
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SUPPLIMEATARY MATERIALS FOR CLIP-TO-SEG DIS-
TILLATION FOR INDUCTIVE ZERO-SHOT SEMANTIC
SEGMENTATION

Anonymous authors
Paper under double-blind review

1 OTHER SETTINGS IN THIS PAPER.

The name of unseen categories. The names of the unseen categories in each dataset can be seen in
Table. 1.

Full experiment settings. The proposed methods are implemented on the MMsegmentation (Con-
tributors, 2020). The CLIP model applied in our method is based on the ViT-B/16 model and the
channel (C) of the output text features is 512. All the experiments are conducted on 8 V100 GPUs
and the batch size (B) is set to 16 for all three datasets. For all these three datasets, the size of the
input images is set as 512 (H) × 512 (W ). The iterations are set to 20k, 40k, and 80k for PASCAL
VOC, PASCAL Context, and COCO-Stuff respectively. The optimizer is set to AdamW with the
default training schedule in the MMSeg toolbox. In addition, the size of CLS tokens banks is set as
24, the threshold for mask merging λ is 0.8, the size of the window in multi-scale K-Means is set as
3 and 7. τ in global loss is 0.07, and γ is 1.0 for COCO-Stuff and 0 for PASCAL VOC and Context.
α is set as learnable and β is set as 2.

2 MORE DETAILS FOR MASK MERGING.

Formally, given the updated seed set SNs×C
new where Ns indicates the number of updated seeds, the

corresponding mask MNs×H×W for each seed in Snew, and the similarity threshold λ, we first
calculate the cosine similarity SimiNs×Ns−1 between each element in S′ and all other elements.
Then we find the maximum value smax in Simi. We find the row index i of smax and all the other
values s̃ which are larger than λ in the ith row. Then we add the masks belonging to smax and
s̃, and the merged masks serve as the pseudo label for one unknown category. And the ith seeds
and the seeds belonging to s̃ can not be used again. We quit this loop until smax is lower than λ.
Finally, we concatenate the seen labels and the generated labels Yg as fused labels Yf . The mask
merging algorithm iteratively fuses regions that likely belong to the same category, making the dense
features contain more coherent semantics. In addition, we show the pseudo-code of the proposed
mask merging algorithm as shown in Algorithm. 1.

Table 1: Name of unseen categories.

Dataset Unseen Categories

VOC Everingham et al. (2015) pottedplant, sheep, sofa, train, tvmonitor

COCO-Stuff Caesar et al. (2018) cow, giraffe, suitcase, frisbee, skateboard carrot, scissors,
cardboard, clouds, grass playingfield, river, road, tree, wall concrete

Context Mottaghi et al. (2014) cow, motorbike, sofa, cat, boat, fence, bird, tv monitor, keyboard, aeroplane

3 QUALITATIVE RESULTS

The roles of latent class mining. We further present additional results on the pseudo labels gener-
ated by the latent class mining algorithms, as shown in Fig. 1 and Fig. 2. These figures highlight
the capability of our approach to discover latent classes, even when operating in small batches.
Specifically, the results depicted are obtained from a batch of only two images, yet our method is
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Algorithm 1 Mask Merging Algorithm in Pytorch sytle

1: Initialize the threshold λ, and the masks MNc∗H∗W ∈ [0, 1] clustered by SNc×C
d # Initialize the

threshold for merging and the masks to be fused.
2: Initialize Ylatent = ∅ # Initialize the merging results.
3: Ss = cos(Sd,Sd)
4: smax = max(Ss)
5: while smax >= λ do
6: i = where(Ss, smax)[0] # Find the row where the max value is.
7: mask = Ss[i] > λ # Find all the masks that have high similarity with the selected mask.
8: Ylatent.append(M[mask].sum(0))# Add the temporal results to F .
9: Ss[mask,:] = -∞ # The masks selected can not be selected again.

10: Ss[:,mask] = -∞ # The masks selected can not be selected again.
11: smax = max(Ss)
12: end while
13: return Ylatent

Image Unseen Label Seed 1 Seed 2 Seed 3Seen Label

Figure 1: The pseudo labels generated by latent classes mining. In seed1, the category ‘cows’ can
be found. In seed2, the unseen category ‘playing field’ can be found. In seed3, the unseen trees can
be found.

robust enough to detect consistent latent classes across different batches. Moreover, our approach
can identify and segment novel’ objects that are not annotated in the original dataset, demonstrating
its potential for discovering unseen or unannotated entities. For instance, in Fig. 2, the blue indicator
in the center of the image is successfully detected by our model despite being unannotated in the
ground truth labels. This example underscores the versatility and effectiveness of our method in rec-
ognizing latent classes and uncovering hidden object categories within complex scenes, extending
beyond the scope of the provided annotations.

The visualization of prediction. Fig. 3 presents a visual comparison between the ground truth
(GT), ZegCLIP predictions, and our proposed method for zero-shot semantic segmentation across
both seen and unseen classes. The first row shows the input images, which include various objects
such as cows, buses, and giraffes in different environments. The second row displays the GT, rep-
resenting the manually labeled segmentation masks. The third row illustrates the predictions from
ZegCLIP, which, while effective in some cases, exhibits inaccuracies in capturing object boundaries
and details, particularly with unseen classes. The final row showcases the results from our method,
which demonstrates improved segmentation accuracy and better alignment with the GT, especially
in terms of object boundaries and overall segmentation quality, both for seen and unseen categories.
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Image Unseen + 
Unannotated Seed 1 Seed 2 Seed 3Seen Label

Unannotated
(Indicator)

Unannotated
(Plate)

Unseen Unseen

Figure 2: The pseudo labels generated by latent classes mining. In seed2, the unseen categories
can be found. In seed1, the unannotated category ‘plate’ and the ‘indicator’ in seed3 can be found.
Moreover, these three categories are separated.
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Figure 3: More visualization of the prediction.
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