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Supplementary Material for ’Constrained Multi-Objective Optimization”

A SOME USEFUL LEMMA

To simplify the notions, we use w® = (z® X® 2®) in the following proof.

Lemma A.1 [Yao et al| (2024) Lemma A.1. Under Assumption {.3] and for
the Moreau envelope-based Lagrange Multiplier function Ly(x, A,z with v, €
(0,1/p¢) and 2 > 0. That is,

(1) The function Lg(x, A, ) is continuously differentiable;
(2) The gradient of Ls(x, \, z) has closed-form given by

1 n
VaLi(w, A, 2) = argmin{H (v, 0%) + o u— 2"} + >4 Vai(w),
i=1

A— 07
V)\Ls(xasz) = )
M
V)‘LS(I, A? Z) = i z7
2
where 0% := 0*(z,\, z) and p* = p*(x, X\, z) is the unique saddle point of the
following min-max problem:

N N N
. 1 1
Imin max {H(% 0)+ > pgi(x) + 7 > OlI0: = xl* - 2 > la - Mi”z} :
i=1 i=1 i=1

n

(3) Furthermore, for any p, > p¢/(1 —y1py), Ls(x, X, 2) is p,-weakly convex with
respect to variables (x,\) on for any fixed z.

Proof: The proof is similar to the proof of Lemma A.1 in|Yao et al.[|(2024).

Lemma A.2 Yao et al.| (2024) Lemma A.2 and Lemma A.4.

Under Assumption and §-4] let v € (0,1/ps) and vo > 0. Then, for any
pv > pr/(1 —y1pys), the following inequality holds:

—Ls(Ih A, Z) < - Ls($2,/\7z) - <V:pLs(I2, sz),ﬁl - $2> + % HI1 - $2||2,

_LS(:U7A17Z> S - Ls(x7)\27z> - <VALS('T7 A27 z)7)\1 - )\2> + % ||A1 - A2||27
L,

_Ls(xaszl) S - Ls(vaa z2> - <V)\L5(.I, A'Ia ZQ), 21— Z2> + 7 ||Z1 - Z2||27

where L, := (yapr + 1)/ (V7).

Proof: The first 2 conclusions follow directly from Lemma A.2 that L(x, X, z) is
po-weakly convex with respect to variables (z, A) on for any fixed z, and the third
conclusion is similar to the proof of Lemma A.4 in Yao et al. (2024).

Lemma A.3 [Yao et al|(2024) Lemma A.3. Under Assumption {.3| and let
7 € (0,1/pg) and 5 > 0. Then, for any (x1, A1, z1) and (2, Aa, 22), the following
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Lipschitz property holds:
|| (0*<I17 A17 Zl); IJ/*('I17 A17 zl)) - (0*<I27 A27 z2>7 I.L*(I'27 A27 '22)) ||
<Lf +L,+CzL

Pr
<Lg, |[(z1, A1, 21) — (22, A2, 22)]|

1 1
! Hx1—x2H+—7p H>\1—>\2H+—,yp |21 — 22
17T 2FPT

= V3Bmax{L;+

where pp := min{1/y1 —pys,1/7}, Cz =
Lg+CzLg, 1/ 11,1/} pr.

Proof: The proof is similar to the proof of Lemma A.3 in|Yao et al.| (2024).

B PROOF OF MAIN THEOREM AND LEMMAS

B.1 PROOF OF THEOREM [4.6]

Theorem [4.6] If Assumptions of Assumptions and hold, let v; €
(0,1/p5), 72 > 0, ¢; = c(t+1)? with p € (0,1/2) and ¢ > 0. Pick 1, € (0, p,/L%),
then there exists c,,cg > 0 such that when o € (a,c,) and € (B, cg), with
a,B > 0, the sequence of (z(V,A® 2® 9® 1) generated by Algorithm
MLM-CMOQO satisfies

1
n (|00, 1) — (0*(2©, A®, 20} 1 (2®. A®. 20))|| = O(—
mjn (6, ) = (8720, A, £19), e X, )| = O =),
and
1
i ® 2O SOy =
mtmRt(x ;AW 20 = O T1_2p).

Proof: First, using the descent lemma in Lemma and its condition, telescoping
the inequality for¢t = 0,1,....,7" — 1, we get

T-1

1 2 2 1 2 2
Ve—Vo<—1=>" (men — 2®]° 4 || AE) — A0 ) _ @Z |20+ — 2|
t=0

_in09/LZH 0*( A(t)vz(t))7“*(x(t)7A(t)az(t))H2’

From assumptions, we have 3./ ' (09, ) — (0% (z®, XD 2®) pr(z®, A0 2(0)) H2
is upper bounded, which is

Z 169, 1) — (6" («® A(t),z(t)),p,*(l‘(t),A(t),Z(t))HQ < +oo.

Thus, we have

min |00, 10) — (6" (2, AV, 20), (29, A0, 20)|| = O

3~
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Secondly, according to the update rule of variables (z,y, z), we have

0e ct(dgﬁ, A) + Mol A0) + Z((a 0, A0D) — (20, A0)),
Ct
8
where d) = C%)VxF(x(t))‘(t)) +U+ Y0, MEH_I)ngi(x(t))a df\t) — C%(}\(t) _

0e Ct —I—M ( (t+1) ) + (z(t+1) _z(t))'

N) +V — L0 — 9)tD) and d¥Y = pt) — 20, Note, U =
71

arg min, {H (u, A) + 1 |lu — :c(t)||2} — argmin, {H (u, V) + 1 ||u — (t)||2},

XN = argminy |7, AV (2P|, and V= argmmv{H(x(t) v) +

Llo = A9 |*} — arg min, {H(u, 0¢D) + & u — 20"},

By the meanings of dgf), d(}f), and d(zt), we obtain

(e ef) E(VF D, AT),0) + (3 i Vgi(1),0)
=1
= (VLo (2D, XD, 2050) o M (a0, XD, 2(040),
where
el =Vaade (2, X0, 20) — o (dP, ) = = = (2D, M) — (20, 20)),
Ct

e(zt) ::Vz¢0t (x(t)a )\(t)a z(t)) - Ct(dg(ct)a dgf)) - Ctd(zt) - B -

eg(ct))\H Using the estimates in Yao et al.[(2024)), we have

(z(tH) — z(t)».

Next, we estimate
He(xf)AH <¢,Lg, ||(m(t+1), D z(t+1)) _ (:c(t), A® z(ﬂ)H
i % [, AED) = (20 XD + e, Cy,
+ H(g(t)’ pu®) — (9*(:[(15)’ 2D, z(t)), N*(x(t), 2D, z(t))H 7
where Cy, = \/maX{Z(Lg + C.Ly)%, 212}

For e(zt) ,
Heg)H g(% L& ” Hz““ (t)H 4 s_t Hu(t) _ u*(x(”,)\(t),z(t))u '
2
Thus,
Ri(z®, A0, 2 S(% n %) Hz(t+1) _ z(t)” L& H(x(t—i-1)7)\(t+1)) — (2, )\(t))H
+ ¢ th || (t) 9*( (t)7 ,\(t)’ z(t))’ M*(iﬂ(t), )\(t)7 z(t))H

+ ciLg, H (t+1)7)‘(t+1)7 (t+1)) _ (:L,(t)’ A(t)7z(t))H ‘

Let oy, > aand 3y > 6 for some positive constants o and 5 we can show that there
exists C'’z > 0 such that

1 2
_233@(75),)\(15)72(15)) <Cr (@ H(z(tﬂ)’)\(tﬂ)) ( A(t) ” _|_ Hz(t+1 z(t)H

t
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* * 2
+?7pTCO’“ H(e(t)7l’l’(t)) - (0 (x(t)7A(t)7z(t))7H’ (x(t)7A(t)7z(t))H ) '

This completes the proof.

B.2 PROOF OF LEMMA [4.7]

Lemma Under Assumption 4.3 and let v; € (0,1/pf), 72 > 0 and pick
n € (0, pr/L;, where Ly, := max{L; + L, + CzL,+ 1/v1, L, + 1/72}. Then, the
sequence generated by Algorithm [I]satisfies

H t—i—l (t+1 (0*( (t) ) H

<(1 —1npr) || ) ) - (0*( ), u*(w(t))) I
Proof: The proof is similar to the proof of Lemma A.5 in|Yao et al.|(2024).

B.3 PROOF OF LEMMA [4.8]

Lemma 4.8 Suppose the assumption of 4.2] {4.3] and [4.4] hold, and let 7, €
(0,1/p4), 72 > 0. Pickn € (0, p,/L%) with Lp := max{2L,+C,L,+1/v, L,+
1/7,} then the sequence of (w®) generated by Algorithm [I; MLM-CMOO satis-
fies

1 L,, 2
(bct( t+1 ) S ¢Ct<w(t)> - (26 - 2 Hz(t+1) o z(t)H
1 L BL; 2 2
_ (% _ % _ %) (men — 2®]° 4+ || AE) — A©)|| )

+ % (2(Lg +C.Ly)" + %) |64+) — 67 (w®)|’

+ (aL? + IIM(t“ (w7,

where Ly, := Ly/c; + Lg + -

Proof: Given Assumptions and4.4] that V" and Vg are Lp- and Lg-
Lipschitz continuous on their domain, respectively, and applying Lemma 5.7
in Beck (2017)] and previous Lemmas, we obtain

Ga (W) <00, (W) + (Vaade, (@), (@D, X) — (20, X))
n ﬁ @, ACHD) — (20, AO)2,

with Ly, := Lp/c; + L, + p,. Based on the update rule of variable 2, A, the
convexity and the property of the proximal operator, we have

<(:c(t), ADY — o (d®, 4Py — (2D, AED), (20 \O) — (5D, A<t+1>)> <0,

x 7

thus, we have

1 2
d® g0V (0D DY _ (p0O A >< P N G AN ORSNONTES
<( LD )7(37 ’ ) (:C ) ) - H(:C ’ ) (QE ’ )H

T
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Considering the formula of V, 5L, derived in Lemma A.2 and the meanings of
dgf), d(;) provided in the previous proof, we can obtain that

[ 7aLur(®) — @,d0)|

n 2
= (Vo H (2", 6% (D) + ) i (w9 Vag(z®) = V. H(2D, 00+ Zui*”vxg ")
=1
1
+ 5z 60— W)
T
n 2
V.H(a )+ Zuz (@) = Vol @, 0@ ) = 3 Veg(a?)
=1
2

+ 2

V. H(z®, 0% (w®)) + Z W9 D) — Vo H(2®,00H)) = 37 v (2 0)

i=1 i=1

1
e e A
1

< (210 Ot + 22 ) [0 = O 223 ) -
"

which yields

(ToaLop(@®) = (@, d)), ACD), (24D, AED) - (20, X0))

_Z < (Ly +CzLy + 7 > |67+ 6’*(4«)(“)”2 +all||pth) - u*(c.u(t))H2

1 t+1) 3 (t+1) t ]2
o @, AE) - (20, A0

Combing with the above inequalities, we have
67 < 00) 4 (5 = 222 a0, ) — 00, )
+ Z ( (Ly +CzL, + 7 ) |67+ 0*(w(t))H2 +all||pttY) - u*(w(t))||2

For variable z, we have

L,
¢ct(w(t+1 ) <o, (wWP) + <V e, (w ) L) z(t)> 4 == Hz (t+1) z(t)H2-
According to the property of the proximal gradient, we have

<d(zt)’ S(t+1) z(t)> < _% Hz(t+1) _ z(t)Hz

Thus, we have

L 1 2
¢Ct(w(t+1)) quct(w(t)) + <Vz¢ct(w(t)) . d(zt),Z(H_l) Z(t)> + 7 - ||Z (t+1) z(t)H )

Q
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Based on the definition of d” provided in the previous section, we have
Hw(t) _ d(zt)H2 H”’ (1) _ ppr (D XD z(t))”Q?
and

z

(Vo (w®) — d), 204D — 20 < 2%2 D — (2D XD 0|2 4 =
2

The, for variable z, we can get

L 1
¢Ct<w(t+1)) §¢Ct(w(t) 2 2 ”u(tJrl M*<x(t+1)7)‘(t“ H + 5 25) Hz(t+1) z(t)H2
L, 1
<o, (W) + 52 ||N(t+1 p(z® A, z(t))H2 (7 _ ﬁ) |20+ z(t)H2

5 PLo,u (t+1) y (t+1) OIBXONE
273 (D AE) = (@ A

Combining the inequities for variable (z, A) and z, we can get Lemma
B.4 PROOF OF LEMMA [4.3]

Lemma [4.5| Under Assumptions and 44| hold, let v; € (0,1/pr), 72 > 0,
c < ¢y1 and n; € (1, py/L%) with > 0, then there exist constants c,,cs > 0
such that when 0 < a < ¢, and0 < 8 < cg, the sequence of (z(), A 2®)
generated by Algorithm[I[} MLM-CMOO satisfies

1 2 1 2 2
Vi, =V < — o Hx(tJrl) . x(t)H - ||)\(t+1) . }\(t)” (t+1) (t)”

=z
—1prCo, |89, 1 ®) — (0%(x®, A0 20 1 (z® A0 20|,

Proof: From Lemma[4.8|and server aggregation rule, we have
1 L

0u (@) < 00 (@) = (55 = ) 20 = 20 (8)
1 Ly, 5[]27 ) )
_ (% — % — %) (Hx(tﬂ) _ :L‘(t)H i H)\(t-ﬁ—l) B )\(t)H >

1
+ % (2(Lg +C.Ly)? + 7—%) 164D — g*(w )]’
+ (aLf] Hut-i-l “*(w(t))H2

Since ¢, > ¢, we can infer that (F (2, A®) — F) /e, < (F(2®,A®) — F) /e,.
Combining with inequality equation [§]leads to

Vers = Vi =0 (@07) = 6, () + Co (847, u4) = (8" (@ 0), " (w41

17

2



Under review as a conference paper at ICLR 2025

— Clo [ (0D, @) — (6% (w®), (W ®))

i Lo, BLG;L H (t+1) )‘(t-i-l (t))\

57 2
+ (oL’ + %) D — (@) + S (2@9 +C.Ly)? + 7) o@D — o (w )|

2

Lu. |20+ — z(t)H2

+ Coy (0, 1) — (6(wlt+0), (1)
— Cloye[| (6, 1) = (6" (w ), " ()|
_ (L La 5130” ) [[ @D, AED) — (0, A0 |2 ﬁ)Hz(t“)—z(t)HQ

2a 2 V2
+caA{—We@4L»—weWw@»u W[+ | 6 4L>—we%w@LMmenf
2ma{a, 7} (04, u) — (6" (@), (@)}

where the last inequality follows from the fact that Cy , := max{(L, + CzL,)* +
1/(29%) + L3, 1/7}.
Then, for the last 3 terms in the previous equation we have

— (|89, p) — (8" (w™), " (w™)) 1) — (07 (w), p(w™)]|
+2ozH 0, ) — (6% (W), p (w) ||
2 H (6" (w (t+1) ) H*(w(tJrl)) _ (0*(w(t))7u*<w(t)>

2

2
< |
- H — (6" (@), 1 (@)
+<1+et+z@ H o u(t“))—(9*(w“)),u*(w(t’)llz
(1 )L 1) = O = (69, u) — (6w, " ()

* * 2
+ (1 + e +20)(1 = npr)* |0, D) — (6*(w), p ()|

2 2 * * 2
S(]- + %)Lg,u ||w(t+1) - w(t)H — npr H(e(t)) l‘l’(t)) - (0 (w(t))v 2 (w(t)))H )
where a from Lemma A.5 and A.7 for ¢ > 0, and b from setting ¢ = npr/2 and

picking o < npr/4 where holds that (1 + € 4+ 2a)(1 — npr) < 1.
Similarly, we can show that when 5 < npr/4, it holds that
—I(6* = (0" (@) @)+ 0, 1) — (0 (), (@)

§(1+77i >L3u||wt+l “H 00 )—w*(w(“),u*w“)))u .
T

Combining the above inequities, we have

1 L L 2
Visi =V, < — (__ﬂ_M_(1+ = )L2 C“) ” (t+1) )\(t+1))_(x(t)7)\(t)>H2

200 2 7 npr
1 L, 2 2 t+1 t)1]2
~(5 =5 -0 g ) I -2
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+ 0prCax |09, ) — (67 (w®), w(w®))]||".

When ¢;01 > ¢, > 1 > 0, a < nprp/4 and 3 < npr/4, then ¢’t 4+ 9" +

L2
(1+:2)L3 Co,u_%—wv%—(l Oe,u—CandL”Z+(1+

Ce,“ < va + (1

ner )

uCou =:Cp

W’T) nﬂT)
Consequently, if C,,Cs > 0 satisfies C, < mm{*—T L}and Cs <
mm{ﬂ%ﬁ} it holds that 2 + 20 1 (1 4 2)12 Cp, > L and
L+ (14 :2)L5 ,Cop >

This completes the proof.

E
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