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A Basic Background of Diffusion Models22

This section uses a modified background description provided in [5]. We only consider the condition-23

free case for the diffusion model here. Diffusion Denoising Probabilistic Models (DDPMs) [3] are24

generative latent variable models designed to approximate the data distribution q(x0). The diffusion25

operation starts from the latent x0, adding step-wise noise to diffuse data into pure noise xT . It’s26

important to note that this process can be viewed as a Markov chain starting from x0, where noise is27

gradually added to the data to generate the latent variables x1, . . . , xT ∈ X . The sequence of latent28

variables follows the conditional distribution q(x1, . . . , xt | x0) =
∏t

i=1 q(xt | xt−1). Each step in29

the forward process is defined by a Gaussian transition q(xt | xt−1) := N (xt;
√
1− ktxt−1, ktI),30

which is parameterized by a schedule k0, . . . , kT ∈ (0, 1). As T becomes sufficiently large, the final31

noise vector xT approximates an isotropic Gaussian distribution.32

The forward process allows us to express the latent variable xt directly as a linear combination of33

noise and x0, without the need to sample intermediate latent vectors.34

xt =
√
αtx0 +

√
1− αtw, w ∼ N (0, I), (11)

where αt :=
∏t

i=1(1− ki). To sample from the distribution q(x0), a reversed denoising process is35

defined by sampling the posteriors q(xt−1 | xt), which connects isotropic Gaussian noise xT to the36

actual data. However, the reverse process is computationally challenging due to its dependence on the37

unknown data distribution q(x0). To overcome this obstacle, an approximation of the reverse process38

with a parameterized Gaussian transition network denoted as pθ(xt−1 | xt), where pθ(xt−1 | xt)39

follows a normal distribution with mean µθ(xt, t) and covariance Σθ(xt, t). As an alternative40

approach, the prediction of the noise ϵθ(xt, t) added to x0, which is obtained using equation 11, can41

replace the use of µθ(xt, t) as suggested in [3]. Bayes’ theorem could be applied to approximate42

µθ(xt, t) =
1

√
αt

(
xt −

kt√
1− αt

ϵθ(xt, t)

)
. (12)

Once we have a trained ϵθ(xt, t), we can using the following sample method43

xt−1 = µθ(xt, t) + σtz, z ∼ N (0, I). (13)

In DDIM sampling [11], a denoising process could become deterministic when set σt = 0.44

B Details of the Attention Pipeline45
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Figure 11: Self-attention control compare with MasaCtrl [2]. The default split of two stages is shown
as a bar for each method.

We present a comparative analysis of attention injection methods. As depicted in Fig. 11, MasaCtrl [2],46

while also adopting a self-attention injection approach, employs a more complex control mechanism47
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in its second stage. In the first stage of MasaCtrl, the inverted latent representation XR
T is directly48

utilized by applying a modified prompt. In the second stage, a cross-attention mask is introduced to49

control specific word concepts modified in the prompt, which requires an additional forward pass.50

In contrast, our proposed method, RIVAL, primarily focuses on generating inconsistent variations.51

Consequently, we aim to guide feature interaction by replacing KV features with an aligned latent52

distribution. Unlike MasaCtrl, our approach does not limit content transfer through editing prompts53

with only a few words. Hence, in the second stage, we employ a single forward pass without54

calculating an additional cross-attention mask, allowing fast and flexible text-to-image generation55

with diverse text prompts.56

In recent updates, ControlNet [15] has incorporated an attention mechanism resembling the second57

stage of RIVAL to address image variation. However, a notable distinction lies in using vanilla noised58

latents as guidance, leading to a process akin to the attention-only approach employed in RePaint [4]59

with the Stable Diffusion model. Consequently, this methodology is limited to generating images60

within the fine-tuned training data domain.61

C More About Comparisons62

Implementation Details. We compare our work with ELITE [14], Stable Diffusion image vari-63

ation [6], and DALL·E 2 [8]. We utilize the official demo of ELITE to obtain results. To extract64

context tokens, we mask the entire image and employ the phrase "A photo/painting of <S>." based65

on the production method of each test image. Inference for ELITE employs the default setting with66

denoising steps set to T = 300. For Stable Diffusion’s image variation version, we utilize the default67

configuration, CFG guidance m = 3, and denoising steps T = 50. In the case of DALL·E 2, we68

utilize the official image variation API, specifically requesting using the most advanced API available69

to generate images of size 1024× 1024.70

Comparison with UnCLIP. UnCLIP [8], also known as DALL·E 2, is an image generation71

framework trained using image CLIP features as direct input. Thanks to its large-scale training and72

image-direct conditioning design, it generates variations solely based on image conditions when73

adapted to image variation. However, when faced with hybrid image-text conditions, image-only74

UnCLIP struggles to produce satisfactory results, particularly when CLIP does not recognize the75

image content correctly. We provide comparative analysis in Fig. 12. Additionally, we demonstrate76

in the last two columns of Figure 12 that our approach can enhance the accuracy of low-level details77

in open-source image variation methods such as SD image variation [6].78

Additional Visual Results. We showcase additional results of our techniques in variation generation,79

as illustrated in Fig. 13, and text-driven image generation with image condition, as shown in Fig. 14.80

The results unequivocally demonstrate the efficacy of our approach in generating a wide range of81

image variations that accurately adhere to textual and visual guidance.82

D Additional Ablation Results83

Ablation on early fusion step. In addition to Fig. 8 of the main paper, we present comprehensive84

early-step evaluation results based on a grid search analysis in Fig. 15. By decreasing the duration85

of the feature replacement stage (larger talign), we observe an increase in the similarity of textures86

and contents in the generated images. However, excessively long or short early latent alignment87

durations (tearly) can lead to color misalignment. Users can adjust the size of the early fusion steps88

as hyperparameters to achieve the desired outcomes.89

Ablation on different alignment designs. Fig. 16 illustrates ablations conducted on various90

alignment designs. Two latent initialization methods, as formulated in Eq. (7) and Eq. (8), exhibit91

comparable performance. Nevertheless, incorporating alignments in additional areas, such as hidden92

states within each transformer block, may harm performance. Hence, we opt for our RIVAL pipeline’s93

simplest noise alignment strategy.94

Ablation on different text conditions. We conduct ablations on text conditions in three aspects.95

First, we evaluate the impact of different CFG scales m for text prompt guidance. As shown96

in Fig. 17 (a), our latent rescaling technique enables control over the text guidance level while97

preserving the reference exemplar’s low-level features. Second, we employ an optimization-based98
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“A girl in a sailor uniform posing for a photo.”

“Silhouette of a woman looking through a glass dome filled with fish.”
.”

“A building with a blue and white striped awning.”

“A group of people standing around a statue.”

“Pokémon”

RIVAL SDv1ImgVar SDv1 + RIVALSource exemplar DALL·E 2 UnCLIP SDv2

fail case

Figure 12: Comparision and adaptation with UnCLIP [8]. We highlight texts that enhance the image
understanding for each case. Our inference pipeline is adapted to the image variation model depicted
in the fourth column, in contrast to the variation achieved through vanilla inference in the bottom left
corner of each image.

null-text inversion method [5] to obtain an inversion chain with improved reconstruction quality.99

However, this method is computationally intensive, and the optimized embeddings are sensitive to the100

guidance scale. Furthermore, when incorporating this optimized embedding into the unconditional101

inference branch, there is a variation in generation quality, as depicted in Fig. 17 (b). Third, we102

utilize empty text as the source prompt to obtain the latents in the inversion chain while keeping the103

target prompt unchanged. As depicted in Fig. 17 (c), the empty text leads to weak semantic content104

correspondence between the two chains but sometimes benefits text-driven generation. For example,105

if users do not want to transfer the "gender" concept to the generated robot.106
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Exemplars Variations

Figure 13: Text-driven free-form image generation results. The image reference is in the left column.
In the last row, we also present variations for one customized concept <sks> bag.
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Figure 14: Text-driven free-form image generation results, with the image reference placed in the top
left corner. The text prompts used are identical to those presented in Fig. 5 of the main paper. Every
two rows correspond to a shared text prompt.

method SD [9] ImgVar [6] ELITE [14] UnClIP [8] RIVAL
base model V1-5 V1-3 V1-4 V2-1 V1-5

KID ↓ 17.1 18.5 25.7 13.5 13.2

Table 2: Quantitative comparisons for KID (×103). All methods are Stable Diffusion based.

E Quantitative Evaluations107

This section comprehensively evaluates our proposed method with various carefully designed metrics,108

including CLIP Score, color palette matching, user study, and KID.109

CLIP Score. For evaluating the CLIP Score, we employ the official ViT-Large-Patch14 CLIP110

model [7] and compute the cosine similarity between the projected features, yielding the output.111

Color palette matching. To perform low-level matching, we utilize the Pylette tool [12] to extract a112

set of 10 palette colors. Subsequently, we conduct a bipartite matching between the color palette of113

each generated image and the reference palette colors in the RGB color space. Before matching, each114

color is scaled to [0, 1]. The matching result is obtained by calculating the sum of L1 distances.115

User study. To evaluate the effectiveness of our approach against other methods, we conducted a116

user study using an online form. The user study interface, depicted in Figure 18, was designed to elicit117

user rankings of image variation results. We collected 41 questionnaire responses, encompassing 16118

cases of ranking comparisons.119

KID evaluation. To provide a comprehensive assessment of the quality, we utilize Kernel Inception120

Distance (KID)[1] to evaluate the perceptual generation quality of our test set. As depicted in Table2,121

with Stable Diffusion V1-5, our method achieves the best KID score, which is slightly superior to the122

UnCLIP [8], employing the advanced Stable Diffusion V2-1.123
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Figure 16: Ablation studies for different feature alignment strategies.

F Additional Considerations124

Correction of an equation error in the main paper. In the main paper, it has been identified that an125

error exists in Equation (4). The residual should be applied after completing the entire self-attention126

process. Therefore, the updated output of the hidden state in the self-attention mechanism is expressed127

as follows:128

v∗
G = softmax

(
QK⊤
√
dk

)
V. (14)

We will correct this equation in the updated version of the main paper.129
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“A PINK building”

m=1 (failed) m=3 m=5 m=7 m=9

w/o opt. null w/ opt. null w/o opt. null w/ opt. null

empty prompt empty prompt empty promptoriginal prompt original prompt original prompt

{adj.}: “in a sailor uniform” 

{n.}: “girl”{n.}: “Elon Musk” {n.}: “robot”

(a) Ablation on different CFG scales

(b) Ablation on null-text inversion

(c) Ablation on different source prompts

Figure 17: Ablation studies on different text conditions and guidance scales. Reference exemplars
are highlighted with a golden border.

(a) Specification

(b) Shuffled results (c) Ranking questions

Figure 18: User study user interface. In this case, four methods are: (A). SD ImageVar [6], (B).
ELITE [14], (C). DALL·E 2[8], (D). RIVAL (ours).
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Data acquisition. To comprehensively evaluate our method, we collected diverse source exemplars130

from multiple public datasets, such as DreamBooth [10] and Interactive Video Stylization [13]. Some131

exemplars were obtained from Google and Behance solely for research purposes. We will not release132

our self-collected example data due to license restrictions.133

Societal impacts. This paper introduces a novel framework for image generation that leverages134

a hybrid image-text condition, facilitating the generation of diverse image variations. Although135

this application has the potential to be misused by malicious actors for disinformation purposes,136

significant advancements have been achieved in detecting malicious generation. Consequently, we137

anticipate that our work will contribute to this domain. In forthcoming iterations of our method, we138

intend to introduce the NSFW (Not Safe for Work) test for detecting possible malicious generations.139

Through rigorous experimentation and analysis, our objective is to enhance comprehension of image140

generation techniques and alleviate their potential misuse.141
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