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Abstract

In this paper, we study a variant of best-arm identification involving elements of risk sensitivity and
communication constraints. Specifically, the goal of the learner is to identify the arm with the highest
quantile reward, while the communication from an agent (who observes rewards) and the learner
(who chooses actions) is restricted to only one bit of feedback per arm pull. We propose an algorithm
that utilizes noisy binary search as a subroutine, allowing the learner to estimate quantile rewards
through 1-bit feedback. We derive an instance-dependent upper bound on the sample complexity of
our algorithm and provide an algorithm-independent lower bound for specific instances, with the
two matching to within logarithmic factors under mild conditions, or even to within constant factors
in certain low error probability scaling regimes. The lower bound is applicable even in the absence
of communication constraints, and thus we conclude that restricting to 1-bit feedback has a minimal
impact on the scaling of the sample complexity.

Keywords: Best-Arm identification, quantile bandits, 1-bit quantization

1. Introduction

The multi-armed bandit (MAB) is a well-studied decision-making framework due to its effectiveness
in modelling a wide range of application domains such as online advertising, recommendation
systems, clinical trials, and A/B testing. Two common but distinct objectives in theoretical MAB
studies are regret minimization and best arm identification (BAI), and this paper is focused on
the latter. The goal of BAI is for the learner/decision-maker to efficiently identify the “best” arm
(decision) from a set of arms, where the learning process occurs through “pulling” the arms and
receiving some feedback about their rewards.

In the vanilla setting of BAI, the best arm is defined as the arm whose reward distribution has
the highest mean, and the learner has access to direct observations of the rewards of the pulled
arms. To tailor to certain practical applications, the best arm is sometimes defined using a different
performance measure, and certain constraints are sometimes incorporated into the feedback/learning
process. Examples of this include (but are not limited to) the following:

(i) in settings where the decision-making is risk-sensitive, using quantiles or value-at-risk as the
performance measure may be more appropriate than using mean reward;
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(ii) in settings where the uplink communication from the sensor to the server (learner) is costly,
the communication to the learner may be restricted, e.g., to send only a few bits rather than
sending the exact reward.

In this paper, we consider a setup for BAI that features both of these aspects. Specifically, the
communication to the learner is restricted to one bit of feedback per arm pull, and the goal of the
learner is to identify the arm with the highest q-quantile for some q P p0, 1q. The problem setup is
described formally in Section 2.1. The main contribution of this paper is an algorithm (Algorithm 1)
for this problem whose upper bound on the sample complexity nearly matches the lower bound for
the problem without the communication constraint. This complements an analogous study of highest
mean BAI giving evidence that multiple bits per arm pull need to be used (Hanna et al., 2022),
suggesting that the quantile-based objective may be easier to handle in highly quantized scenarios.
The details of our results and contributions are given in Section 2.2. Before formally introducing the
problem and stating our contributions, we outline some related work.

1.1. Related Work

The multi-armed bandit (MAB) problem was first studied in the context of clinical trials in (Thompson,
1933) and was formalized as a statistical problem in (Robbins, 1952). The related work on MAB is
extensive (e.g., see (Slivkins, 2019; Lattimore and Szepesvári, 2020) and the references therein); we
only provide a brief outline here, emphasizing the most closely related works.

Best arm identification. The early work on MAB focused on balancing the trade-off between
exploration and exploitation for cumulative regret minimization. The best arm identification (BAI)
problem was introduced in (Even-Dar et al., 2002) as a “pure exploration” problem, where the goal
is to find from an arm set A, the arm k˚ “ argmaxkPA µk with the highest mean reward (the “best”
arm). Subsequent work on BAI includes (Bubeck et al., 2009; Audibert and Bubeck, 2010; Gabillon
et al., 2012; Karnin et al., 2013; Jamieson et al., 2014; Kaufmann et al., 2016; Garivier and Kaufmann,
2016), and these are commonly categorized into the fixed budget setting and fixed confidence setting.
In the fixed confidence setting, which is the focus of our work, the target error probability is fixed,
and the objective is to devise an algorithm that identifies the best arm, in the Probably Approximately
Correct (PAC) sense, using a minimal average number of arm pulls. Formally, an algorithm is
δ-PAC correct if it satisfies supν P

`

k̂ ‰ k˚
˘

ď δ, where k̂ is the output of the algorithm, k˚ is
the best arm, and the supremum is taken over the collection of instances ν such that there exists
a unique best arm. A lower bound of

ř

k‰k˚ ∆´2
k logpδ´1q on the sample complexity was given

in (Mannor and Tsitsiklis, 2004), where ∆k “ µk˚ ´ µk is the arm suboptimiality gap. Several
subsequent algorithms managed to match the dependence on ∆k of the lower bound to within a
doubly logarithmic factor. Despite the multitude of algorithms, these are usually based on one of
the following general sampling strategies: arm/action elimination, upper confidence bounds (UCB),
lower upper confidence bound (LUCB), and Thompson sampling. See (Jamieson and Nowak, 2014)
for an overview and relationships between these sampling strategies.

Quantile bandits. In certain real-world applications, the mean reward does not satisfactorily capture
the merits of certain decisions. This has motivated the use of other risk-aware performance measures
in place of the mean (Yu and Nikolova, 2013), such as the mean-variance risk, the (conditional)
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value-at-risk, and quantile rewards – see (Tan et al., 2022) for an extensive survey. Among these,
our work is most closely related to the quantile multi-armed bandit problem (QMAB), a variant of
the MAB problem in which the learner is interested in the arm(s) with the highest quantile reward
(e.g., the median). This is useful when dealing with heavy-tailed reward distributions or risk-sensitive
applications, where a decision-maker might prioritize minimizing risk by focusing on lower quantiles
(e.g., optimizing worst-case outcomes) or targeting the top-performing outcomes by focusing on
higher quantiles. In particular, (Szorenyi et al., 2015; David and Shimkin, 2016; Nikolakakis et al.,
2021; Howard and Ramdas, 2022) studied QMAB in BAI in the fixed confidence setting. Compared to
mean-based BAI, the definition of the arm suboptimality gap ∆k is not as straightforward, but this has
been resolved in (Nikolakakis et al., 2021; Howard and Ramdas, 2022). Based on the suboptimiality
gap, a lower bound of the form

ř

k ∆
´2
k logpδ´1q was given in (Nikolakakis et al., 2021) for suitably-

defined ∆k. Algorithms in (Nikolakakis et al., 2021) and (Howard and Ramdas, 2022), which are
based on arm elimination and LUCB respectively, were shown to match the dependence on ∆k of
the lower bound, to within a doubly logarithmic factor. Other variants of quantile bandit problems
include fixed confidence median BAI with contaminated distributions (Altschuler et al., 2019); fixed
confidence quantile BAI with differential privacy (Nikolakakis et al., 2021); fixed budget quantile
BAI (Zhang and Ong, 2021); and quantile bandit regret minimization (Torossian et al., 2019).

Communication-constrained bandits. Most work in MAB assumes that the arms’ reward can be
observed directly by the learner (with full precision). However, this assumption may be impractical
for real-world applications in which the reward observations are done by some agent (sensor) before
being communicated to the learner (central server). This motivated the distributed MAB framework,
which has garnered significant attention in recent research; see (Amani et al., 2023), (Salgia and
Zhao, 2023, Appendix A) and the references therein. The distributed MAB studies most pertinent
to this work are those that focused on the quantization of the reward feedback communicated from
agent to learner (Vial et al., 2020; Hanna et al., 2022; Mitra et al., 2023; Mayekar et al., 2023), which
is motivated by applications where uplink communication bandwidth is limited (e.g., those using
low-power sensors such as drones and wearable healthcare devices). In particular, (Vial et al., 2020;
Hanna et al., 2022) studied constant bit quantization schemes for cumulative regret minimization
problem in mean-based bandits, where only a constant number of bits are used to communicate
each reward observation. They showed that if the rewards are all supported on r0, 1s, then there
exists a 1-bit quantization scheme that can achieve regret comparable to those in unquantized setups.
However, (Hanna et al., 2022, Sec. 3) showed that if the rewards are supported on r0, λs for general
λ ą 0, then the same scheme would result in a regret that scales linearly in λ. They further established
that, in order to attain a natural set of sufficient (albeit not necessary) conditions for matching the
unquantized regret to within a constant factor, at least 2.2 bits per reward observation are necessary.
This suggests a possible inherent challenge, or at least a need for different techniques, when using
1-bit quantization. Finally, while some distributed MAB studies considered BAI problems (Hillel
et al., 2013; Karnin et al., 2013; Tao et al., 2019; Réda et al., 2022), we are unaware of any that
addressed the number of bits of feedback per round or used quantile-based performance measures.
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2. Problem Setup and Contributions

2.1. Problem Setup

We study the following variant of fixed-confidence best arm identification for quantile bandits.

Arms and quantile rewards. The learner is given a set of arms A “ t1, 2, . . . ,Ku with a stochastic
reward setting. That is, for each arm k P A, the observations/realizations of its reward are i.i.d.
random variables from some fixed but unknown reward distribution with CDF Fk. This defines a
(lower) quantile function Qk : r0, 1s Ñ R for each k P A as follows:1

Qkppq :“ suptx P R : Fkpxq ă pu “ inftx P R : Fkpxq ě pu. (1)

The learner is interested in identifying an arm k̂ with the highest q-quantile. While the reward of each
arm is allowed to be unbounded, we assume the q-quantile of each arm to be bounded in a known
range r0, λs.2 We let P “ Ppq, λq denote the collection of all distributions with q-quantile in r0, λs,
and let E :“ PK be the collection of all possible instances the learner could face. We will sometimes
write Pνr¨s and Eνr¨s to explicitly denote probabilities and expectations under an instance ν P E .

1-bit communication constraint. We frame the problem as having a single learner that makes
decisions, and a single agent that observes rewards and sends information on them to the learner. In
Remark 1 below, we discuss how this can also have a multi-agent interpretation. With a single agent,
the following occurs at each iteration/time t ě 1 indexing the number of arm pulls:

1. The learner asks the agent to pull an arm at P A, and sends the agent some side information St.

2. The agent pulls at and observes a random reward rat,t distributed according to CDF Fat .

3. The agent transmits a 1-bit message to the learner, where the message is based on rat,t and St.

4. The learner decides on arm at`1 P A and side information St`1, based on arms and the 1-bit
information received in iterations 1, . . . , t.

We will focus on the threshold query model, where at iteration t, the side information St is a query of
the form “Is rat,t ď γt?” and the 1-bit message is the corresponding binary feedback 1trat,t ď γtu.
The learner will only use such queries as side information in our algorithm, though the problem
itself is of interest for both threshold queries and general 1-bit quantization methods (possibly having
different forms of side information).

Remark 1 We do not impose any (downlink) communication constraint from the learner to the
agent, as this cost is typically not expensive. While we framed the problem as having a single agent
for clarity, we are motivated by settings where the agent at each time instant could potentially
correspond to a different user/device. For this reason, and also motivated by settings where agents
are low-memory sensors, we assume that the agent is ‘memoryless’, meaning the 1-bit message
transmitted cannot be dependent on rewards observed from previous arm pulls. The preceding

1. The equality follows from the right-continuity of Fk.
2. We note that setting the lower limit to 0 is without loss of generality, and regarding the interval length λ, even a crude

upper bound is reasonable since the sample complexity will only have logarithmic dependence; see Theorem 14.
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assumptions were similarly adopted in some of the most related previous works (Hanna et al., 2022;
Mitra et al., 2023; Mayekar et al., 2023).

ϵ-relaxation. Fix a QMAB instance ν P E , and let k˚ P A be an arm with the largest q-quantile for
the instance ν. Instead of insisting on identifying an arm with the exact highest quantile, we relax the
task by only requiring the identified arm k̂ to be at most ϵ-suboptimal in the following sense:

k̂ P Aϵpνq :“
!

k P A
ˇ

ˇ

ˇ
Qkpqq ě Qk˚pqq ´ ϵ

)

. (2)

This allows us to limit the effort on distinguishing arms whose q-quantile rewards are very close
to each other; analogous relaxations are common in the BAI literature. This relaxation is also
motivated by the threshold query model mentioned above; specifically, we will see in Section 4.2
that achieving (2) under the threshold query model requires Ωplogpλ{ϵqq arm pulls even in the case
of deterministic two-arm bandits. Our goal is to design an algorithm to identify an arm satisfying (2)
with high probability while using as few arm pulls as possible.

2.2. Summary of Contributions.

With the problem setup now in place, we summarize our main contributions as follows:

• We provide an algorithm (Algorithm 1) for our setup, with the uplink communication satisfying
the 1-bit constraint. Unlike standard bandit algorithms that compute empirical statistics using
lossless observations of rewards, we use a noisy binary search subroutine for the learner to
estimate the quantile rewards (see Appendix A).

• We introduce fundamental arm gaps ∆k (Definition 10) that generalize those proposed in prior
work (see Remark 12). These gaps capture the difficulty of our problem setup in the sense that
the problems with positive gaps essentially coincide with the set of problems that are solvable;
see Theorem 21 and Remark 23 for precise statements.

• We provide an instance-dependent upper bound on the number of arm pulls to guarantee (2)
with high probability (Corollary 15), expressed in terms of λ, ϵ, and fundamental arm gap ∆k.
Our upper bound scales logarithmically with λ{ϵ, which contrasts with the existing upper
bound for mean-based bandits with 1-bit quantization scaling linearly with λ (Vial et al., 2020;
Hanna et al., 2022).

• We also derive a worst-case lower bound (Theorem 16) showing that our upper bound is tight
to within logarithmic factors under mild conditions, and can even be tight to within constant
factors when the target error probability δ decays to zero fast enough. We additionally provide
a lower bound (Theorem 17) showing that Ωplogpλ{ϵqq dependence is unavoidable under
threshold queries in arbitrary scaling regimes. The former lower bound is applicable even in
the absence of communication constraints, so we can conclude that restricting to 1-bit feedback
has a minimal impact on the sample complexity, at least in terms of scaling laws.
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3. Algorithm and Upper Bound

In this section, we introduce our main algorithm and provide its performance guarantee.

3.1. Description of the Algorithm

Our algorithm (Algorithm 1) is based on successive elimination, which is well-studied in the standard
BAI problem and has also been adapted for other variations. The algorithm pulls arms in rounds,
where each round consists of multiple pulls (namely, pulling all non-eliminated arms). For each arm k
that is active at round t,3 the algorithm computes a confidence interval rLCBtpkq,UCBtpkqs that
contains the q-quantile Qkpqq with high probability (see Lines 12 and 14). Based on the confidence
intervals, the algorithm eliminates arms that are suboptimal (see Line 15). When the algorithm
identifies that some arm satisfies (2) based on the confidence bounds, it terminates and returns that
arm (see Lines 8 and 17).

This high-level idea was also used in (Szorenyi et al., 2015; Nikolakakis et al., 2021) for the quantile
bandit problem with no communication constraint, but the procedures to obtain the confidence
intervals are very different. Their confidence intervals are computed using empirical quantiles of
the (direct) observed rewards, which our learner does not have the luxury of accessing. Instead, we
discretize the continuous interval r0, λs to a discrete interval r0, ϵ̃, 2ϵ̃, . . . , λs,4 and use a quantile
estimation algorithm QuantEst to help us find LCBtpkq and UCBtpkq from the discretized interval;
see Lines 1–2 and Lines 11–14 respectively. QuantEst can be implemented in our problem setup
while respecting the 1-bit uplink communication constraint: the learner sends threshold queries in
the form “Is rat,t ď γt?” to the agent and receives 1-bit comparison feedback 1prat,t ď γtq. Based
on the feedback received, the learner then uses a noisy binary search strategy to compute LCBtpkq

and UCBtpkq. The details of QuantEst are deferred to Algorithm 2 in Appendix A. For now, we
only need to treat QuantEst as a “black box” with the following guarantee: Given input CDF F ,
non-decreasing list x “ rx1, . . . , xns, quantile of interest τ P p0, 1q, approximation parameter ∆ ď

minpτ, 1 ´ τq and probability parameter δ, QuantEstpF,x, τ,∆, δq will use at most O
`

1
∆2 log

n
δ

˘

threshold queries and output an index i satisfying P prF pxiq, F pxi`1qs X pτ ´ ∆, τ ` ∆q “ ∅q ă δ.
Formally, the guarantees on its outputs lt,k and ut,k (see Lines 11 and 13) as well as the number of
arm pulls used are stated as follows.

Lemma 2 (Good event) Fix an instance ν P E , and suppose Algorithm 1 is run with input
pA, λ, ϵ, q, δq and parameter c ě 1. Let ∆ptq, At, lt,k, ut,k be as defined in Algorithm 1 for each

3. We slightly abuse notation and use t to index “rounds”, each consisting of several arm pulls; it will be clear from the
context whether t is indexing a round or indexing the number of pulls so far. We still use the total number of arm pulls
to characterize the performance of the algorithm.

4. We use an input parameter c ą 0 to control how finely the continuous interval is discretized; see Remark 3.
5. The distance between xi and xi`1 for 1 ď i ď n is exactly ϵ̃, which is approximately ϵ{pc ` 1q (up to the impact of

rounding in Line 1). We choose the spacings to be equal for ease of analysis.
6. We add ˘8 to the ends of the list x to handle the edge cases Fkp0q “ q and Fkpλq “ q. Without this, Lemma 2 may

not be satisfied: rFkp0q, Fkpϵ̃qs X
`

q ´ ∆ptq, q
˘

“ ∅ and rFkpλ ´ ϵ̃q, Fkpλqs X
`

q, q ` ∆ptq
˘

“ ∅.
7. We use the convention that the maximum of an empty set is ´8, so the while-loop termination condition is trivially

satisfied when |At| “ 1.
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Algorithm 1 Main Algorithm
Input: Arms A “ t1, . . . ,Ku, and λ, ϵ, q, δ, where λ ą ϵ and q, δ P p0, 1q

Parameter: c P Z`

1: Set n :“ rpc ` 1qλ{ϵs
2: Set ϵ̃ :“ λ{n 5

3: Initiate a list x “ rx0, x1, . . . , xn, xn`1, xn`2s “ r´8, 0, ϵ̃, 2ϵ̃, . . . , pn ´ 1qϵ̃, λ,8s 6

4: Initiate round index t “ 1
5: Initiate the set of active arms At “ A “ t1, . . . ,Ku

6: for arm k P At do
7: LCB0pkq “ x1 “ 0; UCB0pkq “ xn`1 “ λ

8: while LCBt´1pkq ă max
aPAtztku

UCBt´1paq ´ pc ` 1qϵ̃ for all arm k P At do 7

9: ∆ptq Ð 2´t`1 ¨ minpq, 1 ´ qq

10: for arm k P At do
11: Run QuantEst (Algorithm 2) with input

`

Fk,x, q ´ ∆ptq

2 , ∆
ptq

2 , δ¨∆ptq

2|At|

˘

to obtain an
index lt,k P t0, . . . , n ` 1u

12: LCBtpkq “ max
`

xlt,k ,LCBt´1pkq
˘

13: Run QuantEst (Algorithm 2) with input
`

Fk,x, q ` ∆ptq

2 , ∆
ptq

2 , δ¨∆ptq

2|At|

˘

to obtain an
index ut,k P t0, . . . , n ` 1u

14: UCBtpkq “ min
`

xut,k`1,UCBt´1pkq
˘

15: Update At`1 “
␣

k P At : UCBtpkq ą max
aPAt

LCBtpaq
(

16: Increment round index t Ð t ` 1

17: return any arm k̂ P At satisfying LCBtpk̂q ě max
aPAtztk̂u

UCBtpaq ´ pc ` 1qϵ̃

round index t ě 1 and each arm k P At. Define events Et,k,l and events Eu,k,l respectively by

Et,k,l :“
!

rFkpxlt,kq, Fkpxlt,k`1qs X
`

q ´ ∆ptq, q
˘

is non-empty
)

(3)

and
Et,k,u :“

!

rFkpxut,k
q, Fkpxut,k`1qs X

`

q, q ` ∆ptq
˘

is non-empty
)

. (4)

Then the Event E defined by
E :“

č

tě1

č

kPAt

pEt,k,l X Et,k,uq (5)

occurs with probability at least 1 ´ δ. Furthermore, for each t and k P At, the number of arm pulls
used by QuantEst to output lt,k and ut,k scales as

O

ˆ

1

p∆ptqq2
log

ˆ

2n|At|

δ∆ptq

˙˙

“ O

ˆ

1

p∆ptqq2
¨

ˆ

log

ˆ

1

δ

˙

` log

ˆ

1

∆ptq

˙

` log

ˆ

cλK

ϵ

˙˙˙

, (6)

where n “ rpc ` 1qλ{ϵs and ∆ptq “ 2´t`1 ¨ minpq, 1 ´ qq as stated in Lines 1 and 9 of Algorithm 1.

Proof See Appendix A for the details, in which we make use of a noisy binary search subroutine
from (Gretta and Price, 2024).
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Remark 3 We note that the parameter c ě 1 in the algorithm controls how finely the continuous
interval r0, λs is discretized; one can think of c “ 1 for simplicity to have roughly n “ 2λ{ϵ
discretization points spaced by roughly ϵ{2, but we will see in Section 5 that picking a larger value
of c can be beneficial.

3.2. Anytime Quantile Bounds

Under Event E as defined in Lemma 2, we obtain the following anytime bounds for the quantiles
when running Algorithm 1. These bounds will be used in the proofs of the correctness of Algorithm 1
(Theorem 8) and the upper bound on the number of arm pulls (Theorem 14).

Lemma 4 (Anytime quantile bounds) Fix an instance ν P E , and suppose Algorithm 1 is run with
input pA, λ, ϵ, q, δq and parameter c ě 1. Let ϵ̃ “ ϵ̃pλ, ϵ, cq, and ∆ptq, At, LCBtpkq, and UCBtpkq

be as defined in Algorithm 1 for each round index t ě 1 and each arm k P At. Under Event E as
defined in Lemma 2, we have the following bounds for the arms’ lower quantile functions Qkp¨q and
upper quantile functions Q`

k ppq :“ suptx | Fkpxq ď pu:

LCBτ pkq ď LCBtpkq ă Qkpqq ď Q`
k pqq ď UCBtpkq ď UCBτ pkq (7)

Q`
k

`

q ´ ∆ptq
˘

ď LCBtpkq ` ϵ̃ (8)

UCBtpkq ă Qk

`

q ` ∆ptq
˘

` ϵ̃ (9)

for all rounds t ą τ ě 0 and each arm k P At.

Proof This follows from applying properties of quantile functions to events Et,k,l and Et,k,u defined
in (3) and (4); see Appendix B for the details.

Remark 5 The property that LCBtpkq is non-decreasing in t, i.e., the first inequality of (7), may
appear to be enforced “artificially” by Line 12 of Algorithm 1. It will turn out that this property
is crucial in proving Lemma 32, which in turn is important for the analysis in upper bounding the
number of arm pulls – see Remark 34.

3.3. Correctness

In this section, we give the performance guarantee of Algorithm 1 using the anytime quantile bounds
(Lemma 4). We first formalize the notion of an algorithm returning an incorrect output with at most
a small error probability δ.

Definition 6 (pϵ, δq-reliable.) Consider an algorithm π for the QMAB problem with quantized or
unquantized rewards that takes pA, λ, ϵ, q, δq as input and operates on instances ν P E . Then, we

8
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say π is pϵ, δq-reliable if for each instance ν P E , it returns an incorrect output with probability at
most δ, i.e.,

for each ν P E , Pνrτ ă 8 X k̂ R Aϵpνqs ď δ, (10)

where τ “ τpνq ď 8 is the random stopping time of π on instance ν, arm k̂ is the output upon
termination, and Aϵpνq is as defined in (2).

Remark 7 This definition is related to the notion of being pϵ, δq-PAC (see (Even-Dar et al., 2002)).
It can be seen as a relaxation of pϵ, δq-PAC since an pϵ, δq-reliable algorithm is allowed to be
non-terminating on some instances – a high probability of correctness is needed only on instances it
terminates on. As we will see in Section 5, this relaxation is required when considering every possible
ν P E , as there are instances that are not “solvable” for any finite number of arm pulls.

Theorem 8 (Reliability of Algorithm 1) Fix an instance ν P E , and suppose Algorithm 1 is run
with input pA, λ, ϵ, q, δq and parameter c ě 1. Under Event E as defined in Lemma 2, if Algorithm 1
terminates, then it returns an arm k̂ satisfying (2).

Since Event E occurs with probability at least 1 ´ δ (Lemma 2), we conclude the following.

Corollary 9 Algorithm 1 is pϵ, δq-reliable.

The proof details of Theorem 8 are given in Appendix C, and we provide a sketch here. Combining
the guarantee from Line 17, inequalities (7), and the choice of ϵ̃ ď λ ¨ ϵ{ppc ` 1qλq “ ϵ{pc ` 1q

yields
Qk̂pqq ą LCBtpk̂q ě max

aPAtztk̂u

UCBtpaq ´ pc ` 1qϵ̃ ě max
aPAtztk̂u

Qapqq ´ ϵ. (11)

It remains to show that the optimal arm k˚ lies in At for all t, which we defer to Appendix C.

3.4. Upper Bound

In this section, we bound the number of arm pulls for a given instance ν P E . To characterize the
number of arm pulls, we define the gap of each arm as follows.

Definition 10 (Arm gaps) Fix an instance ν P E . Let ϵ̃ “ ϵ̃pλ, ϵ, cq and Aϵ “ Aϵpνq be as defined
in Algorithm 1 and (2) respectively. For each arm k P A, we define the gap ∆k “ ∆kpν, λ, ϵ, c, qq

as follows:

∆k :“

$

&

%

sup
!

∆ P r0,minpq, 1 ´ qqs : Qkpq ` ∆q ď max
aPA

Q`
a pq ´ ∆q ´ ϵ̃

)

if k R Aϵ

max
AϵĎSĎA

∆
pSq

k if k P Aϵ

, (12)

where Q`
k ppq is the upper quantile function defined in Lemma 4, and

∆
pSq

k :“ sup
!

∆ P

”

0,min
aRS

∆a

ı

: Q`
k pq ´ ∆q ě max

aPSztku
Qapq ` ∆q ´ cϵ̃

)

(13)
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for each subset S satisfying Aϵ Ď S Ď A. We use the convention that the minimum (resp. maximum)
of an empty set is 8 (resp. ´8).

Remark 11 (Intuition on arm gaps) We provide some intuition for the gap definitions:

• For an arm k R Aϵ, the gap ∆k captures how much worse k is than some other arm a. When
k is sufficiently pulled relative to 1{∆k, we can establish that UCBtpkq ď LCBtpaq, which
implies that k is suboptimal, and we can stop pulling it. The details and derivation are given
in Lemma 33 and its proof.

• To understand the gap ∆k “ max
AϵĎSĎA

∆
pSq

k for a satisfying arm k P Aϵ, we first consider

∆
pSq

k for a fixed subset S Ě Aϵ. This captures how much better arm k is than the “best” arm
a P S (up to ϵ). When arm k is sufficiently pulled relative to 1{∆

pSq

k , we can establish that the
termination condition is satisfied. Since S Ě Aϵ is arbitrary, we define ∆k based on the set S
giving the highest ∆pSq

k . The details and derivation are given in Lemma 35 and its proof.

• When some arm k˚ is the only satisfying arm (i.e., Aϵ “ tk˚u), we have

∆k˚ ě ∆
pAϵq

k˚ “ sup
!

∆ P

”

0,min
aRAϵ

∆a

ı

: Q`
k pq´∆q ě ´8

)

“ min
aRAϵ

∆a “ min
a‰k˚

∆a. (14)

This indicates that k˚ is pulled at most as many times as the smallest ∆a value would dictate,
and possibly fewer (if the while-loop terminates before |At| “ 1).

Remark 12 (Generalization and improvement over existing arm gap) Our gap definitions were
developed with the view of ensuring that we can solve essentially all solvable instances, and we will
establish results of this type in Section 5. Achieving this goal required several subtle choices in our
gap definition, including the parameter c and the optimization over S. We generalize existing gaps
for the QMAB problem in the sense that those are recovered by considering c Ñ 8, S “ A, and
using only lower quantile functions. In Appendix D, we provide more details about these choices and
give an instance where the gap is positive under our definition but is zero using existing definitions.

Remark 13 (Further improvement) Due to the assumption that the q-quantile of each arm is in
r0, λs, we can improve our gap definition by replacing the terms Q`

p¨q
pq ´ ∆q and Qp¨qpq ` ∆q with

max
␣

0, Q`

p¨q
pq´∆q

(

and min
␣

λ,Qp¨qpq`∆q
(

respectively. We adopt Definition 10 to avoid further
complicating the gap definition and subsequent analysis, but we will provide detailed discussion of
this modified gap in Appendix H.

Having defined the arm gaps, we now state an upper bound on the total number of arm pulls by
Algorithm 1.

Theorem 14 (Upper bound) Fix an instance ν P E , and suppose Algorithm 1 is run with input
pA, λ, ϵ, q, δq and parameter c ě 1. Let Aϵpνq be as defined in (2) and let the gap ∆k “ ∆kpν, λ, ϵ, c, qq

10
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be as defined in Definition 10 for each arm k P A. Under Event E as defined in Lemma 2, the total
number of arm pulls is upper bounded by

O

˜˜

ÿ

kPA

1

max
`

∆k,∆
˘2 ¨

˜

log

ˆ

1

δ

˙

` log

˜

1

max
`

∆k,∆
˘

¸

` log

ˆ

cλK

ϵ

˙

¸¸¸

, (15)

where ∆ “ ∆pν, λ, ϵ, c, qq “ max
aPAϵpνq

∆a.

Combining Lemma 2, Theorem 8, and Theorem 14, we obtain the high-probability correctness for
instances with positive gap.

Corollary 15 Fix an instance ν P E and suppose ∆ “ ∆pν, λ, ϵ, c, qq as defined in Theorem 14 is
positive. Then, with probability at least 1 ´ δ, Algorithm 1 returns an arm k̂ satisfying (2) and uses a
total number of arm pulls satisfying (15).

We will provide near-matching lower bounds in the next section, and an impossibility result for the
instances with zero gap in Section 5. The proof details of Theorem 14 are given in Appendix E, and
we provide a sketch here.

Proof [Proof outline for Theorem 14] Under Event E, the while-loop of Algorithm 1 terminates
when the round index t is large enough to satisfy ∆ptq ď 1

2∆, which happens when t “ log2p1{∆q `

Θp1q since ∆ptq “ 2´t`1 9minpq, 1 ´ qq. Summing through the number of arm pulls rO
` `

∆ptq
˘´2 ˘

given in (6) for t “ 1, . . . , log2p1{∆q ` Θp1q yields the upper bound rO
`

∆´2
˘

for each arm
k P A. However, it is also possible that some arms are eliminated before the while-loop terminates.
Specifically, each non-satisfying arm k R Aϵpνq is eliminated when the index t satisfies ∆ptq ď 1

2∆k,
which yields the upper bound rO

`

∆´2
k

˘

. Taking the minimum between these two gives (15).

4. Lower Bounds

In this section, we provide two lower bounds on the number of arm pulls. In Section 4.1, we provide
a near-matching worst-case lower bound Ω

`
ř

kPA∆´2
k logpδ´1q

˘

for instances with positive gap
and ϵ is small enough such that Aϵpνq “ tk˚u. This lower bounds holds even in the absence of
communication constraints. In Section 4.2, we address the logpλ{ϵq dependence in the upper bound
by showing that Ωplogpλ{ϵqq arm pulls are needed for any pϵ, δq-reliable algorithm when 1-bit
threshold queries are used; in particular, targeting ϵ “ 0 is infeasible without further assumptions.

4.1. Lower Bound for the Unquantized Variant

We present a worst-case lower bound on the expected number of arm pulls for the setup with no
communication constraint. The lower bound is based on a bad instance adapted from (Nikolakakis

11
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et al., 2021, Theorem 4), which is for the quantile bandit problem of identifying the unique optimal
arm k˚. Specifically, for instances with satisfying arm set Aϵpνq “ tk˚u, the only correct output in
both problem formulations is k˚. By choosing ϵ to be sufficiently small, the hard instance in their
problem formulation (which does not allow an ϵ relaxation) can be adapted to be a hard instance in
our problem formulation.

Theorem 16 (Worst-case lower bound) Fix q, δ P p0, 1q and λ ě 1. There exists a quantile bandit
instance ν P E with a unique best arm k˚ such that for any ϵ ą 0 satisfying

ϵ ď
1

2

`

Qk˚pqq ´ max
k‰k˚

Qkpqq
˘

(16)

and any pϵ, δq-reliable algorithm, the number of arm pulls τ satisfies

Erτ s ě Ω

ˆ K
ÿ

k“1

1

∆2
k

log

ˆ

1

δ

˙˙

, (17)

where ∆kpν, ϵ, qq :“ lim
cÑ8

∆kpν, λ, ϵ, c, qq is the gap defined in Definition 10 with c Ñ 8 (see (43)
for the explicit form).

Proof See Appendix F.1.

The only difference in the upper bound (15) and lower bound is that the lower bound only contains
the log factor logpδ´1q rather than the sum of three log factors, and so our upper bound matches
the dependence on ∆k of the lower bound to within a logarithmic factor. We note that if δ ď

maxp∆k,∆qΘp1q and δ ď
`

ϵ
cλK

˘Θp1q then the sum of three log terms in (15) simplifies to O
`

logpδ´1q
˘

,
so in this “low error probability” regime we in fact get matching scaling laws in the upper and lower
bound.

4.2. Ωplogpλ{ϵqq Dependence Under Threshold Query Model

In this section, we show that Ωplogpλ{ϵqq arm pulls is needed for any pϵ, δq-reliable algorithm in the
case that only threshold queries are allowed. That is, the side information sent by the learner to the
agent is always some threshold query of the form “Is rat,t ď γt?”, and the learner receives the 1-bit
comparison feedback 1prat,t ď γtq. This is a common 1-bit quantization method in practice and is
also the one used in Algorithm 1, though it would also be of interest to determine whether using
other 1-bit quantization methods can help.

Theorem 17 (Ωplogpλ{ϵqq dependence) Fix λ ě ϵ ą 0, and q P p0, 1q, and δ P p0, 0.5q. Under
the threshold query model, there exists a two-arm quantile bandit instance ν with deterministic
rewards such that any pϵ, δq-reliable algorithm requires Ωplogpλ{ϵqq arm pulls.

12
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Proof The idea is that if the two deterministic arms in r0, λs are separated by 2ϵ, then a binary search
over Θpλ{ϵq possible choices is needed just to locate them. See Appendix F.2 for the details.

While our upper and lower bounds match to within at most logarithmic factors under mild conditions,
we leave it open as to (i) whether the dependence on ∆k can be improved in general (e.g., to
doubly-logarithmic as in the ones in unquantized quantile BAI (Nikolakakis et al., 2021; Howard and
Ramdas, 2022), and (ii) whether there exist regimes in which the joint dependence on the gaps and
pλ, ϵq can be improved.

5. Solvable Instances

In Sections 3.4 and 4.1, we provided nearly matching upper and lower bounds for instances with
positive gap. In this section, we study the “(un)solvabality” of bandit instances with zero gap, and
show that essentially all bandit instances that are “solvable” have positive gap, as long as parameter c
is large enough (see Remark 23). To formalize this idea, we define the following class of bandit
instances.

Definition 18 (Solvable instances) Let A, ϵ, and q be fixed. We say that an instance ν P E is
ϵ-solvable if for each δ P p0, 1q, there exists an algorithm that is pϵ, δq-reliable and it holds under
instance ν that8

Pνrτ ă 8 X k̂ P Aϵs ě 1 ´ δ. (18)

If no such algorithm exists, we say that ν is ϵ-unsolvable.

Remark 19 Fix 0 ă ϵ1 ď ϵ2. If an instance ν is ϵ1-solvable, then it is ϵ2-solvable. This follows
directly from Aϵ1pνq Ď Aϵ2pνq.

From Corollary 15, we deduce that any instance with a positive gap is solvable.

Corollary 20 (Positive gap is solvable) Let A, λ, ϵ, q, and c be fixed. Suppose an instance ν satisfies
∆ ą 0, where ∆ “ ∆pν, λ, ϵ, c, qq is as defined in Theorem 14. Then ν is ϵ-solvable.

The main result of this section is that the reverse inclusion nearly holds, in the following sense.

Theorem 21 (Zero gap is unsolvable) Let λ, ϵ, c, and q be fixed, and let ϵ̃ “ ϵ̃pλ, ϵ, cq be as defined
in Algorithm 1. Suppose an instance ν P E satisfies ∆pν, λ, ϵ, c, qq “ 0. If we assume for ν that
there exists some sufficiently small η0 ą 0 such that 0 ď Q`

k pq ´ η0q ď Qkpq ` η0q ď λ, then ν is
cϵ̃-unsolvable.

8. We could require that Pνrτ ă 8s “ 1 in this case and the subsequent analysis and conclusions would be essentially
unchanged. Recall also that Pνr¨s denotes probability under instance ν.
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Proof See Appendix G.

Remark 22 (Removing the additional assumption) The additional assumption involving η0 is
mild; it is trivially satisfied by instances with all reward distributions supported on r0, λs, and also
holds significantly more generally since η0 can be arbitrarily small. Moreover, in Appendix H.3, we
show that this assumption is unnecessary if we use the modified gap (see Remark 13) instead of ∆.

Remark 23 For each θ P p0, 1q, picking c “ r2θ{p1 ´ θqs yields

ν is θϵ-solvable ùñ ν is cϵ̃-solvable ùñ ∆pν, λ, ϵ, c, qq ą 0 ùñ ν is ϵ-solvable, (19)

where the last two implications follow from Theorem 21 and Corollary 20, and the first implication
follows from Remark 19 and the following inequality:

cϵ̃ “
cλ

rpc ` 1qλ{ϵs
ě

cλ

pc ` 2qλ{ϵ
“

ˆ

1 ´
2

c ` 2

˙

ϵ ě

˜

1 ´
2

2θ`2´2θ
1´θ

¸

ϵ “ θϵ. (20)

Since θ can be arbitrarily close to 1, we have ∆pν, λ, ϵ, c, qq ą 0 for essentially all ϵ-solvable
instances by picking a sufficiently large c.

The proof of Theorem 21 will turn out to directly extend to a “limiting” version in which we replace
cϵ̃ by lim

cÑ8
cϵ̃ “ ϵ and ∆pν, λ, ϵ, c, qq by lim

cÑ8
∆pν, λ, ϵ, c, qq, giving the following corollary.

Corollary 24 Let λ, ϵ, and q be fixed. Let ∆kpν, ϵ, qq be the gap defined in Definition 10 with c Ñ 8

(see (43) for the explicit form). Suppose an instance ν P E satisfies ∆pν, ϵ, qq “ max
kPAϵpνq

∆kpν, ϵ, qq “

0. If we assume for ν that there exists some sufficiently small η0 ą 0 such that 0 ď Q`
k pq ´ η0q ď

Qkpq ` η0q ď λ, then ν is ϵ-unsolvable.

Proof See Appendix G.
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exploration algorithm for multi-armed bandits. In 27th Annual Conference on Learning Theory
(COLT), pages 423–439, 2014.

Zohar Karnin, Tomer Koren, and Oren Somekh. Almost optimal exploration in multi-armed bandits.
In Proceedings of the 30th International Conference on Machine Learning (ICML), volume 28,
pages 1238–1246, 2013.

Richard M Karp and Robert Kleinberg. Noisy binary search and its applications. In Proceedings of
the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 881–890,
2007.

Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On the complexity of best-arm identification
in multi-armed bandit models. Journal of Machine Learning Research, 17(1):1–42, 2016.

Robert Kleinberg and Tom Leighton. The value of knowing a demand curve: Bounds on regret for
online posted-price auctions. In Proceedings of the 44th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 594–605. IEEE, 2003.
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Appendix A. Quantile Estimation Subroutine

A.1. Noisy Binary Search

We first momentarily depart from MAB and discuss the monotonic noisy binary search (MNBS)
problem of (Karp and Kleinberg, 2007); see also the end of Appendix A.2 for a summary of some
related work on noisy binary search. The original problem formulation was stated in terms of finding
a special coin i among n coins, but this can be restated as follows: We have a random variable R
with an unknown CDF F and a list of n points x1 ď ¨ ¨ ¨ ď xn such that Qpτq P rx1, xns, and the
goal is to find an index i satisfying

rF pxiq, F pxi`1qs X pτ ´ ∆, τ ` ∆q ‰ ∅ (21)

via adaptive queries of the form 1pR ď xjq. Note that each query 1pR ď xjq is an independent
Bernoulli random variable with parameter F pxjq. We will make use of the following main result
from (Gretta and Price, 2024, Theorem 1.1).

Proposition 25 (Noisy binary search guarantee) For any δ P p0, 1q and relaxation parameter
∆ ď minpτ, 1 ´ τq, the MNBS algorithm in (Gretta and Price, 2024) output an index i after at most
O
`

1
∆2 log

n
δ

˘

queries9 and i satisfies (21) with probability at least 1 ´ δ.

The bulk of the MNBS algorithm in (Gretta and Price, 2024) is based on Bayesian multiplicative
weight updates: Start with a uniform prior over which of the n intervals crosses quantile τ , make
the query at xj whose F pxjq is nearest to τ under current distribution, update the posterior by
multiplying intervals on one side of the query by 1` c∆ and the other side by 1´ c∆ for some fixed
constant c, and repeat. Other MNBS algorithms such as those in (Karp and Kleinberg, 2007), or even
a naive binary search with repetitions (see (Karp and Kleinberg, 2007, §1.2)), could also be used to
solve the MNBS problem, but we choose (Gretta and Price, 2024) since it has the best known scaling
of the query complexity. Further comparisons of the relevant theoretical guarantees and practical
performance can be found in (Gretta and Price, 2024).

A.2. Quantile Estimation with 1-bit Feedback

The MNBS algorithm can be implemented under our 1-bit communication-constrained setup.
Specifically, the learner decides which arm k to query as well as the point xj to query, and then sends
a threshold query “Is Rk ď xj?” as side information to the agent, where Rk is the random reward
(variable) of the arm k with CDF Fk. The agent will then pull arm k and reply with a 1-bit binary
feedback corresponding to the observation. Note that while the O

`

1
∆2 log

n
δ

˘

queries for a given
arm are done in an adaptive manner, the queries themselves can be requested at different time steps
without any requirement of agent memory. A high-level description of the implementation for a fixed
arm is given in Algorithm 2. This gives us the following guarantee, which is a simple consequence of
Proposition 25.

9. The expression for the number of iterations in (Gretta and Price, 2024) is more complicated because it has some terms
with explicit constant factors, but in Op¨q notation it simplifies to O

`

1
∆2 log n

δ

˘

. We do not specify the exact number
of loops in Algorithm 2, as doing so is somewhat cumbersome and the focus of our work is on the scaling laws.
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Algorithm 2 Communication-constrained quantile estimation subroutine (QuantEst in Algorithm 1)
Input: Arm with reward R distributed according to CDF F , a list x of n points x1 ď ¨ ¨ ¨ ď xn,
quantile τ P p0, 1q satisfying Qpτq P rx1, xns, approximation parameter ∆ ď minpτ, 1 ´ τq, error
probability δ P p0, 1q

Output Index i P t1, . . . , n ´ 1u

1: for t “ 1 to tmax (with9 tmax “ O
`

1
∆2 log

n
δ

˘

) do
2: At Learner:
3: Pick index j according to Bayesian weight update as in (Gretta and Price, 2024)
4: Send threshold query “Is R ď xj?” to the agent
5: At Agent:
6: Pull arm and observe reward r
7: Send 1-bit feedback 1pr ď xjq to the learner

8: Return index i according to (Gretta and Price, 2024)

Corollary 26 (QuantEst guarantee) Let pF,x, τ,∆, δq be a valid input of Algorithm 2, and let n
be the number of points in x. Then the algorithm outputs an index i after at most O

`

1
∆2 log

n
δ

˘

queries and i satisfies P prF pxiq, F pxi`1qs X pτ ´ ∆, τ ` ∆q “ ∅q ă δ.

Related work on noisy binary search and quantile estimation. We briefly recap the original
MNBS problem in (Karp and Kleinberg, 2007; Gretta and Price, 2024): There are n coins whose
unknown probabilities pj P r0, 1s are sorted in nondecreasing order, where flipping coin j results
in head with probability pj . The goal is to identify a coin i such that the interval rpi, pi`1s has a
nonempty intersection with pτ ´ ∆, τ ` ∆q. This model subsumes noisy binary search with a fixed
noise level (Burnashev and Zigangirov, 1974; Ben-Or and Hassidim, 2008; Dereniowski et al., 2021;
Gu and Xu, 2023) (where pj “ 1

2 ´∆ for j ď i and pj “ 1
2 `∆ otherwise) as well as regular binary

search (where pj P t0, 1u). As we discussed in Appendix A.1, this problem can be reformulated into
the problem of estimating (the quantile of) a distribution using threshold/comparison queries, where
the noise in the feedback is stochastic. This quantile estimation problem has been generalized to a
non-stochastic noise setting (Meister and Nietert, 2021; Okoroafor et al., 2023), and was also studied
in the context of online dynamic pricing and auctions (Kleinberg and Leighton, 2003; Paes Leme
et al., 2023b,a). In particular, (Paes Leme et al., 2023b, Algorithm 1) is similar to Algorithm 2
(or equivalently subroutine QuantEst used on Lines 11 and 13 of Algorithm 1), in the sense that
both use noisy binary search to identify the quantile of a single distribution. However, they use the
naive binary search with repetitions to form confidence intervals containing the quantile, which has
a suboptimal complexity O

`

1
∆2 log n log logn

δ

˘

; see (Karp and Kleinberg, 2007, §1.2) for details.
Overall, while ideas from the existing literature on quantile estimation of a single distribution with
threshold queries may provide useful context, they do not readily translate into Algorithm 1 or the
analysis that led to our main contributions.
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A.3. Proof of Lemma 2 (Bounding the Probability of Event E)

Proof [Proof of Theorem 2] For a fixed t ě 1 and a fixed k P At, we have

P
`

Et,k,l

˘

ď
δ ¨ ∆ptq

2|At|
and P

`

Et,k,u

˘

ď
δ ¨ ∆ptq

2|At|
(22)

by the guarantee of the QuantEst (see Corollary 26). Applying the union bound, we obtain

P
`

E
˘

ď
ÿ

tě1

ÿ

kPAt

δ ¨ ∆ptq

|At|
ď

ÿ

tě1

|At| ¨
δ ¨ ∆ptq

|At|
“ δ

ÿ

tě1

∆ptq “ δ
ÿ

tě1

2´t ď δ (23)

as desired. The number of arm pulls (6) follows immediately from the guarantee of QuantEst from
Corollary 26, |At| ď |A| “ K, and the number of points n “ Θpcλ{ϵq.

Appendix B. Proof of Lemma 4 (Anytime Quantile Bounds)

We first present a useful auxiliary lemma.

Lemma 27 Under the setup of Lemma 4 (including Event E from Lemma 2 holding), we have the
following bounds:

xlt,k ă Qkpqq (24)

Q`
k

`

q ´ ∆ptq
˘

ď xlt,k`1 (25)

xut,k
ă Qk

`

q ` ∆ptq
˘

(26)

Q`
k pqq ď xut,k`1 (27)

for each round t ě 1 and arm k P At.

Proof We will prove only (24) and (25) for an arbitrary t ě 1 and k P At in detail, as (26) and (27)
can be proved similarly. Observe that, under event Et,k,l Ă E (see (3)), we have

Fkpxlt,kq ă q and q ´ ∆ptq ă Fkpxlt,k`1q (28)

respectively, as otherwise the interval rFkpxlt,kq, Fkpxlt,k`1qs would fall on the right and the left,
respectively, of the interval

`

q ´ ∆ptq, q
˘

. A similar argument through the event Et,k,u Ă E (see (4))
yields

Fkpxut,k
q ă q ` ∆ptq and q ă Fkpxut,k`1q. (29)

We now prove (24) using (28); the inequality (26) can be proved similarly through (29). If xlt,k “ ´8,
then (24) holds trivially. Therefore, we proceed on the assumption that xlt,k P R. Then, using standard
properties of quantile functions (see, e.g., (Dufour, 1995, 4.3 Theorem)), we have xlt,k ă Qkpqq as
desired.
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We now prove (25) using (28); the inequality (27) can be proved similarly through (29). If xlt,k`1 “

8, then (25) holds trivially. Therefore, we proceed on the assumption that xlt,k`1 P R. In this case,
it is a finite upper bound on the values in the set tz P R : Fkpzq ď q ´ ∆ptqu, and so this set has a
finite supremum. It follows that

xlt,k`1 ě suptz P R : Fkpzq ď q ´ ∆ptqu “ Q`
k

`

q ´ ∆ptq
˘

(30)

as desired.

Proof [Proof of Lemma 4] We break down the bounds into inequalities as follows:

(i) LCBτ pkq ď LCBtpkq

(ii) LCBtpkq ă Qkpqq

(iii) Qkpqq ď UCBtpkq

(iv) UCBtpkq ď UCBτ pkq

(v) Q`
k

`

q ´ ∆ptq
˘

ď LCBtpkq ` ϵ̃

(vi) UCBtpkq ´ ϵ̃ ă Qk

`

q ` ∆ptq
˘

We will prove only inequalities (i), (ii), and (iv) for an arbitrary t ą τ ě 0 and k P At in detail, as
all the other inequalities can be proved similarly.

Inequality (i) follows immediately from Line 12 of Algorithm 1 and induction. Likewise, we can
show (iv) using Line 14 of Algorithm 1.

We now show inequality (ii) by induction on t; inequality (iii) can be proved similarly. For the base
case t “ 1, we have

LCB1pkq “ max
`

xlt,k ,LCB0pkq
˘

“ max
`

xlt,k , 0
˘

“ xlt,k ă Qkpqq, (31)

where the last inequality follows from (24). For the inductive step, suppose that LCBtpkq ă Qkpqq

for a fixed t ě 1. Since xlt,k ă Qkpqq, we have

LCBt`1pkq “ max
`

xlt,k ,LCBtpkq
˘

ă Qkpqq (32)

as desired.

We now show inequality (v) using (25); inequality (vi) can be shown using a similar argument
through (26). We consider three cases for the index lt,k:

• (lt,k “ 0) In this case, we have xlt,k`1 “ x1 “ 0 “ LCB0pkq, and so

Q`
k

`

q ´ ∆ptq
˘

ď xlt,k`1 “ LCB0pkq ď LCBtpkq ă LCBtpkq ` ϵ̃, (33)

where the first inequality follows from (25) and the second inequality follows from inequality (i).

• (1 ď lt,k ď n) In this case, we have

Q`
k

`

q ´ ∆ptq
˘

ď xlt,k`1 “ xlt,k ` ϵ̃ ď LCBtpkq ` ϵ̃, (34)

where the first inequality follows from (25), the equality follows from distance between
consecutive points set in Line 3 of Algorithm 1, and the last inequality follows from Line 12
of Algorithm 1.
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• (lt,k “ n ` 1) In this case, we have xlt,k “ xn`1 “ λ ě Qkpqq ě Q`
k

`

q ´ ∆ptq
˘

, and so

Q`
k

`

q ´ ∆ptq
˘

ď xlt,k ď LCBtpkq ă LCBtpkq ` ϵ̃, (35)

where the second inequality follows from Line 12 of Algorithm 1.

Combining all three cases, we have Q`
k

`

q ´ ∆ptq
˘

ď LCBtpkq ` ϵ̃ as desired.

Appendix C. Proof of Theorem 8 (Reliability of Algorithm 1)

Proof [Proof of Theorem 8] We first show by induction that an optimal arm k˚ of instance ν (i.e.,
one having the highest q-quantile) will always be active, i.e., k˚ P At for each round t ě 1. For
the base case t “ 1, we have k˚ P t1, . . . ,Ku “ A1 trivially. We now show the inductive step: if
k˚ P At holds, then k˚ P At`1. For all arms a P At, we have

UCBtpk
˚q ě Qk˚pqq ě Qapqq ą LCBtpaq, (36)

where the second inequality follows from the optimality of arm k˚, while the other two inequalities
follow from the anytime quantile bounds (Lemma 4). It follows that UCBtpk

˚q ą max
aPAt

LCBtpaq,

and so k˚ P At`1 by definition (see Line 15 of Algorithm 1).

We now argue that if Algorithm 1 terminates, then the returned arm k̂ satisfies (2). If Algorithm 1
terminates, then the while-loop (Lines 8–16) must have terminated and therefore the returned arm k̂
satisfies the condition

LCBtpk̂q ě max
aPAtztk̂u

UCBtpaq ´ pc ` 1qϵ̃ ě max
aPAtztk̂u

UCBtpaq ´ ϵ, (37)

where the second inequality follows from Lines 1–2 of Algorithm 1: ϵ̃ ď λ ¨ ϵ{ppc`1qλq “ ϵ{pc`1q.
If k̂ “ k˚, then the returned arm satisfies (2) trivially. Therefore, we assume that k̂ ‰ k˚ for the rest
of the proof. In this case, we have

Qk̂pqq ą LCBtpk̂q ě max
aPAtztk̂u

UCBtpaq ´ ϵ ě UCBtpk
˚q ´ ϵ ě max

aPAtztk̂u

Qapqq ´ ϵ. (38)

where the first and the last inequalities follow from the anytime quantile bounds (see Lemma 4),
while the second inequality follows from the condition (37) and the third inequality follows from
k˚ P At (see above) and the assumption that k̂ ‰ k˚.

Appendix D. Details on Remark 12 (Comparison to Existing Gap Definitions)

We first recall some existing arm gap definitions for the exact quantile bandit problem (i.e., ϵ “ 0) in
the setting of unquantized rewards. In (Nikolakakis et al., 2021, Definition 2), the authors defined the
gap ∆NKSS

k for each suboptimal arm k ‰ k˚ by

∆NKSS
k :“ supt∆ P r0,minpq, 1 ´ qqs : Qkpq ` ∆q ď Qk˚pq ´ ∆qu. (39)

23



LAU SCARLETT

While the authors did not define the arm gap for k˚, we can take it to be the same as the gap of the
“best” suboptimal arm, as their algorithm terminates only when all suboptimal arms are eliminated.
On the other hand, the arm gap defined in (Howard and Ramdas, 2022, (Eq. (27)) is given by

∆HR
k :“

$

&

%

supt∆ P r0,minpq, 1 ´ qqs : Qkpq ` ∆q ď max
aPA

Qapq ´ ∆qu if k ‰ k˚

supt∆ P r0, qs : Qkpq ´ ∆q ě max
a‰k

Qa

`

q ` ∆HR
a

˘

u if k “ k˚
. (40)

Similar to our arm gap definition (Definition 10), the gaps ∆HR
k for suboptimal arms k ‰ k˚ are not

defined based on the quantile function of k˚. It follows that ∆HR
a ě ∆NKSS

a for all arms a P A.

We now study the effect of taking c Ñ 8 in our gap, which is given below in (43). From (43), it is
straightforward to verify that (40) is recovered from our gap (Definition 10) by using only lower
quantile functions and taking S “ A and c Ñ 8.

Effect of parameter c in the gap definition. For any 1 ď c1 ď c2, let

ϵ̃1 “
λ

rpc1 ` 1qλ{ϵs
and ϵ̃2 “

λ

rpc2 ` 1qλ{ϵs
(41)

be as defined using Lines 1–2 of in Algorithm 1. It can readily be verified that

ϵ̃1 ě ϵ̃2 and c1ϵ̃1 ď c2ϵ̃2 ď ϵ and ∆kpν, λ, ϵ, c1, qq ď ∆kpν, λ, ϵ, c2, qq. (42)

Since lim
cÑ8

ϵ̃ “ 0 and lim
cÑ8

cϵ̃ “ ϵ, the gap as defined in Definition 10 converges to a quantity

∆k :“ ∆kpν, ϵ, qq “ lim
cÑ8

∆kpν, λ, ϵ, c, qq, given by

∆k “

$

’

’

&

’

’

%

sup

"

∆ P r0,minpq, 1 ´ qqs : Qkpq ` ∆q ď max
aPA

Q`
a pq ´ ∆q

*

if k R Aϵ

max
AϵĎS

"

sup
!

∆ P

”

0,min
aRS

∆a

ı

: Q`
k pq ´ ∆q ě max

aPSztku
Qapq ` ∆q ´ ϵ

)

*

if k P Aϵ

.

(43)
Note that ∆k is independent of c and λ.

Remark 28 (Use of upper quantile function) To our knowledge, we are the first to incorporate
upper quantile functions in the gap definition. This may lead to a potentially larger arm gap as
compared to defining using only lower quantile functions (e.g., changing Q`

a p¨q and Q`
k p¨q in (12)

and (13) to Qap¨q and Qkp¨q respectively), and hence a tighter upper bound.

Remark 29 (Dependency on Qk˚pq ´ ∆q) Existing papers using an elimination-based algorithm
have their arm gaps defined according to Qk˚pq ´ ∆q; see (39) for an example. In contrast, we
remove this dependency and define using max

aPA
Q`

a pq ´ ∆q, which may lead to a tighter upper bound.

The resulting analysis required is more challenging – see the discussion in Remark 34.

Since our gap definitions generalizes existing gap definitions, we expect that their gaps being positive
on an instance ν would imply our gap being positive on ν. That is, their gaps being positive is a
sufficient condition for Algorithm 1 to return a satisfying arm with high-probability (see Corollary 15).
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Proposition 30 Fix an instance ν P E that has a unique arm k˚ with the highest q-quantile.
Let ∆NKSS

a and ∆HR
a be as defined in (39) and (40) for each a P A. If min

aPA

␣

∆NKSS
a

(

ą 0 or

min
aPA

␣

∆HR
a

(

ą 0, then ∆ “ ∆pν, λ, ϵ, c, qq as defined in Theorem 14 is also positive.

Proof It suffices to consider the case min
aPA

␣

∆HR
a

(

ą 0, since ∆HR
a ě ∆NKSS

a for all arms a P A.

Let η “ 1
2 min

aPA
∆HR

a ą 0. Then we have

Q`
k˚pq ´ ηq ě Qk˚pq ´ ηq ě max

a‰k
Qa

`

q ` ∆HR
a

˘

ě max
aPAztk˚u

Qapq ` ηq ´ cϵ̃, (44)

where the second inequality follows from (40) and ϵ̃ “ ϵ̃pλ, ϵ, cq is as defined in Algorithm 1.
Combining (44) and (13) of our gap definition, we have

max
aPAϵ

∆a ě ∆k˚ “ max
AϵĎSĎA

∆
pSq

k˚ ě ∆
pAq

k˚ ě η ą 0 (45)

as desired.

We now show that the converse is not true in general. In other words, there exists an instance ν P E
where no algorithm can distinguish which arm has a higher quantile using a finite number of arm pulls
(see (Nikolakakis et al., 2021, Theorem 2)), but Algorithm 1 is capable of returning an ϵ-satisfying
arm with high probability.

Proposition 31 Fix λ ě ϵ ą 0 and δ P p0, 0.5q. There exists a two-arm bandit instance ν P E that
has a unique arm k˚ with the highest median such that ∆ “ ∆pν, λ, ϵ, c, qq as defined in Theorem 14
is positive for c ě 2, but min

aPA

␣

∆NKSS
a

(

“ min
aPA

␣

∆HR
a

(

“ 0.

Proof Consider two arms A “ t1, 2u with the following CDFs:

F1pxq “

$

’

&

’

%

0 for x ă 0
x

2m1
for 0 ď x ă 2m1

1 for x ě 2m1

and F2pxq “

$

’

&

’

%

0 for x ă m2

0.5 for m2 ď x ă 2m1

1 for x ě 2m1

, (46)

where m2 P pm1 ´ ϵ{2,m1q such that both arms are ϵ-optimal, with arm 1 being the unique best
arm. Note that for each η ą 0, we have

Q2p0.5 ` ηq “ 2m1 ą m1 “ Q1p0.5q ě Q1p0.5 ´ ηq, (47)

and so ∆NKSS
2 “ ∆HR

2 “ 0. However, under our gap definition (Definition 10) with Aϵpνq “

t1, 2u “ A and any c ě 2, we have

∆ ě ∆2 ě ∆
pt1,2uq

2 “ sup
␣

∆ P r0, 0.5s : Q`
2 p0.5 ´ ∆q ě Q1p0.5 ` ∆q ´ cϵ̃

(

(48)

ě sup
!

∆ P r0, 0.5s : Q`
2 p0.5 ´ ∆q ě Q1p0.5 ` ∆q ´

ϵ

2

)

(49)

“ sup
!

∆ P r0, 0.5s : m2 ě p1 ` 2∆qm1 ´
ϵ

2

)

(50)

“ min

"

0.5,
m2 ´ pm1 ´ ϵ{2q

2m1

*

ą 0, (51)
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where the second inequality follows from the calculation in Remark 23, and the last inequality
follows from the assumptions that m1 ą 0 and m2 ą m1 ´ ϵ{2.

Appendix E. Proof of Theorem 14 (Upper Bound of Algorithm 1)

We break down the upper bound on the number of arm pulls used by Algorithm 1 as follows. We
bound the number of rounds required for a non-satisfying arm k R Aϵpνq to be eliminated in
Lemma 33. Then in Lemma 35, we bound the number of rounds each non-eliminated arm has gone
through when the termination condition of the while-loop is triggered. Combining these lemmas with
the number of arm pulls used by QuantEst for each round index t ě 1 and active arm k P At as
stated in (6) gives us an upper bound on the total number of arm pulls.

We first present a useful lemma that will be used in the proofs of the two subsequent lemmas.

Lemma 32 (maxLCB is non-decreasing) Under Event E as defined in Lemma 2, we have

max
aPAt

LCBtpaq ě max
aPAτ

LCBτ paq. (52)

for all rounds t ą τ ě 1.

Proof Let round index τ ě 1 be arbitrary and let k P argmax
aPAτ

LCBτ paq. We have k P Aτ`1 since

UCBτ pkq ą LCBτ pkq “ max
aPAτ

LCBτ paq by (7) of the anytime quantile bounds. It then follows that

max
aPAτ`1

LCBτ`1paq ě LCBτ`1pkq ě LCBτ pkq “ max
aPAτ

LCBτ pjq, (53)

where the second inequality follows from (7) of the anytime quantile bounds. Applying the argument
repeatedly yields the claim for all t ą τ.

Lemma 33 (Elimination of non-satisfying arms) Fix an instance ν P E , and suppose Algorithm 1
is run with input pA, λ, ϵ, q, δq and parameter c ě 1. Let Aϵ “ Aϵpνq be as defined in (2) and let
the gap ∆k “ ∆kpν, λ, ϵ, c, qq be as defined in Definition 10 for each arm k P A. Consider an arm
k R Aϵ. Under Event E as defined in Lemma 2, when the round index t of Algorithm 1 satisfies
∆ptq ď 1

2∆k, we have k R At`1.

Proof If k R At, then k R At`1 trivially. Therefore, we assume for the rest of the proof that k P At,
and we will show that

UCBtpkq ď max
aPAt

LCBtpaq (54)

or equivalently
UCBtpkq ă max

aPAt

LCBtpaq ` ϵ̃, (55)
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where ϵ̃ “ ϵ̃pλ, ϵ, cq is as defined in Lines 1 and 2 of Algorithm 1. Note that these conditions are
equivalent because both UCBtpkq and max

aPAt

LCBtpaq are elements of

r0, ϵ̃, 2ϵ̃, ¨ ¨ ¨ , pn ´ 1qϵ̃, λs , (56)

which follows from Lines 3, 7, and 11–14 of Algorithm 1.

Since k R Aϵ, when the round index t satisfies ∆ptq ď 1
2∆k we have

UCBtpkq ă Qk

`

q ` ∆ptq
˘

` ϵ̃ ď Q`
j

`

q ´ ∆ptq
˘

(57)

for some arm j P A by (9) of the anytime quantile bounds and Definition 10. We now consider two
cases: (i) j P At and (ii) j R At.

If j P At, we have

Q`
j

`

q ´ ∆ptq
˘

ď LCBtpjq ` ϵ̃ ď max
aPAt

LCBtpaq ` ϵ̃ (58)

by (8) of the anytime quantile bounds and the assumption that j P At. Combining (57) and (58)
gives us condition (55) as desired.

If j R At, then it is eliminated at some round τ ă t, i.e., j P Aτ but j R Aτ`1. By (7) of the anytime
quantile bounds, the definition of active arm set (Line 15 of Algorithm 1) applied to Aτ`1, and the
fact that max LCB is non-decreasing (Lemma 32), we have

Qjpqq ď UCBτ pjq ď max
aPAτ

LCBτ paq ď max
aPAt

LCBtpaq. (59)

Combining (57), the trivial inequality Q`
j

`

q ´ ∆ptq
˘

ď Qjpqq, and (59) yields condition (54) as
desired.

Remark 34 As seen in the analysis for the case j R At above, the property that maxLCB is
non-decreasing (Lemma 32) is crucial in establishing (59). We will see below that the same argument
is used again in establishing (68). This property of Lemma 32 itself is a consequence of ensuring
LCBtpkq is non-decreasing in t; see Remark 5.

Lemma 35 (While-loop termination) Fix an instance ν P E , and suppose Algorithm 1 is run with
input pA, λ, ϵ, q, δq and parameter c ě 1. Let Aϵ “ Aϵpνq be as defined in (2) and let the gap
∆k “ ∆kpν, λ, ϵ, c, qq be as defined in Definition 10 for each arm k P A. Under Event E, when the
round index t of Algorithm 1 satisfies ∆ptq ď 1

2 max
aPAϵ

∆a, Algorithm 1 will terminate in round t ` 1.

Proof If At`1 “ tk˚u, then

max
aPAt`1ztk˚u

UCBtpaq ´ pc ` 1qϵ̃ “ ´8 ď LCBtpk
˚q, (60)
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and so the algorithm will terminate and return arm k˚ in round t ` 1. Therefore, we assume for the
rest of the proof that there exists another arm a ‰ k˚ such that a P At`1.

We first show that the following condition is sufficient to trigger the termination condition of the
while-loop (Lines 8–16) of Algorithm 1: There exists an arm k P At`1 satisfying

LCBtpkq ě max
aPAt`1ztku

Qa

`

q ` ∆ptq
˘

´ pc ` 1qϵ̃. (61)

Using (9) of the anytime quantile bound, condition (61) implies that

LCBtpkq ą max
aPAt`1ztku

UCBtpaq ´ pc ` 2qϵ̃, (62)

which is equivalent to the termination condition

LCBtpkq ě max
aPAt`1ztku

UCBtpaq ´ pc ` 1qϵ̃, (63)

where the equivalence follows from an argument similar to the equivalence between (54) and (55).

It remains to pick an arm k P At`1 satisfying condition (61). Let arm j P argmax
aPAϵ

∆a and consider

the following two cases: (i) j P At`1 and (ii) j R At`1.

If j P At`1, we pick k “ j. We also pick T P argmax
AϵĎSĎA

∆
pSq

k to be the set associated to ∆k (see

Definition 10). Note that every arm that is not in T is a non-satisfying arm since Aϵ Ď T . Furthermore,
every non-satisfying arm that is not in T , hence every arm that is not in T , is eliminated, which
follows from Lemma 33 and

∆ptq ď
1

2
max
aPAϵ

∆a “
1

2
∆k ď

1

2
min
aRT

∆a, (64)

where the last inequality follows from applying (13) to k and T . Therefore, we have At`1 Ď T . It
follows that

LCBtpkq ě Q`
k

`

q ´ ∆ptq
˘

´ ϵ̃ (65)

ě max
aPT ztku

Qa

`

q ` ∆ptq
˘

´ pc ` 1qϵ̃ (66)

ě max
aPAt`1ztku

Qa

`

q ` ∆ptq
˘

´ pc ` 1qϵ̃, (67)

where the first inequality follows from (8) of the anytime quantile bound, the second inequality
follows from applying (13) to k and T , and the last inequality follows from At`1 Ď T .

If j R At`1, we pick an arm k P argmax
aPAt`1

LCBtpaq arbitrarily. We also pick T P argmax
AϵĎSĎA

∆
pSq

k and

we have At`1 Ď T as in the case above. Furthermore, since j R At`1, we have

Q`
j

`

q ´ ∆ptq
˘

ď Qjpqq ď max
aPAt`1

LCBtpaq “ LCBtpkq, (68)
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where the second inequality follows from an argument similar to (59). It follows that

LCBtpkq ě Q`
j

`

q ´ ∆ptq
˘

(69)

ě max
aPT ztju

Qa

`

q ` ∆ptq
˘

´ cϵ̃ (70)

ě max
aPAt`1ztku

Qa

`

q ` ∆ptq
˘

´ pc ` 1qϵ̃, (71)

where the first inequality follows from (68), the second inequality follows from applying (13) to j
and T , and the last inequality follows from At`1 Ď T .

Appendix F. Lower Bounds

F.1. Proof of Theorem 16 (Lower Bound for the Unquantized Variant)

Since we are adapting the instance from (Nikolakakis et al., 2021, Theorem 4), we will omit certain
details for brevity and instead will focus on the main differences.

Proof [Proof of Theorem 16] Define the following class of distributions parametrized by w P p0, qq:

gwpxq :“ wδpxq ` 1 ´ w, (72)

i.e., gw is a mixture of the Dirac delta function and a uniform distribution on r0, 1s. Fix w, γ P p0, qq

such that w ` γ ď q. Note that gw has a higher q-quantile than gw`γ since

G´1
w pqq ´ G´1

w`γpqq “
q ´ w

1 ´ w
´

q ´ pw ` γq

1 ´ pw ` γq
“

p1 ´ qqγ

p1 ´ wqp1 ´ w ´ γq
ą 0, (73)

where G´1
w is the lower quantile function of gw.

We now use (72) to define a set of K instances tνp1q, . . . , νpKqu Ď E for our QMAB problem. Here,
each νpjq is a different instance of the arm distributions, with ν

pjq

k being the CDF of arm k for
instance j. Fix γ P p0, 1{6s. For νp1q, we define the arms’ PDF by

ν
p1q

k :“

#

g1{3´γ if k “ 1

g1{3 if k ‰ 1.
(74)

For j “ 2, . . . ,K, we define the arms’ PDF of νpjq by

ν
pjq

k :“

$

’

&

’

%

g1{3´γ if k “ 1

g1{3´2γ if k “ j

g1{3 if k ‰ 1 or j.

(75)

We will use νp1q as the “hard instance” in our lower bound. By assumption of our ϵ, we have arm 1
being the unique satisfying arm for νp1q. Using (16)) and (73), we have

ϵ ď
1

2

´

Q
p1q

k˚ pqq ´ max
k‰k˚

Q
p1q

k pqq

¯

“
G´1

1{3´γpqq ´ G´1
1{3pqq

2
“

p1 ´ qqγ

2p2{3 ` γqp2{3q
. (76)
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This implies that arm j is the unique satisfying arm for νpjq for j “ 2, . . . ,K since

G´1
1{3´2γpqq ´ G´1

1{3´γpqq “
p1 ´ qqγ

p2{3 ` 2γqp2{3 ` γq
“

p1 ´ qqγ

2p2{3 ` γqp2{3q
¨

4{3

2{3 ` 2γ
ě ϵ, (77)

where the inequality follows from (76) and γ ď 1{6.

To establish the lower bound on the arm pulls for instance νp1q, we first upper bound the inverse arm
gap ∆´1

j in terms of γ for the arms in νp1q. For arm 1 and each non-satisfying arm j ‰ 1, we have

∆1 ě ∆j “ sup
!

∆ P r0,minpq, 1 ´ qqs : G´1
1{3pq ` ∆q ď G´1

1{3´γpq ´ ∆q

)

(78)

“min

"

sup

"

∆ ě 0:

ˆ

q ` ∆ ´ 1{3

2{3

˙

ď

ˆ

q ´ ∆ ´ 1{3 ` γ

2{3 ` γ

˙*

, q, 1 ´ q

*

(79)

“min

"

p1 ´ qqγ

p4{3 ` γq
, q, 1 ´ q

*

(80)

“
p1 ´ qqγ

p4{3 ` γq
(81)

ě
2p1 ´ qqγ

3
, (82)

where the first inequality follows from the argument in (14) and the second inequality follows from
γ ď 1{6.

Fix an pϵ, δq-reliable algorithm π (see Definition 10), and let τ ď 8 be the total number of arm pulls
by π on instance νp1q. We may assume that Pνp1qrτ “ 8s “ 0, since otherwise Eνp1qrτ s “ 8 and
the theorem holds trivially. For each j P t2, . . . ,Ku, define event Aj to be

Aj :“ tπ terminates and outputs k̂ ‰ ju. (83)

By the definition of pϵ, δq-reliability, we must have

Pνpjq

“

Aj

‰

ď δ for each j P t2, . . . ,Ku and Pνp1q

“

τ ă 8 X k̂ ‰ 1
‰

ď δ. (84)

Using the assumption Pνp1qrτ “ 8s “ 0 and the event inclusion tk̂ “ ju Ď tk̂ ‰ 1u, we have

Pνp1q

“

AA
j

‰

“ Pνp1q

“

τ “ 8Y k̂ “ j
‰

“ Pνp1q

“

k̂ “ j
‰

ď Pνp1q

“

k̂ ‰ 1
‰

“ Pνp1q

“

τ ă 8X k̂ ‰ 1
‰

ď δ,
(85)

and so
Pνp1q

“

AA
j

‰

` Pνpjq

“

Aj

‰

ď 2δ for each j P t2, . . . ,Ku. (86)

Let Tj ď τ be the number of times arm j is pulled on νp1q. For a fixed j P t2, . . . ,Ku, we have

Eνp1qrTjs ě
DKL pPνp1q ∥ Pνpjqq

12γ2
ě

1

12γ2
log

ˆ

1

4δ

˙

(87)

where the inequalities follow from (Nikolakakis et al., 2021, Eqn. 29–34). Summing through j “

2, . . . ,K and we have

Eνp1qrτ s ě

K
ÿ

j“2

Eνp1qrTjs ě

K
ÿ

j“2

1

12γ2
log

ˆ

1

4δ

˙

ě
1

2

K
ÿ

j“1

1

12γ2
log

ˆ

1

4δ

˙

, (88)
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where the last inequality follows from K ě 2. Applying the bounds (78)–(82) for each j yields

Eνp1qrτ s ě

K
ÿ

j“1

p1 ´ qq2

27∆2
j

log

ˆ

1

4δ

˙

“ Ω

ˆ K
ÿ

k“1

1

∆2
k

log

ˆ

1

δ

˙˙

, (89)

as desired.

F.2. Proof of Theorem 17 (Ωplogpλ{ϵqq Dependence)

Proof [Proof of Theorem 17] Let ν be a two-arm QMAB instance with deterministic but unknown
q-quantile rewards r1 and r2 satisfying10

r1, r2 P r0, 2ϵ, 4ϵ, . . . , λs and |r1 ´ r2| “ 2ϵ. (90)

In this case, the only arm satisfying (2) is the one with the higher q-quantile. Since the rewards are
deterministic, the QMAB problem is equivalent to finding out which of r1 and r2 is higher.

We consider a modified threshold query setup where the learner receives more information at each
iteration: At iteration t, the learner decides a threshold Xt P r0, λs, and receives a 2-bit comparison
feedback in the form of p1pr1 ď Xtq,1pr2 ď Xtqq. By design, the number of iterations required
under the 2-bit threshold query setup is at most the number of arm pulls required under the 1-bit
threshold query setup.

We now establish the lower bound of Ωplogpλ{ϵqq on the number of iterations needed to determine
which of r1 and r2 is higher for instance ν under the 2-bit threshold query setup. We first claim that
for an algorithm to be pϵ, δq-reliable, the learner has to keep querying until receiving some feedback
satisfying

p1pr1 ď Xtq,1pr2 ď Xtqq P tp0, 1q, p1, 0qu, (91)

which occurs if and only if Xt P rminpr1, r2q,maxpr1, r2qs. Feedback of the form in (91) is
necessary as otherwise instance ν is indistinguishable from instance ν 1 where r1 and r2 are swapped,
and the best any algorithm could do is to make a 50/50 guess, which is not pϵ, δq-reliable for δ ă 0.5.

To establish the lower bound, we may assume that the learner knows that (90) holds, since extra
information can only weaken a lower bound. With this information, instead of picking Xt from the
interval r0, λs, the learner could pick Xt only from the list X :“ r0, 2ϵ, 4ϵ, . . . , λs without loss of
generality (any other choices would have a corresponding equivalent choice in this set). As there
is exactly one x P X that would lead to feedback of the form in (91), we need to identify one
of |X| possible outcomes, which amounts to learning log2 |X| bits. Since each threshold query
gives a 2-bit feedback, the number of threshold queries/iterations needed in the worst case is
Ωplogp|X|qq “ Ωplogpλ{ϵqq.

10. For ease of analysis, we assume λ is an integer multiple of 2ϵ.
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Appendix G. Proof of Theorem 21 and Corollary 24 (Solvable Instances)

We first state a useful lemma for Theorem 21.

Lemma 36 Let λ, ϵ, c, and q be given, and let ϵ̃ “ ϵ̃pλ, ϵ, cq be as defined in Algorithm 1. Suppose
that ν P E is an instance with gap ∆pν, λ, ϵ, c, qq “ 0 and let η0 “ η0pνq ą 0 be the constant given
in the assumption in Theorem 21. Then, for each arm k P Acϵ̃pνq and each η P p0, η0q, there exists
another instance ν 1 P E satisfying the following:

• There exists an arm a P Aztku such that instances ν and ν 1 are identical for all arms in
Azta, ku;

• dTVpFa, Gaq ď η and dTVpFk, Gkq ď η, where Fp¨q and Gp¨q represent the arm distributions
for instances ν and ν 1 respectively;

• k R Acϵ̃pν
1q, i.e., under relaxation parameter cϵ̃, arm k is not a satisfying arm for instance ν 1.

Proof Let ν P E be an instance with gap ∆pν, λ, ϵ, c, qq “ 0. For each arm k P Aϵpνq, we have
∆

pAq

k “ 0 by Definition 10 since 0 ď ∆
pAq

k ď ∆k ď ∆ “ 0. Applying (13) with set S “ A yields:

for each k P Aϵpνq and each η ą 0, there exists a ‰ k such that Q`
k pq´ηq ă Qapq`ηq´cϵ̃. (92)

Fix an arm k P Acϵ̃pνq and η P p0, η0q. Since cϵ̃ ď ϵ (see calculation in (41)–(42)), we have
Acϵ̃pνq Ď Aϵpνq, and hence k P Aϵpνq. It follows from (92) that there exists some arm a ‰ k that

Q`
k pq ´ ηq ă Qapq ` ηq ´ cϵ̃. (93)

We now construct instance ν 1 such that ν and ν 1 have identical distributions for all arms in Azta, ku,
while Fa and Fk are being replaced with Ga and Gk defined as follows:

1. Ga is any distribution obtained by moving η-probability mass from the interval p´8, Qapqqq

to the point Qapq ` 2ηq;

2. Gk is any distribution obtained by moving η-probability mass from the interval pQkpqq,8q to
the point Qkpq ´ 2ηq.

Under these definitions and the assumption on η0 in Theorem 21, we can readily verify that

pGkq´1pqq “ Qkpq ´ ηq P r0, λs and pGaq´1pqq “ Qapq ` ηq P r0, λs (94)

and
dTVpFk, Gkq “ dTVpFa, Gaq “ η. (95)

Finally, combining (93) and (94) yields

pGkq´1pqq ă pGaq´1pqq ´ cϵ̃, (96)

which implies k R Acϵ̃pν
1q. By construction, ν 1 satisfies all three properties as desired.
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Remark 37 We can obtain a “limiting” version of Lemma 36 in which we replace the gap
∆pν, λ, ϵ, c, qq by ∆pν, ϵ, qq as defined in Corollary 24 and the satisfying arm set Acϵ̃p¨q by Aϵp¨q.
The proof is essentially identical. We construct instance ν 1 in a similar manner as above to satisfy
the first two properties in the statement of Lemma 36. The last property pk R Aϵpν

1qq then follows
from the definition of the limit gap ∆kpν, ϵ, qq as defined in (43), which allows us to replace the cϵ̃
terms in (92), (93), and (96) by ϵ.

We proceed to prove Theorem 21.

Proof [Proof of Theorem 21] Assume for contradiction that there exists some instance ν P E satisfies
∆pν, λ, ϵ, c, qq “ 0, but is cϵ̃-solvable. Fix a δ P p0, 1q satisfying

δ ă
1

2 ` 2|A|
. (97)

By Definition 18, there exists a pcϵ̃, δq-reliable algorithm such that

Pνrτ ă 8 X k̂ P Acϵ̃pνqs ě 1 ´ δ. (98)

In general the condition τ ă 8 may not imply a uniform upper bound on τ ; we handle this by
relaxing the probability from 1 ´ δ to 1 ´ 2δ, such that there exists some τmax ă 8 satisfying

Pνrk̂ P Acϵ̃pνq X τ ď τmaxs ě 1 ´ 2δ. (99)

From this, we claim that there exists an arm kν P Acϵ̃pνq such that

Pνrk̂ “ kν X τ ď τmaxs ě
1 ´ 2δ

|A|
. (100)

Indeed, if this were not the case, then summing these probabilities over elements in Aϵpνq would
produce a total below 1 ´ 2δ, which would contradict (99).

Let P pνq
τmax be the joint distribution on the |A| ˆ τmax matrix of unquantized rewards: the pi, jq-th

entry of this matrix contains the j-th unquantized reward for arm i under instance ν. Under the event
τ ď τmax, the algorithm’s output does not depend on any rewards beyond those appearing in this
matrix. In other words, the output k̂ is a (possibly randomized) function of this matrix.

By picking η ą 0 to be sufficiently small in Lemma 36, we can find an instance ν 1 P E such that
kν R Acϵ̃pν

1q and
dTV

`

P pνq
τmax

, P pν1q
τmax

˘

ď δ. (101)

Here, P pν1q
τmax is defined similarly to P

pνq
τmax , but for instance ν 1. Since the output k̂ is a (possibly

randomized) function of the matrix defining P
p¨q
τmax , we have

dTV

`

Pν ,Pν1

˘

ď dTV

`

P pνq
τmax

, P pν1q
τmax

˘

ď δ (102)

by the data processing inequality for f -divergence (Polyanskiy and Wu, 2025, Theorem 7.4). Using
the definition dTVpP,Qq “ supA |P pAq ´ QpAq|, and applying (102), (100), (97), we obtain

Pν1rk̂ “ kν X τ ď τmaxs ě Pνrk̂ “ kν X τ ď τmaxs ´ dTV

`

Pν ,Pν1

˘

ě
1 ´ 2δ

|A|
´ δ ą δ. (103)
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Since kν R Acϵ̃pν
1q, this means that the algorithm is not pcϵ̃, δq-reliable (see Definition 10), we have

arrived at the desired contradiction.

Corollary 24 can be proved similarly by using the “limiting” version of Lemma 36 (see Remark 37).

Appendix H. Details on Remark 13 (Improved Gap Definition)

H.1. Modified Arm Gaps

We first state the modified gap definition explicitly by replacing Q`

p¨q
pq ´ ∆q and Qp¨qpq ` ∆q in

Definition 10 with max
␣

0, Q`

p¨q
pq ´ ∆q

(

and min
␣

λ,Qp¨qpq ` ∆q
(

respectively, and provide an
instance that has a positive modified gap but zero gap under the original definition.

Definition 38 (Modified arm gaps) Fix an instance ν P E . Let ϵ̃ and Aϵ be as in Definition 10. For
each arm k P A, we define the improved gap ∆̃k “ ∆̃kpν, λ, ϵ, c, qq P r0,minpq, 1 ´ qqs as follows:

• If k R Aϵ, then ∆̃k is defined as

sup

"

∆ P r0,minpq, 1 ´ qqs : mintλ,Qkpq ` ∆qu ď max
aPA

␣

max
␣

0, Q`
a pq ´ ∆q

(

´ ϵ̃
(

*

(104)

• If k P Aϵ, then we define ∆̃k “ max
AϵĎSĎA

∆̃
pSq

k , where

∆̃
pSq

k “ sup
!

∆ P

”

0,min
aRS

∆̃a

ı

: maxt0, Q`
k pq ´ ∆qu ě max

aPSztku
mintλ,Qapq ` ∆qu ´ cϵ̃

)

(105)
for each subset S satisfying Aϵ Ď S Ď A.

We use the convention that the minimum (resp. maximum) of an empty set is 8 (resp. ´8).

Remark 39 (Intuition on the modified arm gap) Fix an instance ν “ pFkq P E . An interpretation
of this modified gap is that ∆̃kpν, λ, ϵ, c, qq “ ∆kpclippedpνq, λ, ϵ, c, qq, where clippedpνq “

pF̃kq P E is the instance with all distributions supported on r0, λs defined by

F̃kpxq “

$

’

&

’

%

0 for x ă 0

Fkpxq for 0 ď x ă λ

1 for x ą λ

for each k P A. (106)

That is, F̃k is obtained from Fk by moving all mass below 0 to 0, and all mass above λ to λ. Note
that an algorithm could be designed to clip rewards in this way, but our improved upper bound in
Theorem 40 below applies even when Algorithm 1 is run without change.
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It is straightforward to verify that the modified gap is at least as large as the unmodified gap
(Definition 10), i.e., ∆̃ ě ∆. We provide an example of bandit instance that has positive gap under
the modified definition but is zero using the unmodified definition. Consider q “ 1{2, let λ ě 2ϵ ą 0,
and consider two arms A “ t1, 2u with an identical CDF as follows:

F1pxq “ F2pxq “

$

’

&

’

%

0 for x ă λ ´ ϵ{3

0.5 for λ ´ ϵ{3 ď x ă 2λ

1 for x ě 2λ

, (107)

and so both arms are satisying, i.e., Aϵ “ A. Note that for any ∆ ą 0, we have

Q`
2 p0.5 ´ ∆q “ λ ´ ϵ{3 ă 2λ ´ ϵ ď 2λ ´ cϵ̃ “ Q1p0.5 ` ∆q ´ cϵ̃, (108)

where the second inequality follows from the discussion in (41)–(42). It follows that

∆2 “ ∆A
2 “ sup

␣

∆ P r0, 0.5s : Q`
2 p0.5 ´ ∆q ě Q1p0.5 ` ∆q ´ cϵ̃

(

“ 0 (109)

under the original gap definition. By symmetry, we also have ∆1 “ 0. However, under the modified
definition, we have

∆̃2 “ ∆̃A
2 “ sup t∆ P r0, 0.5s : maxt0, λ ´ ϵ{2u ě mintλ, 2λu ´ cϵ̃u (110)

“ sup t∆ P r0, 0.5s : λ ´ ϵ{3 ě λ ´ cϵ̃u (111)

“ 0.5, (112)

where the last inequality follows since cϵ̃ ě ϵ{3 for any c ě 1 (see the calculation in Remark 23).

H.2. Improved Upper Bound

With the modified gap definition, we obtain the following improved upper bound.

Theorem 40 (Improved upper bound) Fix an instance ν P E , and suppose Algorithm 1 is run
with input pA, λ, ϵ, q, δq and parameter c ě 1. Let Aϵpνq be as defined in (2) and let the gap
∆̃k “ ∆̃kpν, λ, ϵ, c, qq be as defined in Definition 38 for each arm k P A. Under Event E as defined
in Lemma 2, the total number of arm pulls is upper bounded by

O

˜˜

ÿ

kPA

1

max
`

∆̃k, ∆̃
˘2 ¨

˜

log

ˆ

1

δ

˙

` log

˜

1

max
`

∆̃k, ∆̃
˘

¸

` log

ˆ

cλK

ϵ

˙

¸¸¸

, (113)

where ∆̃ “ ∆̃pν, λ, ϵ, c, qq “ max
aPAϵpνq

∆̃a.

The proof is essentially identical to the proof of Theorem 14, but requires tightening of (8) and (9) of
anytime quantile bound to

maxt0, Q`
k

`

q ´ ∆ptq
˘

u ď LCBtpkq ` ϵ̃ (114)
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and
UCBtpkq ă mintλ,Qk

`

q ` ∆ptq
˘

u ` ϵ̃ (115)

respectively. Note that the two new bounds (114) and (115) can be verified easily using the properties
that LCBtpkq ě 0 and UCBtpkq ď λ (see Lines 7, 12, and 14 of Algorithm 1), as well as the
established bounds (8) and (9).

H.3. Removing the Assumption in Theorem 21 (Unsolvability)

The assumption involving η0 in Theorem 21 is included to ensure that both pGkq´1pqq “ Qkpq ´ ηq

and pGaq´1pqq “ Qapq ` ηq are in r0, λs in the proof of Lemma 36, so that the constructed instance
ν 1 satisfies ν 1 P E . As mentioned in Remark 22, the assumption can be removed if we use the
modified gap instead; formally, we have the following.

Theorem 41 (Zero gap is unsolvable – assumption-free version) Let λ, ϵ, c, and q be fixed, and
let ϵ̃ “ ϵ̃pλ, ϵ, cq be as defined in Algorithm 1. Let ∆̃ “ ∆̃pν, λ, ϵ, c, qq be as defined in Theorem 40.
If an instance ν P E satisfies ∆̃ “ 0, then ν is cϵ̃-unsolvable.

The proof is essentially identical to the proof of Theorem 21, and requires only some straightforward
modifications in Lemma 36. Specifically, under the new gap definition, (93) would be replaced by

maxt0, Q`
k pq ´ ηqu ă mintλ,Qapq ` ηqu ´ cϵ̃

)

(116)

We then construct instance ν 1 in a similar manner to the proof of Lemma 36, but the definitions of
Ga and Gk modified to include clipping:

1. Ga is any distribution obtained by moving η-probability mass from the interval p´8, Qapqqq

to the point mintλ,Qapq ` 2ηqu;

2. Gk is any distribution obtained by moving η-probability mass from the interval pQkpqq,8q to
the point maxt0, Qkpq ´ 2ηqu.

It now follows that
pGkq´1pqq “ maxt0, Qkpq ´ ηqu P r0, λs (117)

and
pGaq´1pqq “ mintλ,Qapq ` ηqu P r0, λs, (118)

and hence ν 1 P E as desired.
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