a.s..

t=1

For the term —o1 >0, "D (¢, 119(0141) — exg(0k)), from (36), it follows that €20 g(6,,) < ¢ <
oo (¥ n > 0). Furthermore, it holds that e,g(0,) = €5 270¢2™0 g(6,,) — 0 a.s. and

—+oo t

i ooe1g(6

Z —o1 Z DI )(€k+1g(9k+l) — erg(Or)) = %_
t=1 i=1

For the term >\ ,a' eV, 9(0:)" (Vo,9(0:) — Vo,9(0:,&)), we  first  consider

S eV, 9(0:)" (Vo,9(0:) — Vo, 9(0, &:)). From Lemma B.10, it follows that

+oo
> E (& (V0,900 (To.9(00) = Vo, 9001 €)))°| )

t=1
+oco +oo

<a Y E(&[|Vorg00)|*|Fn) + NS E (|0, 900 Fn) < +o0 as.
t=1 t=1

This means >_,"% €: Vo, 9(0:)" (Vo,9(0:) — Vo,g(6¢, &) exists and is finite a.s.. From Lemma B.7, it holds
%

that >20_, o' eV, 9(0:)7 (Vo,9(0:) — Vo, 9(0:,&:)) exists and is finite a.s.. Thus, 3°,-° Q¢ exists and is
finite a.s..

C Proofs of Theorems 3.1-3.4 and Proposition 3.1

C.1 Proof of Theorem 3.1

We prove this theorem under two situations, namely, Z*w LT2m0 < 400 and Zn il et = too. If
Z el €l < 400, we can conclude that Z 2 < +o0. Then our condition degenerates to the classical
condition Z io1 €n = +00, Z+ B €2 < +oo. The results then follow from Theorem 1 in [7]. Thus, the

following proof is all based on the condition that ZI:} €L T2 = oo, First we will prove that there exists a
subsequence {0k, }, such that ||Ve, g(0k,)|| — 0 a.s.. We prove it by contradiction. We assume 3N (¢) > 0,

when 60, > N((), it holds that | Vg, g(6:)||*> > d3 > 0. Then we have

+oo +oo
> @TVa 0P > 6 D> ¢ = oo, (39)
t=N(¢) t=N(¢)

which contradicts with (37). Thus, there exists a subsequence {0y, } satisfying [| Vo, g(0k, )| = 0 a.s.. Itis

easy to find that .J; is a bounded closed set. So Ve > 0, we can construct an open cover H." = {U(6,€)} (0 €
J;) of J;. Through the Heine” Borel theorem, we can get a finite open subcover {U (0, €) (k= 0,1,...,n)
from H". Let U = Ur—o U(Ok, €), then UL is a open set. Under Assumption 3.1, J = {6|Vag(0)}
has only finite connected components Ji, Jo, ..., Jm. So infix; d(J;, J;) = mingz; d(Js, J;j). Let dg =
min;»; d(J;, J;). It follows from Lemma B.3 that Jep > 0, such that when d(0, J;) < €o, it holds that

Vog(0)|I” < 2¢|g(0) — gil, (40)

where g; denotes g(0) (6 € J;). Let ¢ = min{eo, do/4} and construct Uc(l), UC(2), . Uc(m). It is obvious that
VU, U9 (i # ), dUD,UDY > 60/2, and || Vag(0)]|2 < 2|g(0) — gi] (6 € UL?). Since J is a bounded
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set, 3N > 0, such that J C K (K is the closure of U(0, N)). Then we construct a set M = K/ J;~ Ul
Since U{") is an open set and K is a closed set, we conclude M is a closed set. Since IVog(0)| is a contlnuous
(00)[| = mingenr [[Vog(0)[|. Letr = [|Ve,g(6o)[| > 0.

Then we prove that Yu > 0,0 € K, 36 > 0, if |[Vgg(0)|| < 6, then d(6,J) < u holds. We prove it
by contradiction. Assume Jug > 0, V61 > 0, 3 05,, such that ||V, g(6s,)[| < d1 and d(0,J) > wuo.
We choose 61 = 1,1/2,1/3..., and construct a sequence {61/, }. It is obvious that ||V, , g(61/,) — O]
Since {61, } is bounded, through the Accumulation point theorem, there exists a convergent subsequence
{01k} C {01/n}. Let 0 = lim, ;o0 0, . From the continuity of d(6,.J) and |[Veg(0)||,
d(0@) > ug and ||V ) g(0'»)|| = 0. It contradicts with the definition of .J. So Vu > 0,0 € K, 35 > 0,

IVog(0)|| < 9, such that d(6,J) < w. Furthermore, due to the continuity of g(6), we can get Ve; > 0,
3§ > 0,ifd(0, J;) < &, it holds that |g(#) — g;| < e1. Combine these two consequences, then we can prove

Ver > 0,3b > 0,if 6 € UL and || Vg(8)|| < b, it holds that |g(#) — gi| < e1. Through (39)
Jim (Vo 9(00,)]* =0 as. (1)

Next we aim to prove lim, oo | Ve, 9(0)]|> = 0. It is equivalent to prove that {||V,.g(6,)||*} has no
positive accumulation points, that is to say, Veo > 0, there are only finite values of ||V, g(6)|| larger than eo.
Obviously, we just need to prove V0O < eg < r, there are only finite values of ||V, g(6)]| larger than e. We prove
this by contradiction. We suppose 30 < e < a, such that the set S = {||V,, g(0)|| > e} is an infinite set. Then
we let e1 = e/8c and o = min{b, e/4}. Due to (41), there exists a subsequence {0p,, } of {9 } which satisfies
IVe,, 9(0p,)| < o. We rank S as a subsequence {Hang( I} of {||Vng(6,)]|?}. Then there is an

infinite subsequence {||Vm; g(0m,, )12} of {|| Vi, g(0m,,)|1*} such that Vn € Ny, 3, np,, € (i, miy, )
For convenience, we abbreviate {m;,, } as {i,, }. We construct another infinite sequence {g» } as follows

g =max {n: pr <n <min{Mi;m; >p }, || Vo, 9(0n)]| < o},
gz =min{n:n>q,||Ve,g(0n)| > e},
G2n_1 = Max {n smin{ms, : mi, > @an—3} < n < min{m; : my > min{m;, : m;, > gan—3},
Vo, 9(0n)] < o},
Q2n, = min {n in > gan—1, ||V9ng(9n)|| > e}.
Now we prove that 3Ny, when g2, > Np, it holds that e < H Vo, 9(045..) H < r. The left-hand side is obvious

(the definition of g2, ). For the right-hand side, it holds that HVg dam—1 9(0gon—1) H < e. From (36) and Lemma
B.7, it follows that
2

[0n41 — Onll” = ||avn—1 + €n Vo, g(0n, &)

B E’LVG g e’baf’b)

n n

Y n—i M/ 7L74 a n—i
;a 2||V990u§z)||2§17az 2|}veg O + 2 S amie

=1 i=1

“1-«

+

I~ o
—> a 2(|yv9 9(0, )| E(HVgig(@i,&)HQU—'i)) 50 as.

i=1
From Assumption 3.1 2), it holds that }||Vg”+lg(0n+1)|\2 — ||Vgng(9n)||2‘ < Vo, 9O0nin)ll —
HVgng(@n)H’2 < |IV0,1190n11) — Vo, 9(00)]1* < cl|fns1 — Onl| — 0 a.s., So INo, when n > N,
it holds that H|V9"+1g(0n+1)||2 — V6, 9(0n)|l| <7 — €. Then we can get that when g2, > No + 1, it holds
that ||V, 9(0a.)|| < 1Vo,,, -1 90azu—1)ll + |IVoy,, 9(00) [ = Vo, 1 9(0a, -l S etr—e=r.
This means that 64,,, € /-, U Then Jio, such that 04s., € UL Due to IVo,9(0n)]| <e<r (ne€

[q2n—1,q2n)), it holds that Yk € [q2n—1, gan), Jik, such that 6, € U, Since [|6,11 — 0| — Oa.s., it
holds that i¢o = ix (V j € [¢2n—1, g2n)). For convenience, we let io = gy, = ... = ig,,—1 = fqs,,. Then
we conclude that

IVog(0n)|1” < 2¢|9(0n) = Gigy., | (7 € [g20-1,420]).
Due to the locally sign-preserving property, it follows that

IV6g(6n) 1 < 2¢(9(0n) = Gigy,) (9(0n) = iy, ) or

IV6g(6n)l1* < —2¢(9(6n) = iy, ) (9(6n) < Giy,,) (0 € [g2n-1,d20])-
Since it is the same to study the two cases, we just show how to prove the first case. We derive that

e-o< Hv9mng(6‘12n)H2 - Hv9<12n71g(0q2n—1)”2 < 20(9(04%) - gig2n) - vaqgnflg(eq%/—l)Hz

92n—q2n—1—1
2
= (2(3 9(Oqzp,—+i+1) — g(GQ2n71+i)) + 26(9(9‘12"71) - gitmn) N ”vetzznqu(e@n*l)H :

24



From (38), we obtain
!

2
9O0azn_1+i+1) = 9(0azn_1+i) < T35 iFe Cazn—a+i T Qa1 4

!
a 142ng )
< T i Cazn+i T Qazati-
So it holds that
a2n—q2n—1—1 q2n—Qq2n—1—1
142
e-o< Do L+ Y Quaat
i=0 i=0 42)
2
+ 20(9(0‘12"*1) - gi?Tﬁl) - Hveqzn,l g(GQZn—l)H y
where
i
a
==

Due to |V, . 9(0g,_,)|I> < 0 < b, it follows that g(0q,, _,) — gin,_, < €/8c. Substitute it into (43),
then we get

q2n—q2n—1—1 q2n—Gqan_1—1
14+2n0 € )
Yo > g - Qa1+ (43)
=0 i=0

From Lemma B.11, it follows that :2 Qn is finite almost surely. Thus, we attain

q2n—q2n—1—1

Z qun,1+i — 0 a.s.

i=0
by the Cauchy’s test for convergence. From e}l;{"fﬂ — 0 a.s., it follows that
q2n—q2n—1—1 q2n—q2n—1—1
1+2n0 € 1+2n9 . €
Yo > oL Cazn-1+i T Y Quaiti— ap &5+ “4
i=1 i=0
Thus, it holds that
400 /42n—492n—1—1
1+2n —
> ) )
n=1 i=1

On the other hand, it holds that ||V, ,9(0g,,_,+i)|| > o (i > 0). Together with (37), we get

400 /42n—92n—1—1 1 400 /42n—92n—1—1
14+2n9 A2 . 14+2m0
Z < Z q2n1+i> < o Z < Z Hv9f12n_1+ig(9q2n—1+’)H 6qzn1+i>
(46)

m

n=1 =1 n=1 i=1

q2n—1+1

< 1S Vgl Pt < 400 as.
n=3

It contradicts with (45), so we get that ||V, g(65)|| — 0 a.s.. Under Assumption 3.1 1), it is safe to conclude
that there exists a connected component J* of J such that lim d(6,,J*) = 0.
n— o0

C.2 Proof of Theorem 3.2

First we construct an event
B,, = {there exists at least one point no € [0,n], satisfing \|V6>nog(¢9n0)|\2 < koeny }
where ko is an undetermined coefficient Then we define another events
Bi = {[[Vo,9(0:)I* < koe?},

Bi; ={IVo,9(0:)|1* < koe: and for all no € (i, [|Vo, 9(0:)|I* > koen}.
Specially, we denote B, ,, = B, Absolutely, there is



Let the characteristic function of B,, be I,,, B; .j be I; .j- Through Theorem 3.1, we know 6,, must converge to
some stationary point, so g(6n) — > ", Ikgk a.s.and g, (k =1,2,...,m) must be a local minimum. We
denote § = g — >, Irgr. Then we get G — 0 a.s. and lim 1nfnﬁ+oo sgn(g(@n)) > 0 a.s.. There is

Lin41§(0n+1) = Lin§(0n) < pa” ' Lii41[ Vo, 41 9(0i41) Z a"e;1;,;V0,9(6;)" Vo, 9(05,€5)

Jj=i+1
c’ Z Qe ”||V9 9(0;) — Vo, 9005, &)
Jj=i+1

where 11 > 0 is a constant. We define S = {g(0) < T}, I'*) = {some t € (i, ) satisfies |Vo,g(6:)> >

Wby
qie; and || Ve,9(6;)|I> > a}. We denote ko = 2ac”. Then exists a > 0, after adjusting {g;}, making

E(1; ;Ve,9(0,)1%) > E(I\*||Ve,9(6;)|%) and 1/2E(I; ;) < E(I{*)). Then through Assumption 3.1 (3),
ie., Ee, (HVg g9(0,&n) H <M HV@ g(0 H + a’. We take the mathematical expectation on above equation to

obtain ) ) L )
E (1, n+1§l(9n+1)) —E (Iing(0n)) < pa" " E (11,41 |Vo,,, 9(0i11)[17)

— S @G E (190,906 P)

j=i+1

/
o3 e ( n )Eui,jnvejg(ej)u?)
J=itl
= uan_ZE (fi,i+1||v9i+1g(gi+l)“2)

= n—j " ’ a’ 7
- a J<5ﬂ' —c 63( 2koa)>E(]i’j||v9jg(0j)|2)'

j=it1
We construct a variable F; 1 as follows

n+1 1 n+1—t .
Finy1 = Z <27a) E(L‘,tﬁ(@t))-

t=i+1

So we can get
Fint1— Fin

1 n—1i N 1 n—j .
< oo (2 — a) E (L1110 Vei 1 9(0i1)1”) — =5k Z ( 2k0a) (7) & E (1|9

Through Assumption 3.3, we know when 6 € S = {||Veg(9)|\ /(g(0) — ¢g") < 6o}, there i
g(0) < T. We denote kg = a’c¢’/a. Then when 0; € S, there is By, es (jqj,j||v9i7jg(6i’j)“2)
Ey s (119 1Ve,,90:)|7) > (a/21) ges(”g(ej)), and when 0, € RY/S, there is

Eg, ez s ( 1,J||V9].g(9]-)||2) > 260E9]_6RN/S( 1.79(07)). We assign & = min{20o,a/2T"}. Then we
can get that

0,)11%).-

7]

Fi,n S KOFi,i+16_ (1,2;7) 22:1‘,4—1 €k’
where K is a constant. Regarding the value of F; ; 1, it holds that
Fiivr <E (Liiga]g(0i41)]) < E(L]§(0i11)]),

Li1§(0i1) — §(0:)| = Li|Vig(0:) vi| = L|Vig(0:)" (awi—1 + €:Vig(6:,&))| < O(e}).
As a result,

2¢
Fin = O((ce” Tmem Shoimn o),

Then we get
ZE 'LTLHVQ g( n || (ZE e T - a)z Zk 1+1€k>

For the adverse events of Bn,
Q/B,, = {there is no point no € [0,n], satisfying ||V9n09(0no)“2 < koeio IS

we use the same function, getting

_ 2¢ n €
E (Iny s, 1V0,9(8)|) = O G2 =510,
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Finally, we get that

n 2¢ n 2¢ n n 2¢ i
E (||Va, 9(60)I%) = o( 2T E:) - o(amzkzl 3 2eTiar Sk )

i=1 =1
C.3 Proof of Theorem 3.3

Proof. First we have
Up = QUp—1 + Env9ng(0n7 fn)

47
0n+1 =0n — Un. ( )
Then we calculate that c
9(0ns1) < g(6n) = Vo, 9(0n) " vn + §H’Un|\2-
First, we focus on the term Vg, g(8,)7 v,,, which satisfies
= V6,9(0n)" vn = =V0,9(0n)" (00n—1 + €.V, 9(0n, &) )

< —aVe, ,9(0n—1)"va1 + callva_1]> — €. Vo, 9(0n) Vo, g(On, ).
We multiple 7, {® on both sides of (48), leading to
— IV, 9(0n) vn
< —all® Vo, 1 g(0n-1)"vao1 + (I — IV, 1 g(Bn-1)" vnor + cal® [Jon_1]®>  (49)
—en V0, 9(0)" Vo, 9(0n,0)).
For convenience, we denote iin—1 = (I8, — I?) Vo, g(6n—1)Tva—1, and then we iterate (49), getting

— IV, 9(0n) "vn
n—1

n—1
< —an_lll(a)Vglg(Gl)Tvl + Z a" e + Z ca T I ||y
t=1

t=1

(50)
=Y et Vo, 9(001) Vo, (i1, Erp1).

We multiple 7" on both sides of (48) and note I\ > I'*, then it holds that
a aa C (a
L1 g(0ne1) < IP9(0n) = 189 Vo, 9(0n) "vn + 5 I flon ]|, (51)

Then we substitute (50) into (51) to obtain

n—1

n—1
I)19(0n11) < I g(0,) — o™ LV, 9(00) 01 + Y 0" e + Y ca™ I ||ue?
t=1 t=1

(52)
n— a C (a
- E e 1It+)1v9t+1g(0t+1)TV‘9t+1g(0f+17§t+1)+51’51)||v"||2'

Then we use the am — gm inequality on the term Z;:ll a™ e to attain

St Za (12 = 180)Vo,9(0)" Z (1~ 1)1 |V, 9000
= (53)

3 P = ) Y el

We substitute (53) into (52), note I} — I'%)| = o(e,) a.e. (due to 3725 I8 — I'D), < 00, S5F % ¢, =
+00), and make the mathematical expectation, then we derive

E(I)19(0n11)) < EIY g(02)) — o™ 1PV, g(01) 1| + 2 ca™ " E(I |Ju]*)
t=1

. (54)
= (e —ole))a BV Ve, 9(6)|°)
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On the other hand, we have

E (en+10219(0n11)) = E (eIt 9(6))

1

~ 2 ~ ~
< - §(E(I§L“>an|\ ) «@ E(1<a>1\|vn 1l )) — 6?"IE(IT(L@||v9ng(9n)||2) +genE(I,(ﬂ>\|vn||2)

2
€n a
t+ 5 E (1L 1V0,9(0n) = Vo,g(0n,&)])-

(55)
Substitute (55) into (54) yields

E(L%,9(0n41)) — E(IM g(02)) < pa™ |V, g(601)] Za e —o(e) E (17| Ve,(0:)]1*)

+c”2a" B (I Vo,9(0:) — Vo, 9(0:,&)|°), -

(56)
where ¢ and 4 are two constants which do not affect results Then we note when || Vg, g(6,,)||*> > @, there is

E(10,9(00) ~ Vo,0(60 €)1%) < (M~ 1+ ) E (IV0,9(600) ) < 5TE (195, 9(0)]).

where M is a constant which does not affect results. So we get
Za” EE (I Vo,9(0:) — Vo, g(0:,&)|°) < MZa" EE (I Vo,9(0)]1%). (57)
Substitute (57) into (56) and note ¢’ Me2 = o(ey, ), then it follows that

E(IL%)19(0n11)) — E(IS7 (8,)) < pa” (Ve g(61) Za e —o(e) E (I Vo, 9(0:)]1°).

(58)
We denote )
. s n 1 n—1 o
F,§>:Z<2_a) E (I g(6,)) (59)
i=1
For convenience, we let
~la 2 n 1 n—i “
D M Crerd IR LRI ORI}
i=1
Through (54), we get
A 1 n o
F(“) F(‘l) < i _ (a)
n+1 n = /"‘ 2 —a Gn )
so there is
~(a) n
(a) (@) G (1
Fn+1§F ( Féa)>+ﬂ<2a>
(60)

(a)
where o is a constant. We focus on ?(a) Using O’ stolz theorem yields
GO 2 Ei() T EE Ve (0)]1)
liminf —— = liminf

itoo ¢ F(u) i—too (1 — )2 Zi_l(ﬁ)i,t E(If&)g(et))
(a)
> liminf —2 , E{Z; H(Ve 907
oo (L—a)® B g(6:))
Through Assumption 3.3, we know when 6 € S = {[|[Vag(6)||* < 3g(0)}, there is g(6) < T. We define
S = {9(0) < ZT} Then when 6; € S, there is Ifa)”Veig(Hi)H? > (d/QT)[i(a)g(ei)’ and when 6; € RN/S’
there is Ii(a) Ve, g(8)|* > 25011,(‘1)9(&), We assign ¢ = min{26, {z/2T}, then it holds that
(a) R
lim inf 2 ; E( H(V)e GO 2 5
1—+o00 (1*0{) E(Ia (0 )) (1*&)

(61)
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Thus, it follows that
N aln ___2¢ ne.
E(I g(6,)) < B, = O(e (a7 2= ) (62)

C.4 Proof of Theorem 3.4.

From (31) with €,, = ¢, it follows that
E (eg(n+1)) — E (eg(6n))

1 2
< (B0l = @B (lounsl)) - SE(V0.06001) + 5B (nl®) gy

2
€
+ S E(IVe.g(6n) - V6,9(0n, )|).-

Let the event A = {[[Va,9(61)]12 > ¢, [[Ve,9(82)[1> > @, e, [| V6, 9(8n)]|* > ¢} and the characteristic
function be I, then we attain

DB oil) < e+ do 3 B IVa,9(6:) — Vo961, &)[°). ©4)
i=1 i=1
Using Taylor expansion, we derive that

I g(0rir) — 117 g(01)
=17V, 9(0c,)" (011 — 0:) = —I{"' Vo, 9(0:) v, (65)

+ 1% (v95tg(9§t) - vetg(et))T(0t+1 —0:).
Considering the term Vg, g(8; )7 vy, it holds that
[(“’)Vgtg(ﬁt)Tvt
= 1{7aVo,_,9(0r-1) "vim1 + al{*} (Vo,g(0:) = Vo, 9(0:-1)) ver
+e1,% Vo, (et> Vo.9(01,6) + (17— 1,71)V0,9(00) v,

Note (I¥) — It(f;)lt(f; =11 — 1) and I?) — I'¥) — 0 a.s.. Then by substituting the above equation
into (11) and noting —(Ve, 9(0(;)) — vgiflg(el_l))%_l < Hngg 00iy) — Vo,_,9(0i1)||llvica] <
c||ve—1]|?, we obtain

1) g(0,1) — I g(6:)

t

<= PV, g(00) 01 — > o el Vo, 9(0:) Vo, 9(0:, &) + §||vt\|2

o (66)
- Zat I (Vo,9(0:) = Vo, 9(0i-1)) vi-1,
where ¢ > 0 is a constant. It follows that
Iz<+1g(‘9n+1)
=1{7g(01) + Y (121 9(0e41) — 117 g(01))
t=1
=19g(6,) — IW)V 0 1- 1<‘P)v 01)Va,g(0 ©n
= 1 1 0,9(01) 01 + o 17 Veu9(01) Ve, 9(61, &)
1_an t+1 () y t )
- Z I 1V0tg(9t)V0tg(9t,£t) +c Z H’UlH )

where ¢” is a constant Wthh does not affect the result. Substituting (64) into (67) yields
Iiﬁig<en+1>
<Ig(0:) — =1V (0) o + S el V0, g(01) Vi, 0061, 4)

n 1 _ — . ) n
-2 ﬁiadffivetgwt)wtgwt, &)+ e+ "0 > 1P Vo, g(0:) — Vo, (00, &)1,
t=1
(68)
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Then we multiply 15 on the both sides of (68) and notice I >1 fffl to derive that

189, g(0ns1)

1-—
<I{Pg(61) — = I(WVelg(@l) v+ - 61(“0>V919(91)V919(917€1)
1— —t+1 17N
- Z a” eI“’iVotg(@t)Votg(Gt,&t) +c'¢+c'a Ze I Vo,g(0:) — Vo,9(0:, &)1
t=1

(69)
Then we take the expectation on (68) and obtain

E (I, (6n41))

SE(Il(W)g(Gl))*ﬂ 1—a"

1= E (IYMVng(Ql)Tvl) =+ =

E (vglg(el)velg(el, &1))

n 1— n—t+1 )
= E (I V0,9(0)V0,9(0,€)) + e+ o B (17 [Vaa(00) — Voa(00.€0)1).

t=1
Under Assumption 3.1 2), it holds that

"Go Y € B (1{7]|Vo,9(0:) = Vo,g(0:, &)%) Z E (E (I V0,9(0:) — Vo,9(0:,€)I°| F2))

t=1

< aoet (Mo + ) YUB (11109001,

t=1
It follows that

E (I7,9(0ns1)) < K — <€ — "do€’ (Mo + Z)) E (I17]|Vo,9(60:)]%).
1

Let po = 1/¢"o (Mo + £). Then when € < o, it holds that (e — ¢ doe? (Mo + 2)) > 0. We derive that

n n K
Y eE(IF) <D TE(IIVe,g(0)]%) <
t=1 =1 € — ' dpe? (Mo + %)

< +o00. (70)

In addition, we have
lim P(AY)= lim E(I")=o0.

n—-+oo n——+oo

Dueto A{” 5 AL 5 ... 5 ALY, we get

P( lim A{)= lim P(A¥))=o0.

n——+oo n——+oo

Through the arbitrariness of ¢, we attain the conclusion.

C.5 Proof of Proposition 3.1.

From (70), it follows that E (I,(f) Ve, 9(0n)|I>) — 0. So for any ¢ > 0, there exists no, when n > ng, it
holds that

E (17| Ve,9(6x)|) < . (71)
Then we define another event First we construct an event

B, = {there exists at least one point ng € [0,n], satisfing g(0n,) — g < v},
where kq is an undetermined coefficient Then we define another events
B ={9(0:;) - g" < ¢},

Bi; ={9(0:) —g" < ¢ and for all no € (i,7] g(0n) — 9" > ¢}
Specially, we denote B,,., = Bj. There is

Let the characteristic function of B,, be I,,, B; ; be I, ;. Itis obvious that

E (Inn(9(6n) = g7)) < @E(Inn) < . (72)
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Then from (68) we can get that

Lin19(0ns1) = Lin§(0n) < pa" " Liia||Vo,,, g(Bis1) Z a"el; 1Vo,9(05)" Vo, 9(05,€5)
j=i+1

n
+d" Y a"IEL Vo, 9(05) — Vo, 9(65, €)1,
j=i+1
(73)
where p > 0 is a constant. Then we denote § = g — ¢. We take the mathematical expectation on (73) to obtain

E (fi,n+1§(9n+1)) —-E (fl,ng(gn)) < Man_i E (||V91‘+1 g(0i+1)|‘2)

— Y a"TeR (L] Ve,9(0,)I)

j=i+1
// Z an JQ(M + )E(fz,]|
Jj=1i+1
n—i 7 2
= po E (Ii7i+1||v9i+lg(0i+1)” )

_ (— (M’+ w)) > " IE (110, 9(0)%).

j=i+1

Veo,9(0;)]%)

We construct a variable F; 1 as follows

n+1 1 n+l—t R
Finy1 = Z < ) E(Ii,zg(gt)).

- 2 -«
t=i+1

So we can get

1 n—i . ) n 1 n—t R R 5
Fi,n+1 *Fi,n < oo (m) E(Ii,i+1||v0i+1g(€i+1)“ ) —Fo ,_;_1 (2—04) EE(I', g(et)H )7
where o¢ and f ¢ are two constants not dependent on € or ¢. We let
- 1 —t P,
Qun=Fo 3 (5=3)" "B (Lullg(6o)I).
t=i+1

Then we get

Fini1 <Finl1- Qiin + oo Lt niiE (fz i+1]| Ve, g(9i+1)|\2)-

’ - Fin 2—«w ’ it

Then we get Qs,n/Fi,n > €F 0/¢. So we can attain

Fins1 < Frivi(L—epFo)" 7 490 ™ 00 E (141 Vo, 9(0it1) %), (74)

where yo = max{1 — epFo,1/2 — a}. Then we first prove E(g(6,,)) is uniformly bounded. We have

E (§(0i+1)) —E (9(6:)) = —E (Vo,9(0:) v:) = —E (Vo,9(6:)" (awi—1 + €Vo,9(6:, &)))
<E (Ve 90 llvi-1]l) + €E (| Ve, 9(0:)I*) < Vlvieall + e < 1,

where 1 is a constant. Then we get

o0 2
K
E(g(an))§<p+E(§(9n))<<p+mE (1 —epFo) +m§ y0<Tp<+oo (75)
=0 1=0

Now we have proved E (g(6,)) uniformly bounded. Then we aim to prove E (g(6,)) can become arbitrarily
small if n sufficient large and e sufficient small. First We have

Ellon]? = E||0n41 — 0nl” = [|avn-1 + €V, 9(0n, &)||” = eV, g(ez,gz)
e T £ 2 S BTl 1 S
Tl-a& ’ Tl-az l—a< e
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where Py is a constant. Then we get that

E (g i1)) —E (§(6:)) = —E (Vo,9(0:) vi) = —E (Vo,9(0:)" (awi—1 + €Vo,9(0:,&)))

; €
Z i ? < pr <

A

Since E (§(6:)) < 0, we get E (§(0i+1)) < pr€/e. Finally we substituted it into (74), getting

+oo
E|[Vo,9(0:)|” <E (9(62)) < 0 +E (3(0)) < ¢ +ﬁli > (1 —epF o)’ +p1; Zyo < I;z
i=0 i=0
where po is a constant. Then we can get
E|[vn|® = E||fn41 — Onl|* = ||avn-1 + Vo, g(0n, &)|| "'eV, 9(01,&)
n 2
n i n—i 2 €
gl_az CE||Ve,9(6:, )| <o Z ZIEHVgg €< -

i=1 im1
where p;, is a constant. Then we get that

E (§(0ir1)) —E (§(6:)) = —E (Vo,9(0:) vi) = —E (Vo,9(0:)" (awi—1 + €V, 9(0:,&)))

n

—i ~ 6
<Yl <4t

where ] is a constant. Then we can get

&2 too
E ||V, 9(0:)|]° <E (9(6n)) < 0 +E (9(6)) < ¢ +plE (1 —epro) +p1; Zyo < pj
i=0 1=0

where 5 is a constant. Now we can find that provided € small enough, we can get for any small bound ¢,
E HV@ng(ﬁn) H2 < o (when n is large enough).
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