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A Appendix

A.1 Implementation details

Our AL framework is implemented using PyTorch Lightning Falcon & The PyTorch Lightning
team (2019) for training and evaluation of the models and uses Faiss Johnson et al. (2019)
for GPU-accelerated clustering and nearest-neighbor searches. DINOv2 pre-trained models have
been downloaded from https://github.com/facebookresearch/dinov2 and OpenCLIP pre-trained mod-
els are loaded using https://github.com/mlfoundations/open_clip. Our implementation is available at
https://github.com/sanketx/AL-foundation-models.

We conduct AL experiments for 20 iterations with 5 seeds - 1,10,100,1000,10000 for each combination of
query, dataset, and model that we evaluate and report the mean accuracy averaged over all 5 seeds. The
query budget at each iteration is set to C where C is the number of classes in the dataset. All linear classifiers
in our experiments are trained using the AdamW optimizer with a learning rate of 1e-2, weight decay of
1e-2, and dropout with ρ = 0.75. In experiments involving label propagation, we set α = 0.9 and construct
the graph using the 500 nearest neighbors.

Computations are carried out on A100 (40GB) GPUs, however we note that GPUs with 16-24GB of mem-
ory will also suffice for the majority of our experiments, with each individual run of 20 iterations taking
approximately 15-30 minutes.

A.1.1 AL query implementations

All the AL queries tested in our experiments have been reimplemented to optimize them for compute and
memory efficiency. BALD and PowerBALD both use 20 MC sampling iterations for uncertainty estimation.
Core-Set is implemented using the greedy k-center approach. ALFA-Mix is implemented using the closed-
form approximation of α with ϵ = 0.2√

D
where D is the dimensionality of α. For TypiClust, we set the

maximum number of clusters to 500 for all datasets except Places365 where we set it to 1000. Typicality is
calculated using the 20 nearest neighbors. δ in ProbCover is estimated with a purity threshold of 0.95.
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BADGE is difficult to scale to large datasets such as Places365 due to the size of the gradient embedding
vectors. They have N × C × D elements where N is the number of unlabeled samples, C is the number
of classes, and D is the dimensionality of the output of the penultimate layer, which in our case is feature
vector derived from the foundation model. Fortunately, the K-Means++ initialization scheme used to pick
diverse points only requires the computation of the squared distance between pairs of gradient embeddings,
so the full embeddings themselves need not be computed.

The squared distance between a pair of gradient embeddings Gi, Gj can be expressed in terms of their
squared Frobenius norm ||Gi − Gj ||2F where Gi = ZiP

T
i . Here, Zi is the D dimensional feature vector input

to the linear classifier and Pi = (p(i)
k − I(ŷ(i) = k))C

k=1, the difference of the predicted probability vector and
the one hot encoded pseudo-label of the ith sample.

||Gi −Gj ||2F can be efficiently factorized as ZT
i (P T

i Pi)Zi +ZT
j (P T

j Pj)Zj −2ZT
i (P T

i Pj)Zj which only requires
O(N · (C + D)) space instead of O(N · C · D), enabling BADGE to scale to datasets with several million
unlabeled examples.

A.2 Utilizing unlabeled instances for improving the active learner

In this section, we explore leveraging unlabeled instances in a semi-supervised fashion as a complementary
approach to active learning. Prior art such as variants of Typiclust and ProbCover use Flex-Match Zhang
et al. (2022), a state-of-the-art semi-supervised learning algorithm based on consistency among augmented
views of an image. However, this is challenging to implement in our context as repeated forward passes
through the feature extractor would be computationally expensive. Since foundation models are typically
trained in a self supervised fashion using a contrastive loss (or a variant) to encourage consistency, augmented
views would map to similar points in the feature space.

Several works have suggested using state-of-the-art semi-supervised frameworks for label propagation from
labeled instances Gao et al. (2020); Simeoni et al. (2021). We adopt an offline variant of a transductive
label propagation method Iscen et al. (2019). Our experimental setup accounted for the confidence of the
propagated labels while training the classifier. We used equation 11 from Iscen et al. (2019) to weight each
sample by using entropy as a measure of confidence. The weight was computed as wi = 1 − H(ẑi)

log(c) . Since
our representation space does not change, we only perform a cycle of label propagation when new labels are
added to the pool, i.e. after each AL query. In theory, a semantically meaningful representation space from
a Foundation Model would enable labels to propagate more effectively, thus increasing the efficacy of the
active learner. However, our experimental results say otherwise.

We show the effects of label propagation in Figure 1 while using a randomly initialized labeled pool for all
queries. We find that the efficacy of semi-supervised learning in this setting is questionable at best, with
wide variation across query methods and datasets. While we do see an initial boost in performance, contrary
to Gao et al. (2020); Simeoni et al. (2021), the gap quickly narrows and label propagation under performs
the reference query. Propagating labels from uncertain queried samples may cause points across the decision
boundary to be assigned to incorrect classes, hampering performance in the long run.

A.3 Full results on natural image and out-of-domain data

We also tabulate full AL empirical results in Table 4, Table 5, and Table 6 for the datasets presented in the
main manuscript (12 in total) and additional out-of-domain datasets like colorectal histology Kather et al.
(2016) and Patch Camelyon Veeling et al. (2018); Ehteshami Bejnordi et al. (2017) (Figure 2). We repeated
acquisition trajectories with 5 different random seeds for precise evaluation and report mean accuracy and
standard deviation on the held out test set. DropQuery performs competitively on the colorectal histology
dataset, but underperforms others on the Patch Camelyon dataset. The abnormal spread in performances
of AL strategies on Patch Camelyon suggests that Foundation Model features may not equally benefit all
approaches on out-of-distribution data, and warrants further investigation of low-budget AL in biomedical
imaging.
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Figure 1: We illustrate the performance difference ∆ssl between AL with and without label propagation for
unlabeled instances. The results, averaged over 5 runs of 20 AL iterations on 4 natural image datasets, show
that the suitability of foundation models for pseudo-label approaches is, although significant in the initial
iterations of AL, hurts the performance of the active learner in later iterations.
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(b) Patch Camelyon

Figure 2: Full AL curves for additional out-of-domain biomedical datasets.

Biomedical datasets are ideal for testing active learning methods, given the time constraints and high costs of
labeling by domain experts. Acevedo et al 2020’s blood smear dataset Acevedo et al. (2020) consists of bright-
field microscopy images of eight peripheral blood cell classes (imbalanced classes, minority/majority ratio
= 0.36). The colorectal histology dataset Kather et al. (2016) includes H&E stained brightfield microscopy
images of 8 different classes of textures seen in colorectal cancer histology (balanced, min/Maj ratio = 1.0).
The Kaggle Diabetic Retinopathy challenge dataset Kaggle & EyePacs (2015) presents retinal images catego-
rized into five diabetic retinopathy severity levels (imbalanced, min/Maj ratio = 0.19). The Robert Murphy
lab’s IICBU 2008 HeLa dataset Murphy et al. (2000) includes fluorescence microscopy images of HeLa cells,
with ten different classes of labeled subcellular structures (min/Maj ratio = 0.74). The HAM10000 dataset
Tschandl et al. (2018) contains dermatoscopic images across seven skin lesion classes (imbalanced, min/Maj
ratio = 0.01). Lastly, the patch camelyon dataset (Veeling et al., 2018) (Ehteshami Bejnordi et al., 2017)
consists of 327,680 image patches from lymph notes with the goal of binary classification of the presence
or absence of metastatic breast carcinoma cells (balanced, min/Maj ratio = 1.0). The patch camelyon
train/val/test splits are 262,144/ 32,768/ 32,768 respectively. Together, these datasets span fields such as
cell biology, cytology, dermatology, and ophthalmology, offering a robust out-of-distribution test for active
learning strategies that utilize foundation models pre-trained on natural images.
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A.4 Additional pretraining strategies

We study the impact of limited pretraining and a relatively weak feature extractor on the performance
of leading AL strategies. In this experiment, we explore the use of Masked Autoencoders (MAE) He et al.
(2022) pre-trained on ImageNet-1K Deng et al. (2009) as the backbone model, specifically the largest variant:
ViT-H/14. ImageNet is a considerably smaller dataset compared to LVD-142M used to train DINOv2 or
LAION-2B used to train OpenCLIP models and is limited in terms of the diversity of images. Representations
learned with limited pretraining data may not result in well structured latent spaces like those induced by
foundation models trained on hundreds of millions of images, adversely impacting the performance of AL
strategies which require robust representations. Furthermore, the MAE backbone is trained using a patch-
level reconstruction objective instead of a contrastive method. This encourages the model to learn strong
local features, but suboptimal global features which are necessary for instance discrimination or classification
tasks such as the ones studied in our experimental setting Huang et al. (2023).

We analyze the best performing AL strategies in our previous experiments, BADGE , Alfa-Mix , Typi-
clust , Margins , and PowerBALD and compare them with DropQuery and a random sampling baseline
on the CIFAR100, Food101, ImageNet-100, and DomainNet-Real datasets. We use the same experimen-
tal conditions and hyper-parameter settings as our previous experiments and report the results in Table
7. We observe a clear trend across datasets: AL strategies which rely on clustering images in the rep-
resentation space are outperformed by those which are independent of the underlying latent structure.
BADGE performs well consistently, followed by PowerBALD and Margins , while Typiclust , Alfa-
Mix , and DropQuery demonstrate weaker performance.

Unlike our experiments with foundation models, we do not see a significant impact of intelligent initial pool
selection to overcome the cold start problem, and any advantage that Typiclust and DropQuery may have
is quickly eroded. Furthermore, we observe that the MAE features do not generalize well to CIFAR100
and Food101, with even the best AL methods not performing much better than random sampling. This
is likely because ImageNet-100 is a subset of the MAE pretraining dataset and is compositionally similar
to DomainNet-Real. Given that the MAE backbone typically requires domain-specific fine-tuning, it is
unsurprising that these features perform poorly in the extremely low-budget AL regime, especially with a
simple linear classifier. We conclude by re-iterating our fundamental premise: in the era of vision foundation
models, we need to revisit previous findings in active learning to advance the development of strategies that
can fully leverage the rich representations generated by these powerful backbones.
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Table 1: Impact of the dropout ratio. We evaluate 5 different dropout ratios ρ for on 4 natural image datasets
- CIFAR100, Food101, ImageNet-100, and DomainNet-Real. We report the mean accuracy averaged over 5
runs along with the standard deviation at each AL iteration. Bold values represent the first place mean
accuracy at iteration t with the second place value underlined. We also report the corresponding fraction of
the unlabeled examples added to the candidate set.

t ρ = 0.15 ρ = 0.3 ρ = 0.45 ρ = 0.6 ρ = 0.75
Mean ± Std Fraction Mean ± Std Fraction Mean ± Std Fraction Mean ± Std Fraction Mean ± Std Fraction

CIFAR100

1 72.93 ± 1.93 0.0% 72.92 ± 1.9 0.0% 72.84 ± 2.06 0.0% 72.81 ± 2.1 0.0% 72.58 ± 2.18 0.0%
2 82.46 ± 0.59 4.05% 82.15 ± 1.33 6.7% 83.0 ± 1.03 9.9% 83.56 ± 1.31 14.53% 83.52 ± 0.76 21.53%
3 85.13 ± 0.48 2.09% 85.4 ± 1.18 3.51% 85.49 ± 0.69 5.16% 85.88 ± 0.94 7.84% 86.6 ± 0.78 11.7%
4 86.96 ± 0.56 1.76% 86.68 ± 0.94 2.84% 87.33 ± 0.53 4.25% 87.15 ± 0.82 6.14% 87.67 ± 0.57 9.22%
5 87.81 ± 0.44 1.55% 88.07 ± 0.64 2.59% 88.43 ± 0.4 3.62% 88.02 ± 0.75 5.48% 88.94 ± 0.31 8.33%
6 88.53 ± 0.39 1.49% 88.67 ± 0.41 2.41% 89.28 ± 0.22 3.39% 89.14 ± 0.16 5.11% 89.35 ± 0.16 7.72%
7 88.99 ± 0.15 1.46% 89.07 ± 0.41 2.32% 89.59 ± 0.08 3.2% 89.54 ± 0.17 4.84% 89.65 ± 0.31 7.37%
8 89.58 ± 0.2 1.42% 89.37 ± 0.58 2.18% 89.89 ± 0.22 3.04% 89.88 ± 0.29 4.6% 90.12 ± 0.14 7.07%
9 89.76 ± 0.22 1.37% 89.82 ± 0.49 2.21% 90.26 ± 0.24 3.03% 90.12 ± 0.17 4.41% 90.23 ± 0.21 6.88%

10 90.18 ± 0.28 1.31% 90.14 ± 0.33 2.09% 90.41 ± 0.1 2.92% 90.38 ± 0.2 4.36% 90.48 ± 0.22 6.75%
11 90.24 ± 0.22 1.25% 90.25 ± 0.27 2.06% 90.62 ± 0.1 2.9% 90.74 ± 0.21 4.16% 90.6 ± 0.28 6.68%
12 90.4 ± 0.33 1.24% 90.58 ± 0.25 2.03% 90.71 ± 0.22 2.84% 90.86 ± 0.26 4.12% 90.8 ± 0.27 6.54%
13 90.58 ± 0.2 1.23% 90.81 ± 0.22 2.03% 90.91 ± 0.14 2.82% 90.94 ± 0.24 4.05% 90.99 ± 0.2 6.37%
14 90.69 ± 0.27 1.2% 90.97 ± 0.25 1.93% 91.03 ± 0.15 2.77% 91.17 ± 0.2 4.0% 91.26 ± 0.25 6.35%
15 90.92 ± 0.25 1.18% 91.13 ± 0.26 1.92% 91.2 ± 0.18 2.66% 91.13 ± 0.19 3.99% 91.32 ± 0.26 6.27%
16 91.3 ± 0.1 1.19% 91.28 ± 0.18 1.86% 91.28 ± 0.15 2.69% 91.42 ± 0.23 3.97% 91.47 ± 0.16 6.0%

Food101

1 70.83 ± 1.2 0.0% 70.86 ± 1.17 0.0% 71.29 ± 1.16 0.0% 71.28 ± 1.36 0.0% 71.33 ± 1.38 0.0%
2 74.24 ± 2.46 1.45% 75.18 ± 1.64 2.48% 75.16 ± 1.72 3.72% 74.8 ± 1.75 5.54% 76.09 ± 1.34 8.49%
3 77.6 ± 1.08 1.61% 78.52 ± 1.38 2.73% 78.42 ± 1.43 3.88% 78.61 ± 1.48 5.87% 79.76 ± 0.88 8.6%
4 79.98 ± 1.2 1.65% 81.35 ± 1.25 2.79% 80.83 ± 1.19 3.99% 81.32 ± 0.91 5.79% 82.24 ± 0.52 8.75%
5 82.43 ± 0.65 1.75% 82.85 ± 0.58 2.84% 82.8 ± 0.56 4.06% 83.12 ± 1.08 5.87% 83.75 ± 0.84 8.92%
6 83.17 ± 0.46 1.69% 84.64 ± 0.52 2.77% 84.46 ± 0.25 4.11% 84.35 ± 0.64 5.71% 84.71 ± 0.58 8.58%
7 84.53 ± 0.66 1.7% 85.52 ± 0.46 2.75% 85.22 ± 0.34 4.01% 85.54 ± 0.78 5.6% 85.72 ± 0.57 8.79%
8 85.37 ± 0.78 1.66% 86.12 ± 0.54 2.75% 85.92 ± 0.39 4.08% 86.27 ± 0.71 5.6% 86.31 ± 0.4 8.75%
9 85.83 ± 0.77 1.72% 86.67 ± 0.38 2.78% 86.49 ± 0.18 4.12% 86.89 ± 0.71 5.83% 86.87 ± 0.29 8.84%

10 86.64 ± 0.65 1.66% 87.27 ± 0.37 2.83% 86.88 ± 0.15 4.12% 87.38 ± 0.92 5.78% 87.27 ± 0.45 8.96%
11 87.13 ± 0.86 1.64% 87.64 ± 0.3 2.77% 87.56 ± 0.46 4.12% 87.77 ± 0.73 5.91% 87.72 ± 0.55 8.8%
12 87.4 ± 0.75 1.68% 88.02 ± 0.49 2.79% 88.05 ± 0.43 4.1% 88.17 ± 0.56 5.86% 88.07 ± 0.63 8.77%
13 87.74 ± 0.84 1.7% 88.45 ± 0.5 2.8% 88.15 ± 0.51 4.07% 88.48 ± 0.64 5.93% 88.51 ± 0.59 8.9%
14 88.03 ± 0.74 1.71% 88.89 ± 0.3 2.77% 88.5 ± 0.34 4.12% 88.82 ± 0.49 5.93% 88.92 ± 0.67 8.94%
15 88.29 ± 0.83 1.73% 88.99 ± 0.22 2.8% 88.73 ± 0.36 4.17% 89.09 ± 0.56 6.01% 89.01 ± 0.54 8.99%
16 88.82 ± 0.6 1.7% 89.22 ± 0.13 2.79% 88.9 ± 0.37 4.17% 89.25 ± 0.53 6.11% 89.36 ± 0.5 9.03%

ImageNet-100

1 79.75 ± 1.23 0.0% 79.46 ± 1.33 0.0% 79.54 ± 1.2 0.0% 79.4 ± 1.51 0.0% 79.12 ± 1.07 0.0%
2 88.0 ± 0.79 3.92% 88.65 ± 1.08 6.19% 88.69 ± 0.87 8.61% 88.88 ± 1.03 11.1% 89.4 ± 0.78 14.59%
3 89.94 ± 0.77 1.04% 90.09 ± 0.72 1.7% 90.24 ± 0.88 2.52% 90.4 ± 0.75 3.63% 90.29 ± 1.22 5.49%
4 90.84 ± 0.71 0.78% 90.92 ± 0.63 1.29% 91.52 ± 0.58 1.89% 91.46 ± 0.48 2.74% 91.42 ± 0.53 4.19%
5 91.66 ± 0.53 0.7% 91.75 ± 0.41 1.12% 92.04 ± 0.6 1.62% 91.92 ± 0.38 2.38% 91.93 ± 0.46 3.64%
6 92.3 ± 0.46 0.65% 92.2 ± 0.34 1.0% 92.37 ± 0.48 1.45% 92.31 ± 0.29 2.14% 92.18 ± 0.45 3.26%
7 92.53 ± 0.34 0.59% 92.55 ± 0.36 0.91% 92.71 ± 0.38 1.36% 92.55 ± 0.43 2.06% 92.62 ± 0.4 3.16%
8 92.64 ± 0.43 0.56% 92.72 ± 0.37 0.86% 92.84 ± 0.29 1.29% 92.87 ± 0.3 1.93% 92.94 ± 0.2 2.99%
9 92.82 ± 0.41 0.54% 93.02 ± 0.18 0.83% 93.12 ± 0.39 1.23% 93.06 ± 0.23 1.91% 93.14 ± 0.24 2.92%

10 93.04 ± 0.52 0.51% 93.19 ± 0.31 0.83% 93.15 ± 0.35 1.21% 93.32 ± 0.27 1.86% 93.24 ± 0.35 2.9%
11 93.07 ± 0.35 0.52% 93.48 ± 0.35 0.81% 93.43 ± 0.22 1.23% 93.46 ± 0.26 1.83% 93.35 ± 0.43 2.88%
12 93.26 ± 0.37 0.49% 93.54 ± 0.44 0.83% 93.55 ± 0.22 1.18% 93.57 ± 0.17 1.74% 93.54 ± 0.47 2.85%
13 93.4 ± 0.41 0.49% 93.66 ± 0.41 0.79% 93.7 ± 0.2 1.13% 93.62 ± 0.17 1.77% 93.72 ± 0.45 2.75%
14 93.38 ± 0.45 0.5% 93.8 ± 0.34 0.8% 93.76 ± 0.33 1.12% 94.04 ± 0.4 1.76% 93.71 ± 0.32 2.74%
15 93.57 ± 0.53 0.5% 93.83 ± 0.53 0.78% 93.9 ± 0.13 1.16% 94.04 ± 0.37 1.77% 93.93 ± 0.44 2.68%
16 93.78 ± 0.59 0.49% 94.01 ± 0.6 0.76% 93.9 ± 0.13 1.15% 94.22 ± 0.42 1.7% 94.06 ± 0.32 2.62%

DomainNet-Real

1 68.31 ± 0.39 0.0% 68.34 ± 0.5 0.0% 68.19 ± 0.47 0.0% 68.13 ± 0.52 0.0% 67.96 ± 0.47 0.0%
2 74.15 ± 0.19 3.16% 74.56 ± 0.47 5.09% 74.15 ± 0.52 7.63% 74.37 ± 0.29 10.57% 74.97 ± 0.09 15.42%
3 76.4 ± 0.33 1.66% 76.9 ± 0.44 2.73% 76.96 ± 0.31 4.11% 77.19 ± 0.22 5.95% 77.16 ± 0.22 9.27%
4 77.96 ± 0.51 1.57% 78.31 ± 0.48 2.52% 78.67 ± 0.25 3.69% 78.88 ± 0.26 5.24% 78.68 ± 0.39 8.29%
5 79.24 ± 0.47 1.56% 79.55 ± 0.38 2.51% 79.85 ± 0.3 3.57% 80.19 ± 0.28 5.15% 79.88 ± 0.21 8.08%
6 80.13 ± 0.37 1.56% 80.6 ± 0.24 2.52% 80.7 ± 0.26 3.55% 81.11 ± 0.27 5.02% 80.8 ± 0.31 8.04%
7 80.94 ± 0.4 1.58% 81.35 ± 0.34 2.52% 81.51 ± 0.11 3.52% 81.85 ± 0.19 5.07% 81.58 ± 0.21 7.96%
8 81.7 ± 0.33 1.59% 82.07 ± 0.2 2.52% 82.27 ± 0.1 3.57% 82.28 ± 0.12 5.05% 82.21 ± 0.13 8.05%
9 82.25 ± 0.3 1.57% 82.65 ± 0.13 2.53% 82.78 ± 0.13 3.53% 82.73 ± 0.1 5.12% 82.77 ± 0.14 8.1%

10 82.59 ± 0.28 1.56% 83.1 ± 0.17 2.55% 83.16 ± 0.14 3.49% 83.19 ± 0.15 5.14% 83.27 ± 0.16 8.15%
11 83.05 ± 0.28 1.58% 83.43 ± 0.18 2.54% 83.6 ± 0.19 3.52% 83.53 ± 0.07 5.19% 83.65 ± 0.19 8.38%
12 81.0 ± 0.32 1.53% 81.33 ± 0.47 2.55% 81.88 ± 0.32 3.48% 82.43 ± 0.2 5.19% 82.79 ± 0.27 8.14%
13 83.27 ± 0.26 2.89% 83.27 ± 0.17 5.16% 83.5 ± 0.22 6.59% 83.48 ± 0.17 8.36% 83.75 ± 0.11 13.12%
14 83.8 ± 0.18 1.88% 84.03 ± 0.04 3.28% 84.03 ± 0.16 4.89% 84.03 ± 0.15 7.55% 84.12 ± 0.2 10.59%
15 84.15 ± 0.1 1.71% 84.35 ± 0.13 2.86% 84.3 ± 0.12 4.42% 84.32 ± 0.13 6.68% 84.39 ± 0.27 9.86%
16 84.36 ± 0.12 1.64% 84.56 ± 0.17 2.73% 84.58 ± 0.15 4.32% 84.59 ± 0.24 6.33% 84.72 ± 0.17 9.33%

7



Published in Transactions on Machine Learning Research (06/2024)

Table 2: Impact of the number of dropout iterations. We evaluate 4 different settings of M on 4 natural
image datasets - CIFAR100, Food101, ImageNet-100, and DomainNet-Real. We report the mean accuracy
averaged over 5 runs along with the standard deviation at each AL iteration. Bold values represent the first
place mean accuracy at iteration t with the second place value underlined. We also report the corresponding
fraction of the unlabeled examples added to the candidate set.

t 3 5 7 9
Mean ± Std Fraction Mean ± Std Fraction Mean ± Std Fraction Mean ± Std Fraction

CIFAR100

1 72.58 ± 2.18 0.0% 72.58 ± 2.18 0.0% 72.58 ± 2.18 0.0% 72.58 ± 2.18 0.0%
2 83.52 ± 0.76 21.53% 84.16 ± 1.31 21.64% 83.46 ± 1.04 21.7% 83.55 ± 0.88 21.72%
3 86.6 ± 0.78 11.7% 85.9 ± 0.94 11.37% 85.82 ± 0.69 11.54% 86.2 ± 0.55 11.35%
4 87.67 ± 0.57 9.22% 87.76 ± 0.46 9.12% 87.39 ± 1.02 8.81% 87.6 ± 0.37 8.78%
5 88.94 ± 0.31 8.33% 88.72 ± 0.38 7.89% 88.21 ± 0.73 7.62% 88.43 ± 0.48 7.65%
6 89.35 ± 0.16 7.72% 89.17 ± 0.24 7.26% 89.06 ± 0.42 7.17% 88.98 ± 0.33 7.01%
7 89.65 ± 0.31 7.37% 89.53 ± 0.2 6.97% 89.53 ± 0.33 6.7% 89.6 ± 0.18 6.69%
8 90.12 ± 0.14 7.07% 89.71 ± 0.21 6.62% 90.07 ± 0.26 6.42% 89.86 ± 0.18 6.3%
9 90.23 ± 0.21 6.88% 90.11 ± 0.38 6.55% 89.99 ± 0.25 6.23% 90.02 ± 0.21 6.15%

10 90.48 ± 0.22 6.75% 90.39 ± 0.27 6.36% 90.41 ± 0.37 6.09% 90.26 ± 0.11 6.02%
11 90.6 ± 0.28 6.68% 90.5 ± 0.13 6.27% 90.59 ± 0.36 5.98% 90.52 ± 0.19 5.84%
12 90.8 ± 0.27 6.54% 90.59 ± 0.24 6.24% 90.63 ± 0.34 5.86% 90.65 ± 0.17 5.63%
13 90.99 ± 0.2 6.37% 90.81 ± 0.14 6.02% 90.96 ± 0.27 5.82% 90.84 ± 0.21 5.64%
14 91.26 ± 0.25 6.35% 90.92 ± 0.17 6.02% 91.05 ± 0.22 5.7% 91.01 ± 0.18 5.59%
15 91.32 ± 0.26 6.27% 91.05 ± 0.06 5.85% 91.13 ± 0.33 5.59% 91.01 ± 0.12 5.31%
16 91.47 ± 0.16 6.0% 91.21 ± 0.15 5.73% 91.37 ± 0.19 5.42% 91.19 ± 0.21 5.21%

Food101

1 71.33 ± 1.38 0.0% 71.33 ± 1.38 0.0% 71.33 ± 1.38 0.0% 71.33 ± 1.38 0.0%
2 76.09 ± 1.34 8.49% 75.65 ± 1.37 7.81% 75.74 ± 1.74 7.43% 75.62 ± 2.14 7.22%
3 79.76 ± 0.88 8.6% 79.15 ± 1.48 8.16% 79.73 ± 1.55 7.72% 78.55 ± 2.43 7.36%
4 82.24 ± 0.52 8.75% 81.6 ± 0.86 8.05% 81.88 ± 1.06 7.44% 81.27 ± 1.39 7.41%
5 83.75 ± 0.84 8.92% 83.01 ± 0.8 8.23% 83.32 ± 1.18 7.64% 82.87 ± 1.08 7.44%
6 84.71 ± 0.58 8.58% 84.73 ± 0.78 8.22% 84.33 ± 1.07 7.59% 84.2 ± 1.06 7.51%
7 85.72 ± 0.57 8.79% 85.3 ± 0.68 8.15% 85.56 ± 0.88 7.69% 85.05 ± 0.88 7.47%
8 86.31 ± 0.4 8.75% 86.08 ± 0.49 8.09% 86.3 ± 0.59 7.95% 85.72 ± 0.67 7.44%
9 86.87 ± 0.29 8.84% 87.04 ± 0.44 8.49% 86.77 ± 0.69 7.97% 86.3 ± 0.7 7.73%

10 87.27 ± 0.45 8.96% 87.41 ± 0.75 8.28% 87.31 ± 0.64 8.02% 87.03 ± 0.76 7.72%
11 87.72 ± 0.55 8.8% 87.8 ± 0.88 8.47% 87.63 ± 0.66 7.88% 87.55 ± 0.68 7.8%
12 88.07 ± 0.63 8.77% 88.06 ± 0.72 8.85% 88.1 ± 0.64 7.92% 87.84 ± 0.77 7.86%
13 88.51 ± 0.59 8.9% 88.44 ± 0.51 8.58% 88.51 ± 0.8 8.03% 88.11 ± 0.61 7.75%
14 88.92 ± 0.67 8.94% 88.59 ± 0.73 8.48% 88.86 ± 0.74 7.95% 88.61 ± 0.64 7.97%
15 89.01 ± 0.54 8.99% 88.9 ± 0.55 8.55% 89.04 ± 0.85 7.99% 88.89 ± 0.77 7.86%
16 89.36 ± 0.5 9.03% 89.28 ± 0.7 8.39% 89.29 ± 0.73 7.92% 89.29 ± 0.73 7.82%

ImageNet-100

1 79.12 ± 1.07 0.0% 79.12 ± 1.07 0.0% 79.12 ± 1.07 0.0% 79.12 ± 1.07 0.0%
2 89.4 ± 0.78 14.59% 89.38 ± 1.01 14.78% 89.06 ± 1.07 14.87% 88.79 ± 1.1 14.92%
3 90.29 ± 1.22 5.49% 90.48 ± 0.79 5.37% 90.49 ± 1.18 5.26% 90.23 ± 0.82 5.24%
4 91.42 ± 0.53 4.19% 91.47 ± 0.42 4.02% 91.24 ± 0.63 3.93% 91.14 ± 0.54 3.86%
5 91.93 ± 0.46 3.64% 91.89 ± 0.43 3.44% 91.9 ± 0.36 3.36% 91.84 ± 0.56 3.31%
6 92.18 ± 0.45 3.26% 92.43 ± 0.56 3.08% 92.17 ± 0.48 2.96% 92.47 ± 0.61 2.96%
7 92.62 ± 0.4 3.16% 92.68 ± 0.58 2.85% 92.67 ± 0.4 2.76% 92.72 ± 0.57 2.75%
8 92.94 ± 0.2 2.99% 92.79 ± 0.61 2.74% 92.72 ± 0.38 2.63% 92.95 ± 0.26 2.6%
9 93.14 ± 0.24 2.92% 93.2 ± 0.33 2.68% 92.91 ± 0.26 2.58% 92.97 ± 0.31 2.51%

10 93.24 ± 0.35 2.9% 93.37 ± 0.21 2.6% 93.09 ± 0.18 2.53% 93.14 ± 0.31 2.45%
11 93.35 ± 0.43 2.88% 93.38 ± 0.22 2.54% 93.39 ± 0.17 2.42% 93.34 ± 0.18 2.37%
12 93.54 ± 0.47 2.85% 93.5 ± 0.22 2.53% 93.42 ± 0.18 2.35% 93.41 ± 0.21 2.29%
13 93.72 ± 0.45 2.75% 93.51 ± 0.22 2.48% 93.47 ± 0.2 2.31% 93.38 ± 0.14 2.26%
14 93.71 ± 0.32 2.74% 93.65 ± 0.17 2.43% 93.56 ± 0.14 2.23% 93.54 ± 0.2 2.23%
15 93.93 ± 0.44 2.68% 93.65 ± 0.14 2.39% 93.62 ± 0.12 2.22% 93.79 ± 0.27 2.18%
16 94.06 ± 0.32 2.62% 93.69 ± 0.2 2.34% 93.63 ± 0.24 2.23% 93.83 ± 0.18 2.16%

DomainNet-Real

1 67.96 ± 0.47 0.0% 67.96 ± 0.47 0.0% 67.96 ± 0.47 0.0% 67.96 ± 0.47 0.0%
2 74.97 ± 0.09 15.42% 74.97 ± 0.24 15.36% 74.85 ± 0.31 15.29% 74.94 ± 0.38 15.26%
3 77.16 ± 0.22 9.27% 77.16 ± 0.26 8.94% 77.06 ± 0.16 8.84% 77.09 ± 0.21 8.63%
4 78.68 ± 0.39 8.29% 78.67 ± 0.15 7.89% 78.74 ± 0.35 7.63% 78.71 ± 0.26 7.48%
5 79.88 ± 0.21 8.08% 79.85 ± 0.2 7.56% 79.88 ± 0.19 7.36% 79.95 ± 0.21 7.17%
6 80.8 ± 0.31 8.04% 80.81 ± 0.17 7.55% 80.86 ± 0.22 7.23% 80.82 ± 0.16 7.04%
7 81.58 ± 0.21 7.96% 81.47 ± 0.21 7.52% 81.58 ± 0.34 7.25% 81.5 ± 0.19 7.0%
8 82.21 ± 0.13 8.05% 82.18 ± 0.3 7.68% 82.3 ± 0.24 7.22% 82.07 ± 0.24 7.1%
9 82.77 ± 0.14 8.1% 82.79 ± 0.28 7.65% 82.8 ± 0.27 7.22% 82.59 ± 0.22 7.19%

10 83.27 ± 0.16 8.15% 83.19 ± 0.25 7.71% 83.2 ± 0.3 7.39% 83.07 ± 0.33 7.27%
11 83.65 ± 0.19 8.38% 83.55 ± 0.15 7.83% 83.53 ± 0.17 7.44% 83.53 ± 0.28 7.11%
12 82.79 ± 0.27 8.14% 82.79 ± 0.24 7.56% 82.49 ± 0.21 7.39% 82.6 ± 0.2 7.22%
13 83.75 ± 0.11 13.12% 83.65 ± 0.23 12.41% 83.73 ± 0.16 12.19% 83.65 ± 0.15 11.76%
14 84.12 ± 0.2 10.59% 84.12 ± 0.24 9.88% 84.31 ± 0.11 9.85% 84.22 ± 0.07 9.75%
15 84.39 ± 0.27 9.86% 84.44 ± 0.19 9.1% 84.6 ± 0.1 8.78% 84.47 ± 0.1 8.64%
16 84.72 ± 0.17 9.33% 84.67 ± 0.17 8.65% 84.81 ± 0.11 8.45% 84.76 ± 0.04 8.28%
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Table 3: Descriptions of the biomedical datasets utilized in our study, which span a wide range of imaging
modalities, biomedical disciplines, and task difficulties. Abbreviations: binary classification (BC), hema-
toxylin and eosin (H&E), immunofluorescence (IF), multiclass classification (MC). All train/ val/ test splits
are 0.7/ 0.1/ 0.2 of the total unless noted otherwise in the text.

Name Modality Domain Stain Task (Classes) Image size Total
Blood Smear Acevedo et al. (2020) Brightfield Cytology Giemsa MC (8) (360, 363) 17092

Colorectal histology Kather et al. (2016) Brightfield Pathology H&E MC (8) (150, 150) 5000
Diabetic Retinopathy Kaggle & EyePacs (2015) Fundoscopy Ophthalmology - MC (5) (256, 256) 2750

IICBU 2008 HeLaMurphy et al. (2000) Fluorescence Cell Biology IF MC (10) (382, 382) 862
Skin cancer Tschandl et al. (2018) Dermoscopy Dermatology - MC (7) (450, 600) 10015

Patch Camelyon Veeling et al. (2018)Ehteshami Bejnordi et al. (2017) Brightfield Pathology H&E BC (2) (96, 96) 327,680

Table 4: Test set accuracy with standard deviations (average of 5 random seeds) at certain iterations t during
AL on CIFAR100 Krizhevsky (2009), Food101 Bossard et al. (2014), ImageNet-100 Gansbeke et al. (2020),
and DomainNet-Real Peng et al. (2019) (from top to bottom) with DINOv2 ViT-g14 as the feature extractor
f . Typiclust, ProbCover, and our proposed DropQuery use their own respective initialization strategies
for the cold-start. Cells are color coded according to the magnitude of improvement in mean accuracy over
the Random baseline. Green cells are positive with better performance than random whereas red cells are
negative with worse performance than random. Bold values represent the first place mean accuracy at
iteration t with the second place value underlined.

t Random Uncertainty Entropy Margins BALD pBALD Coreset Typiclust ProbCover BADGE Alfamix DropQuery (Ours)
CIFAR100

1 48.1 ± 2.1 48.1 ± 2.1 48.1 ± 2.1 48.1 ± 2.1 48.1 ± 2.1 48.1 ± 2.1 48.1 ± 2.1 64.6 ± 2.0 62.3 ± 1.1 48.1 ± 2.1 48.1 ± 2.1 72.6 ± 2.2
2 64.5 ± 2.7 62.6 ± 1.8 58.0 ± 2.3 69.9 ± 2.6 67.4 ± 1.7 71.2 ± 1.3 64.5 ± 2.2 80.8 ± 0.2 76.2 ± 1.9 72.5 ± 2.0 78.0 ± 1.1 83.5 ± 0.8
4 78.7 ± 1.6 74.6 ± 3.4 70.4 ± 3.2 82.6 ± 0.8 80.4 ± 1.6 83.9 ± 1.3 78.2 ± 1.5 86.8 ± 0.4 81.9 ± 0.8 84.1 ± 0.5 83.9 ± 1.6 87.7 ± 0.6
6 83.3 ± 0.6 81.1 ± 2.5 76.1 ± 3.6 86.0 ± 0.6 83.7 ± 0.8 87.2 ± 0.4 82.2 ± 1.1 87.7 ± 0.4 84.9 ± 0.9 87.2 ± 0.3 85.8 ± 1.8 89.3 ± 0.2
8 86.1 ± 0.4 84.2 ± 0.9 81.4 ± 2.9 87.9 ± 0.8 85.2 ± 0.6 88.4 ± 0.6 84.3 ± 1.0 88.4 ± 0.4 86.5 ± 0.8 88.8 ± 0.1 87.8 ± 1.4 90.1 ± 0.1
10 87.3 ± 0.5 85.9 ± 0.8 84.2 ± 1.9 88.9 ± 0.4 86.3 ± 1.1 89.5 ± 0.3 85.8 ± 0.7 88.7 ± 0.1 87.3 ± 0.6 89.5 ± 0.2 89.2 ± 0.7 90.5 ± 0.2
12 88.2 ± 0.3 87.1 ± 0.5 85.6 ± 1.5 89.7 ± 0.2 87.1 ± 1.0 89.9 ± 0.2 86.8 ± 0.9 89.0 ± 0.3 88.2 ± 0.6 90.1 ± 0.1 89.8 ± 0.5 90.8 ± 0.3
14 88.9 ± 0.3 88.3 ± 0.5 86.9 ± 1.3 90.2 ± 0.4 87.8 ± 0.9 90.4 ± 0.1 87.5 ± 0.7 89.2 ± 0.1 88.7 ± 0.5 90.6 ± 0.2 90.3 ± 0.7 91.3 ± 0.3
16 89.2 ± 0.3 89.2 ± 0.3 87.8 ± 0.9 90.6 ± 0.4 88.4 ± 0.7 90.8 ± 0.1 88.3 ± 0.8 89.3 ± 0.2 89.1 ± 0.3 90.9 ± 0.1 90.8 ± 0.5 91.5 ± 0.2
18 89.5 ± 0.3 89.8 ± 0.3 88.7 ± 0.9 91.0 ± 0.1 88.9 ± 0.8 91.1 ± 0.2 88.7 ± 0.9 89.5 ± 0.3 89.5 ± 0.1 91.2 ± 0.1 91.1 ± 0.4 91.6 ± 0.2
20 89.8 ± 0.2 90.3 ± 0.4 89.3 ± 0.6 91.3 ± 0.1 89.4 ± 0.7 91.3 ± 0.1 89.0 ± 0.6 89.5 ± 0.1 89.9 ± 0.2 91.4 ± 0.1 91.3 ± 0.3 91.9 ± 0.3

Food101
1 47.4 ± 2.0 47.4 ± 2.0 47.4 ± 2.0 47.4 ± 2.0 47.4 ± 2.0 47.4 ± 2.0 47.4 ± 2.0 68.3 ± 1.8 66.1 ± 2.0 47.4 ± 2.0 47.4 ± 2.0 71.3 ± 1.4
2 64.4 ± 2.0 50.9 ± 3.4 49.9 ± 3.0 62.7 ± 3.2 50.8 ± 3.3 67.1 ± 2.6 51.5 ± 2.7 79.1 ± 0.6 72.3 ± 1.2 64.8 ± 1.5 74.1 ± 0.9 76.1 ± 1.3
4 77.2 ± 1.3 63.5 ± 4.1 58.5 ± 3.7 75.5 ± 3.0 62.2 ± 2.5 78.2 ± 2.6 63.0 ± 2.5 83.1 ± 0.7 78.1 ± 1.6 77.5 ± 1.9 79.6 ± 0.8 82.2 ± 0.5
6 81.4 ± 0.7 72.3 ± 2.8 66.9 ± 3.6 80.7 ± 1.8 69.3 ± 2.1 83.0 ± 0.8 69.9 ± 2.7 84.9 ± 0.5 80.3 ± 1.5 82.1 ± 0.9 83.2 ± 1.2 84.7 ± 0.6
8 83.8 ± 0.2 77.3 ± 2.5 73.0 ± 3.6 84.7 ± 1.0 74.2 ± 1.8 85.6 ± 0.5 73.4 ± 2.2 86.0 ± 0.6 81.9 ± 1.2 85.3 ± 1.1 85.6 ± 0.8 86.3 ± 0.4
10 85.3 ± 0.2 80.5 ± 2.3 76.8 ± 3.0 86.6 ± 0.9 77.4 ± 0.9 87.4 ± 0.5 75.6 ± 2.2 86.6 ± 0.3 83.4 ± 1.0 86.9 ± 0.9 86.7 ± 0.9 87.3 ± 0.5
12 86.4 ± 0.2 81.9 ± 1.3 79.8 ± 2.4 87.6 ± 0.6 79.1 ± 1.2 88.2 ± 0.4 77.6 ± 2.0 86.9 ± 0.2 83.8 ± 1.2 87.8 ± 0.8 87.9 ± 0.4 88.1 ± 0.6
14 86.9 ± 0.6 83.8 ± 0.8 81.2 ± 1.7 88.9 ± 0.5 81.2 ± 0.7 88.9 ± 0.4 79.7 ± 0.8 87.1 ± 0.3 84.5 ± 0.7 88.2 ± 0.8 88.6 ± 0.3 88.9 ± 0.7
16 87.5 ± 0.2 85.2 ± 0.8 82.7 ± 1.2 89.4 ± 0.3 82.3 ± 0.5 89.4 ± 0.3 80.8 ± 1.3 87.3 ± 0.2 85.1 ± 0.4 89.4 ± 0.5 89.2 ± 0.2 89.4 ± 0.5
18 88.0 ± 0.3 86.5 ± 0.4 83.9 ± 1.1 89.8 ± 0.4 83.0 ± 0.8 89.8 ± 0.2 82.0 ± 1.4 87.5 ± 0.2 85.3 ± 0.7 89.9 ± 0.5 89.7 ± 0.2 89.8 ± 0.4
20 88.3 ± 0.4 87.3 ± 0.2 84.6 ± 1.2 90.3 ± 0.3 83.9 ± 0.7 90.1 ± 0.1 83.0 ± 1.0 87.8 ± 0.2 85.5 ± 0.6 90.2 ± 0.5 90.0 ± 0.2 90.4 ± 0.1

ImageNet-100
1 54.7 ± 2.6 54.7 ± 2.6 54.7 ± 2.6 54.7 ± 2.6 54.7 ± 2.6 54.7 ± 2.6 54.7 ± 2.6 76.7 ± 1.7 76.6 ± 1.7 54.7 ± 2.6 54.7 ± 2.6 79.1 ± 1.1
2 76.5 ± 3.4 60.0 ± 7.0 57.8 ± 6.1 79.0 ± 1.8 78.7 ± 4.1 83.9 ± 2.4 76.5 ± 3.3 89.5 ± 0.2 89.1 ± 1.3 81.8 ± 1.4 84.9 ± 1.9 89.4 ± 0.8
4 86.8 ± 1.0 74.4 ± 6.1 68.6 ± 8.0 89.0 ± 0.6 88.2 ± 0.9 90.6 ± 0.7 85.7 ± 2.2 92.3 ± 0.2 91.7 ± 0.2 89.8 ± 0.8 90.7 ± 1.0 91.5 ± 0.5
6 89.7 ± 0.7 82.5 ± 1.4 78.6 ± 4.1 90.7 ± 0.6 89.4 ± 0.2 92.0 ± 0.7 88.0 ± 1.2 93.1 ± 0.2 92.4 ± 0.6 91.7 ± 0.5 92.4 ± 0.6 92.3 ± 0.4
8 91.0 ± 0.6 85.7 ± 1.4 81.7 ± 3.5 92.2 ± 0.3 89.9 ± 0.3 92.9 ± 0.4 89.0 ± 0.7 93.3 ± 0.4 92.7 ± 0.4 92.6 ± 0.9 93.4 ± 0.3 93.0 ± 0.1
10 91.8 ± 0.8 88.1 ± 1.1 85.1 ± 2.0 92.9 ± 0.3 90.2 ± 0.4 93.7 ± 0.4 89.8 ± 0.4 93.4 ± 0.3 93.0 ± 0.1 93.1 ± 0.5 93.8 ± 0.4 93.3 ± 0.3
12 92.4 ± 0.6 89.2 ± 0.6 87.6 ± 1.3 93.5 ± 0.2 90.5 ± 0.5 93.9 ± 0.3 90.4 ± 0.5 93.4 ± 0.3 93.0 ± 0.3 93.6 ± 0.4 94.1 ± 0.3 93.6 ± 0.4
14 92.9 ± 0.6 90.2 ± 0.5 88.8 ± 1.1 93.9 ± 0.2 91.0 ± 0.5 94.2 ± 0.2 90.9 ± 0.4 93.5 ± 0.3 93.3 ± 0.2 94.1 ± 0.4 94.1 ± 0.3 93.7 ± 0.3
16 93.3 ± 0.5 90.5 ± 0.6 89.7 ± 0.9 94.2 ± 0.3 91.4 ± 0.2 94.4 ± 0.3 91.1 ± 0.2 93.4 ± 0.3 93.3 ± 0.2 94.1 ± 0.4 94.4 ± 0.2 94.1 ± 0.3
18 93.3 ± 0.4 91.0 ± 0.6 90.4 ± 0.9 94.3 ± 0.3 91.8 ± 0.4 94.4 ± 0.4 91.4 ± 0.6 93.5 ± 0.4 93.5 ± 0.2 94.3 ± 0.4 94.7 ± 0.3 94.1 ± 0.3
20 93.4 ± 0.5 92.0 ± 0.6 90.8 ± 0.7 94.4 ± 0.3 92.1 ± 0.3 94.5 ± 0.2 91.8 ± 0.4 93.6 ± 0.3 93.7 ± 0.1 94.6 ± 0.4 94.8 ± 0.3 94.4 ± 0.4

DomainNet-Real
1 44.8 ± 0.8 44.8 ± 0.8 44.8 ± 0.8 44.8 ± 0.8 44.8 ± 0.8 44.8 ± 0.8 44.8 ± 0.8 64.8 ± 0.5 63.9 ± 0.4 44.8 ± 0.8 44.8 ± 0.8 68.0 ± 0.5
2 61.8 ± 0.9 54.1 ± 1.1 50.4 ± 1.3 61.9 ± 0.9 60.3 ± 1.0 65.3 ± 1.4 58.8 ± 1.3 73.0 ± 0.7 73.8 ± 0.2 65.2 ± 1.5 71.4 ± 0.8 75.0 ± 0.1
4 73.1 ± 0.7 64.5 ± 1.0 58.7 ± 3.2 72.5 ± 0.4 69.3 ± 0.5 75.6 ± 0.3 69.2 ± 1.0 74.8 ± 0.6 77.8 ± 0.1 75.4 ± 0.8 76.6 ± 0.3 78.7 ± 0.4
6 77.0 ± 0.4 70.6 ± 0.4 65.7 ± 1.9 77.2 ± 0.6 73.7 ± 0.3 79.1 ± 0.3 73.8 ± 0.4 75.7 ± 0.4 79.7 ± 0.4 78.6 ± 0.9 77.8 ± 0.2 80.8 ± 0.3
8 79.2 ± 0.2 74.1 ± 0.5 70.3 ± 1.7 79.9 ± 0.3 76.4 ± 0.1 80.7 ± 0.3 76.0 ± 0.3 76.2 ± 0.4 80.6 ± 0.1 80.7 ± 0.5 78.7 ± 0.2 82.2 ± 0.1
10 80.4 ± 0.2 76.5 ± 0.4 73.8 ± 1.2 81.6 ± 0.3 78.0 ± 0.3 82.0 ± 0.3 77.7 ± 0.5 76.8 ± 0.3 81.3 ± 0.1 82.2 ± 0.3 79.0 ± 0.2 83.3 ± 0.2
12 80.3 ± 0.1 77.0 ± 0.3 75.5 ± 0.6 81.6 ± 0.3 78.4 ± 0.5 82.0 ± 0.2 78.1 ± 0.6 77.0 ± 0.1 80.9 ± 0.3 81.9 ± 0.4 78.7 ± 0.3 82.8 ± 0.3
14 81.4 ± 0.3 79.1 ± 0.4 77.5 ± 0.4 83.0 ± 0.2 79.8 ± 0.3 83.2 ± 0.3 79.5 ± 0.6 77.6 ± 0.3 81.3 ± 0.1 83.6 ± 0.2 79.4 ± 0.2 84.1 ± 0.2
16 82.1 ± 0.3 80.4 ± 0.3 79.0 ± 0.6 84.0 ± 0.3 81.1 ± 0.2 84.0 ± 0.1 80.4 ± 0.6 78.0 ± 0.5 82.3 ± 0.1 84.3 ± 0.3 79.7 ± 0.3 84.7 ± 0.2
18 82.5 ± 0.2 81.5 ± 0.3 80.0 ± 0.4 84.5 ± 0.2 81.6 ± 0.2 84.6 ± 0.3 81.2 ± 0.6 78.5 ± 0.2 83.0 ± 0.2 84.9 ± 0.2 79.9 ± 0.1 85.1 ± 0.0
20 83.0 ± 0.2 82.2 ± 0.2 81.0 ± 0.5 85.0 ± 0.3 82.3 ± 0.3 84.9 ± 0.3 81.7 ± 0.6 78.7 ± 0.4 83.4 ± 0.1 85.3 ± 0.2 80.2 ± 0.2 85.5 ± 0.1
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Table 5: Test set accuracy with standard deviations (average of 5 random seeds) at certain iterations t
during AL on other VTAB+ Zhai et al. (2020) datasets including Stanford Cars Krause et al. (2013), FVGC
Aircraft Maji et al. (2013), Oxford-IIIT Pets Parkhi et al. (2012), and the large Places365 Zhou et al. (2017)
dataset (from top to bottom) with OpenCLIP ViT-G14 as the feature extractor f . Cells are color coded
according to the magnitude of improvement in mean accuracy over the Random baseline. Probcover was
intractable on Places365 with the resources available, and thus not performed (-). Bold values represent the
first place mean accuracy at iteration t with the second place value underlined.

t Random Uncertainty Entropy Margins BALD pBALD Coreset Typiclust ProbCover BADGE Alfamix DropQuery (Ours)
Stanford Cars

1 51.9 ± 1.1 51.9 ± 1.1 51.9 ± 1.1 51.9 ± 1.1 52.1 ± 1.2 51.9 ± 1.1 51.9 ± 1.1 74.2 ± 1.6 74.0 ± 2.2 51.9 ± 1.1 51.9 ± 1.1 73.4 ± 1.7
2 72.3 ± 1.7 69.0 ± 1.1 66.3 ± 1.5 75.7 ± 2.1 69.2 ± 1.6 76.6 ± 1.5 76.1 ± 0.4 87.9 ± 0.6 86.1 ± 1.9 77.2 ± 1.6 82.4 ± 0.6 87.8 ± 0.5
4 87.0 ± 1.1 87.1 ± 1.1 84.1 ± 1.4 90.4 ± 0.9 86.1 ± 1.2 90.7 ± 0.6 87.8 ± 0.8 91.3 ± 0.4 91.2 ± 0.2 90.4 ± 0.7 90.4 ± 0.2 92.9 ± 0.3
6 91.2 ± 0.2 92.8 ± 0.3 90.9 ± 0.5 93.8 ± 0.3 91.3 ± 0.4 93.2 ± 0.6 90.8 ± 0.4 92.1 ± 0.3 92.7 ± 0.2 93.9 ± 0.1 92.0 ± 0.3 94.4 ± 0.3
8 93.2 ± 0.3 94.6 ± 0.2 94.2 ± 0.6 95.0 ± 0.2 94.2 ± 0.3 94.5 ± 0.4 92.3 ± 0.3 92.6 ± 0.5 93.4 ± 0.1 95.0 ± 0.3 92.8 ± 0.4 95.1 ± 0.1
10 94.0 ± 0.4 95.4 ± 0.2 95.5 ± 0.3 95.5 ± 0.2 95.3 ± 0.2 95.2 ± 0.2 93.4 ± 0.3 93.1 ± 0.5 93.9 ± 0.2 95.6 ± 0.2 93.3 ± 0.3 95.4 ± 0.1
12 94.4 ± 0.2 95.7 ± 0.1 95.8 ± 0.1 95.7 ± 0.2 95.8 ± 0.2 95.5 ± 0.2 94.2 ± 0.3 93.6 ± 0.3 94.2 ± 0.1 95.8 ± 0.2 93.9 ± 0.3 95.8 ± 0.1
14 94.6 ± 0.2 95.8 ± 0.1 95.9 ± 0.1 95.8 ± 0.2 95.9 ± 0.0 95.7 ± 0.1 94.5 ± 0.3 93.7 ± 0.4 94.7 ± 0.1 95.8 ± 0.2 94.5 ± 0.3 96.0 ± 0.1
16 95.0 ± 0.3 95.9 ± 0.1 95.9 ± 0.1 96.0 ± 0.1 95.9 ± 0.1 95.8 ± 0.1 94.7 ± 0.3 94.0 ± 0.4 95.0 ± 0.2 95.8 ± 0.2 94.7 ± 0.2 95.9 ± 0.1
18 95.1 ± 0.3 95.9 ± 0.1 95.9 ± 0.1 95.9 ± 0.2 95.8 ± 0.2 95.9 ± 0.1 94.9 ± 0.1 94.1 ± 0.3 95.2 ± 0.2 95.9 ± 0.1 94.9 ± 0.3 95.9 ± 0.1
20 95.2 ± 0.2 95.9 ± 0.0 95.9 ± 0.1 95.9 ± 0.1 96.0 ± 0.0 95.9 ± 0.1 95.2 ± 0.2 94.2 ± 0.4 95.2 ± 0.1 95.9 ± 0.1 95.1 ± 0.0 95.9 ± 0.1

FVGC Aircraft
1 31.6 ± 1.6 31.6 ± 1.6 31.6 ± 1.6 31.6 ± 1.6 31.6 ± 1.8 31.6 ± 1.6 31.6 ± 1.6 42.0 ± 2.0 34.3 ± 0.3 31.6 ± 1.6 31.6 ± 1.6 42.5 ± 1.3
2 42.7 ± 0.6 39.5 ± 1.6 37.6 ± 2.4 42.9 ± 1.7 39.2 ± 2.5 44.1 ± 1.7 39.2 ± 1.2 51.9 ± 0.7 41.8 ± 0.7 44.5 ± 2.8 48.5 ± 1.0 52.2 ± 0.6
4 53.2 ± 1.3 50.8 ± 1.0 47.4 ± 2.4 55.2 ± 1.6 47.6 ± 1.4 54.0 ± 1.2 49.2 ± 1.9 58.4 ± 0.5 52.1 ± 0.6 55.3 ± 1.7 55.8 ± 1.1 59.6 ± 0.6
6 58.7 ± 0.9 56.6 ± 0.3 54.2 ± 1.5 60.9 ± 0.9 54.5 ± 1.2 60.9 ± 0.7 54.3 ± 1.1 62.2 ± 0.8 58.1 ± 2.0 62.0 ± 0.7 59.3 ± 0.6 63.8 ± 1.3
8 62.5 ± 1.0 61.0 ± 1.0 60.0 ± 1.9 64.7 ± 0.9 58.7 ± 1.7 64.8 ± 0.7 58.2 ± 0.5 65.0 ± 0.6 59.3 ± 2.3 66.1 ± 1.2 62.2 ± 0.7 66.6 ± 0.5
10 64.9 ± 0.8 64.9 ± 1.0 64.1 ± 1.4 67.8 ± 0.7 63.2 ± 1.2 67.5 ± 0.5 61.0 ± 1.2 66.5 ± 0.5 61.0 ± 2.0 68.0 ± 0.7 65.1 ± 0.6 68.2 ± 0.9
12 66.7 ± 0.5 67.2 ± 0.8 66.2 ± 1.2 69.9 ± 1.0 65.9 ± 0.8 69.4 ± 0.6 63.6 ± 1.2 68.1 ± 0.6 63.8 ± 1.9 70.2 ± 0.9 66.9 ± 0.5 69.8 ± 1.0
14 68.2 ± 1.0 69.5 ± 1.2 68.3 ± 1.0 71.6 ± 0.6 68.0 ± 0.8 71.2 ± 0.5 66.0 ± 0.9 69.2 ± 0.8 64.7 ± 2.2 71.9 ± 1.1 68.4 ± 0.7 71.1 ± 0.8
16 70.2 ± 0.6 70.8 ± 1.0 70.5 ± 0.7 72.8 ± 0.6 70.0 ± 0.5 72.5 ± 0.9 68.5 ± 1.2 70.3 ± 0.7 64.8 ± 1.9 73.1 ± 1.2 69.4 ± 0.6 72.4 ± 0.5
18 71.0 ± 0.6 72.3 ± 0.7 71.3 ± 1.0 74.1 ± 0.5 71.5 ± 0.5 73.6 ± 0.5 69.6 ± 1.2 71.1 ± 0.6 66.3 ± 1.6 74.7 ± 0.8 70.7 ± 0.4 73.3 ± 0.4
20 72.2 ± 0.4 73.9 ± 0.5 73.0 ± 0.7 75.5 ± 0.6 72.9 ± 0.5 74.1 ± 0.6 70.8 ± 0.7 72.0 ± 0.4 68.3 ± 1.1 75.7 ± 0.7 72.2 ± 0.5 74.4 ± 0.6

Oxford-IIIT Pets
1 47.2 ± 5.0 47.2 ± 5.0 47.2 ± 5.0 47.2 ± 5.0 47.7 ± 5.6 47.2 ± 5.0 47.2 ± 5.0 69.5 ± 3.8 70.7 ± 4.5 47.2 ± 5.0 47.2 ± 5.0 70.4 ± 1.6
2 67.6 ± 7.8 60.9 ± 7.2 59.9 ± 7.0 70.0 ± 3.2 61.1 ± 7.5 67.8 ± 2.4 63.6 ± 3.9 84.6 ± 1.6 85.2 ± 2.7 68.5 ± 3.8 77.3 ± 1.7 84.6 ± 1.5
4 80.7 ± 3.9 78.7 ± 3.6 77.4 ± 3.7 84.9 ± 3.5 77.8 ± 2.6 84.5 ± 1.1 77.7 ± 2.7 89.6 ± 1.0 89.8 ± 1.6 86.8 ± 2.5 86.3 ± 1.9 90.1 ± 1.1
6 87.9 ± 2.8 88.0 ± 1.2 86.1 ± 3.3 89.4 ± 0.7 86.0 ± 2.9 89.1 ± 1.0 84.0 ± 1.5 91.3 ± 1.0 92.1 ± 0.4 90.0 ± 0.8 89.5 ± 1.6 92.7 ± 0.6
8 89.5 ± 2.0 91.1 ± 0.6 90.1 ± 1.5 91.4 ± 0.3 90.1 ± 1.4 91.5 ± 0.6 88.4 ± 1.5 92.6 ± 0.8 92.6 ± 0.7 91.6 ± 0.8 90.0 ± 0.2 93.4 ± 0.4
10 91.4 ± 0.6 92.8 ± 0.6 91.9 ± 0.5 92.6 ± 0.6 91.7 ± 0.4 92.8 ± 0.3 89.9 ± 1.4 93.2 ± 0.8 93.0 ± 1.0 92.7 ± 0.6 91.2 ± 0.6 93.7 ± 0.5
12 91.9 ± 0.6 93.3 ± 0.5 93.1 ± 0.7 93.7 ± 0.7 92.3 ± 0.8 92.8 ± 0.6 91.4 ± 0.8 93.7 ± 0.8 93.0 ± 0.9 93.0 ± 0.7 92.0 ± 0.6 93.9 ± 0.3
14 92.7 ± 0.4 93.9 ± 0.4 93.9 ± 0.5 94.1 ± 0.2 93.2 ± 0.8 93.6 ± 0.4 91.6 ± 0.6 93.9 ± 0.2 92.7 ± 0.2 93.7 ± 0.5 93.1 ± 0.3 94.2 ± 0.3
16 93.0 ± 0.6 94.4 ± 0.2 94.0 ± 0.2 94.5 ± 0.2 93.8 ± 0.5 94.0 ± 0.5 92.5 ± 0.8 94.2 ± 0.6 92.3 ± 0.4 94.2 ± 0.3 93.4 ± 0.4 94.5 ± 0.3
18 93.3 ± 0.7 94.5 ± 0.3 94.9 ± 0.2 94.6 ± 0.1 94.1 ± 0.3 94.3 ± 0.3 93.1 ± 0.6 94.2 ± 0.3 92.5 ± 0.8 94.5 ± 0.2 93.6 ± 0.2 94.6 ± 0.2
20 93.7 ± 0.4 94.7 ± 0.1 94.8 ± 0.3 94.8 ± 0.1 94.7 ± 0.1 94.5 ± 0.5 93.2 ± 0.4 94.1 ± 0.3 93.1 ± 0.2 94.8 ± 0.2 94.0 ± 0.2 94.8 ± 0.2

Places365
1 18.1 ± 0.5 18.1 ± 0.5 18.1 ± 0.5 18.1 ± 0.5 18.1 ± 0.5 18.1 ± 0.5 18.1 ± 0.5 26.7 ± 0.7 - 18.1 ± 0.5 18.1 ± 0.5 30.7 ± 0.6
2 24.9 ± 0.9 21.7 ± 0.4 20.7 ± 0.3 25.3 ± 0.5 22.8 ± 0.5 25.9 ± 0.5 20.4 ± 0.7 32.4 ± 0.3 - 25.1 ± 0.6 32.1 ± 0.5 35.3 ± 0.7
4 32.4 ± 0.7 27.9 ± 0.5 26.5 ± 0.2 33.0 ± 0.4 29.0 ± 0.8 33.3 ± 0.4 24.0 ± 0.6 37.2 ± 0.4 - 32.9 ± 0.4 36.6 ± 0.3 38.8 ± 0.4
6 36.5 ± 0.6 31.9 ± 0.8 30.5 ± 0.3 36.9 ± 0.4 32.7 ± 0.6 37.1 ± 0.3 27.3 ± 0.4 38.7 ± 0.3 - 36.8 ± 0.4 38.5 ± 0.4 40.6 ± 0.3
8 38.9 ± 0.5 34.9 ± 0.7 33.3 ± 0.3 39.5 ± 0.3 35.3 ± 0.6 39.6 ± 0.1 29.9 ± 0.6 39.6 ± 0.3 - 39.3 ± 0.6 39.4 ± 0.4 41.6 ± 0.5
10 40.9 ± 0.3 36.9 ± 0.4 35.3 ± 0.2 41.1 ± 0.4 37.0 ± 0.3 41.3 ± 0.2 31.9 ± 0.6 40.3 ± 0.5 - 41.4 ± 0.4 40.1 ± 0.2 42.5 ± 0.3
12 41.5 ± 0.4 37.6 ± 0.2 36.1 ± 0.3 41.7 ± 0.4 37.4 ± 0.3 41.8 ± 0.3 32.4 ± 0.7 40.4 ± 0.4 - 41.9 ± 0.2 40.0 ± 0.2 42.3 ± 0.3
14 42.8 ± 0.4 39.0 ± 0.5 37.5 ± 0.3 43.2 ± 0.4 39.1 ± 0.3 43.4 ± 0.2 34.2 ± 0.4 40.9 ± 0.7 - 43.3 ± 0.2 40.9 ± 0.2 43.3 ± 0.2
16 43.8 ± 0.4 40.2 ± 0.5 38.6 ± 0.2 44.1 ± 0.2 40.2 ± 0.2 44.1 ± 0.3 35.3 ± 0.4 41.6 ± 0.1 - 44.3 ± 0.1 41.3 ± 0.2 44.0 ± 0.1
18 44.4 ± 0.4 41.1 ± 0.2 39.6 ± 0.3 44.8 ± 0.4 41.0 ± 0.3 44.9 ± 0.3 36.6 ± 0.5 42.0 ± 0.5 - 45.1 ± 0.1 42.0 ± 0.3 44.4 ± 0.1
20 45.0 ± 0.3 41.6 ± 0.4 40.4 ± 0.3 45.5 ± 0.3 41.7 ± 0.3 45.5 ± 0.3 37.7 ± 0.5 42.4 ± 0.3 - 45.6 ± 0.2 42.3 ± 0.2 44.8 ± 0.2
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Table 6: Test set accuracy with standard deviations (average of 5 random seeds) at certain iterations t
during AL on out-of-domain biomedical datasets including Blood Smear Acevedo et al. (2020), Diabetic
Retinopathy Kaggle & EyePacs (2015), IICBU HeLa Murphy et al. (2000), and Skin cancer Tschandl et al.
(2018) (from top to bottom) with DINOv2 ViT-g14 as the feature extractor f . Probcover was intractable on
Patch Camelyon with the resources available, and thus not performed (-). Cells are color coded according
to the magnitude of improvement in mean accuracy over the Random baseline.

t Random Uncertainty Entropy Margins BALD pBALD Coreset Typiclust ProbCover BADGE Alfamix DropQuery (Ours)
Blood Smear

1 40.8 ± 3.0 40.8 ± 3.0 40.8 ± 3.0 40.8 ± 3.0 40.8 ± 3.0 40.8 ± 3.0 40.8 ± 3.0 48.7 ± 9.8 44.2 ± 17.9 40.8 ± 3.0 40.8 ± 3.0 39.9 ± 13.3
2 56.6 ± 2.5 50.4 ± 3.0 52.7 ± 2.8 54.6 ± 4.0 54.6 ± 6.0 55.1 ± 5.6 33.2 ± 5.6 63.5 ± 4.0 62.4 ± 1.1 55.7 ± 4.1 64.0 ± 2.6 63.3 ± 2.5
4 69.8 ± 4.3 65.8 ± 5.8 64.4 ± 5.3 69.8 ± 5.0 69.4 ± 4.9 69.6 ± 2.1 36.7 ± 7.4 73.4 ± 2.7 72.5 ± 0.8 69.5 ± 1.8 75.2 ± 3.0 77.2 ± 2.4
6 75.6 ± 4.4 73.1 ± 3.5 74.8 ± 2.1 77.1 ± 5.0 73.2 ± 3.5 75.5 ± 2.7 46.8 ± 6.8 78.9 ± 2.1 80.3 ± 0.4 76.4 ± 2.2 81.6 ± 2.3 80.3 ± 2.0
8 80.1 ± 2.6 78.8 ± 3.9 77.2 ± 2.0 80.9 ± 2.4 77.5 ± 2.7 77.7 ± 2.9 53.9 ± 7.0 80.8 ± 2.1 82.7 ± 0.6 81.2 ± 0.9 84.7 ± 1.4 83.4 ± 0.8
10 80.7 ± 1.4 71.8 ± 14.5 79.3 ± 3.3 84.7 ± 1.6 80.3 ± 3.7 80.3 ± 2.8 60.8 ± 6.3 83.7 ± 0.6 83.4 ± 0.7 84.2 ± 2.0 87.0 ± 0.5 85.0 ± 0.9
12 82.0 ± 2.3 83.0 ± 2.5 79.4 ± 2.1 87.6 ± 0.4 82.8 ± 3.8 83.6 ± 1.7 65.7 ± 6.1 84.7 ± 0.9 84.4 ± 0.5 86.3 ± 1.0 88.0 ± 1.2 85.7 ± 0.9
14 82.8 ± 2.3 83.8 ± 1.5 82.1 ± 1.5 88.0 ± 0.4 85.2 ± 2.0 84.9 ± 2.0 68.2 ± 2.4 84.7 ± 1.5 85.6 ± 0.5 87.7 ± 0.8 89.3 ± 1.1 85.6 ± 1.3
16 83.7 ± 2.2 84.2 ± 4.6 81.9 ± 2.7 89.0 ± 1.0 86.2 ± 1.9 85.7 ± 2.1 70.5 ± 1.6 86.2 ± 0.6 85.7 ± 0.7 88.4 ± 1.1 89.7 ± 1.8 87.2 ± 0.7
18 85.6 ± 1.1 86.4 ± 2.5 84.1 ± 2.2 89.9 ± 1.1 85.3 ± 4.3 86.7 ± 1.3 73.3 ± 4.4 87.1 ± 0.3 85.2 ± 0.4 89.2 ± 0.9 90.5 ± 1.0 87.3 ± 0.8
20 85.4 ± 3.1 87.6 ± 1.5 84.9 ± 3.7 91.2 ± 0.3 88.1 ± 1.4 87.8 ± 1.7 74.4 ± 2.3 88.3 ± 0.4 86.2 ± 0.3 89.8 ± 0.9 91.2 ± 0.8 87.8 ± 0.5

Diabetic Retinopathy
1 43.3 ± 11.6 43.3 ± 11.6 43.3 ± 11.6 43.3 ± 11.6 43.3 ± 11.6 43.3 ± 11.6 43.3 ± 11.6 46.9 ± 4.0 56.3 ± 1.1 43.3 ± 11.6 43.3 ± 11.6 57.2 ± 0.9
2 51.0 ± 4.4 43.6 ± 6.1 44.9 ± 8.9 47.9 ± 3.1 40.9 ± 9.5 45.6 ± 10.0 42.2 ± 8.5 53.4 ± 3.3 53.2 ± 1.2 48.9 ± 6.0 52.2 ± 3.6 57.7 ± 4.0
4 54.2 ± 3.6 52.6 ± 6.8 52.3 ± 6.8 55.5 ± 2.5 53.0 ± 4.5 58.1 ± 3.1 45.5 ± 7.3 59.7 ± 4.9 57.0 ± 1.0 57.0 ± 4.4 58.8 ± 3.1 61.2 ± 2.1
6 58.1 ± 2.2 56.4 ± 4.6 57.1 ± 4.7 59.0 ± 3.0 57.2 ± 5.6 57.8 ± 1.6 48.8 ± 4.8 62.4 ± 3.4 62.1 ± 1.8 59.7 ± 2.6 62.9 ± 2.2 62.8 ± 3.1
8 59.7 ± 2.5 58.0 ± 1.9 57.6 ± 5.7 60.4 ± 2.6 58.7 ± 2.8 60.9 ± 2.4 46.9 ± 3.7 62.5 ± 2.1 60.4 ± 0.6 62.6 ± 1.7 63.5 ± 3.0 64.9 ± 0.7
10 63.1 ± 1.0 58.6 ± 3.0 57.5 ± 6.7 62.5 ± 1.8 60.4 ± 5.5 61.9 ± 1.8 45.1 ± 6.3 63.5 ± 1.7 63.1 ± 0.6 62.5 ± 2.8 64.6 ± 2.8 64.4 ± 1.0
12 64.0 ± 2.2 59.2 ± 1.7 59.1 ± 8.2 62.9 ± 3.5 59.8 ± 4.2 63.7 ± 1.6 51.7 ± 1.7 65.7 ± 1.4 61.8 ± 0.7 63.2 ± 3.6 65.3 ± 3.0 65.3 ± 1.9
14 64.7 ± 1.5 59.0 ± 4.8 58.8 ± 5.8 64.5 ± 2.7 63.0 ± 3.4 63.4 ± 2.7 51.8 ± 3.6 65.7 ± 2.5 62.8 ± 1.4 63.4 ± 2.0 64.3 ± 2.0 65.2 ± 1.7
16 65.8 ± 1.6 58.6 ± 4.7 61.2 ± 5.7 62.8 ± 4.4 63.3 ± 3.3 64.8 ± 1.9 53.0 ± 3.4 65.9 ± 0.9 64.3 ± 1.2 63.9 ± 1.9 65.0 ± 2.2 66.1 ± 1.6
18 65.4 ± 1.5 60.3 ± 4.2 61.1 ± 5.5 64.4 ± 3.4 63.8 ± 2.2 64.4 ± 1.3 52.7 ± 4.1 66.5 ± 1.2 63.8 ± 0.3 64.2 ± 3.0 66.0 ± 1.7 66.7 ± 1.2
20 65.8 ± 0.7 61.1 ± 3.0 61.7 ± 3.3 65.5 ± 3.1 65.4 ± 1.9 65.3 ± 1.3 54.2 ± 3.1 65.0 ± 2.2 62.7 ± 0.5 65.8 ± 3.2 66.4 ± 2.2 66.2 ± 0.9

IICBU Hela
1 26.5 ± 4.6 26.5 ± 4.6 26.5 ± 4.6 26.5 ± 4.6 26.5 ± 4.6 26.5 ± 4.6 26.5 ± 4.6 40.5 ± 1.8 19.2 ± 2.8 26.5 ± 4.6 26.5 ± 4.6 37.0 ± 3.9
2 42.1 ± 4.1 34.0 ± 3.0 31.3 ± 6.5 40.2 ± 6.7 34.8 ± 8.2 36.4 ± 5.7 39.8 ± 4.0 43.7 ± 3.1 30.1 ± 7.3 41.4 ± 4.2 45.0 ± 2.4 46.7 ± 4.8
4 51.3 ± 3.5 44.2 ± 9.8 38.3 ± 2.9 53.2 ± 3.9 49.2 ± 6.1 49.8 ± 1.8 42.4 ± 3.5 52.5 ± 2.9 49.9 ± 2.2 49.4 ± 2.4 53.4 ± 6.6 54.8 ± 3.1
6 56.5 ± 2.7 52.4 ± 6.8 48.9 ± 5.8 59.9 ± 3.4 52.6 ± 3.9 60.1 ± 2.5 45.4 ± 3.8 59.3 ± 3.7 49.7 ± 1.4 57.8 ± 3.9 57.3 ± 4.5 61.5 ± 2.1
8 60.5 ± 5.9 58.8 ± 8.9 55.3 ± 9.3 64.5 ± 1.6 57.6 ± 1.8 64.4 ± 3.5 48.2 ± 2.3 63.6 ± 4.3 56.3 ± 1.6 59.5 ± 3.4 63.9 ± 5.6 64.3 ± 4.1
10 61.3 ± 3.0 61.7 ± 10.7 60.1 ± 8.4 68.8 ± 1.8 63.9 ± 1.5 67.3 ± 3.1 52.0 ± 0.9 63.1 ± 3.2 59.3 ± 3.0 64.4 ± 2.1 66.2 ± 4.9 67.3 ± 2.2
12 64.9 ± 4.3 65.0 ± 9.7 61.3 ± 5.6 70.1 ± 4.3 64.3 ± 1.4 72.0 ± 2.8 54.7 ± 3.0 66.5 ± 4.9 57.7 ± 2.1 68.1 ± 2.4 69.2 ± 5.0 69.5 ± 2.7
14 66.5 ± 4.1 66.4 ± 7.2 63.8 ± 6.3 71.7 ± 3.0 66.8 ± 4.5 72.8 ± 3.1 55.6 ± 2.8 67.7 ± 5.2 62.1 ± 2.6 69.5 ± 2.2 71.6 ± 5.9 71.6 ± 1.7
16 68.4 ± 3.2 70.2 ± 5.0 65.3 ± 7.3 74.3 ± 1.3 69.4 ± 4.8 73.5 ± 2.8 59.5 ± 2.0 68.7 ± 4.5 63.9 ± 3.0 72.9 ± 2.1 72.4 ± 4.0 72.1 ± 1.3
18 68.6 ± 2.2 68.0 ± 5.7 63.5 ± 4.3 74.9 ± 1.7 69.9 ± 1.0 76.3 ± 3.1 60.2 ± 2.8 70.5 ± 1.1 64.0 ± 1.7 73.8 ± 1.5 74.8 ± 3.5 74.0 ± 2.3
20 71.3 ± 2.5 71.4 ± 5.0 65.5 ± 5.7 74.7 ± 1.3 73.5 ± 4.0 77.2 ± 1.9 62.5 ± 2.1 69.4 ± 2.0 68.3 ± 1.4 74.0 ± 3.1 76.6 ± 3.5 73.3 ± 2.0

Skin cancer
1 48.6 ± 3.4 48.6 ± 3.4 48.6 ± 3.4 48.6 ± 3.4 48.6 ± 3.4 48.6 ± 3.4 48.6 ± 3.4 33.7 ± 3.7 17.3 ± 11.3 48.6 ± 3.4 48.6 ± 3.4 45.5 ± 15.6
2 51.4 ± 6.8 53.0 ± 4.8 50.1 ± 7.9 52.2 ± 3.3 53.3 ± 9.8 51.8 ± 7.6 51.9 ± 11.8 48.7 ± 2.0 14.2 ± 15.8 56.2 ± 4.4 52.6 ± 1.5 54.1 ± 7.0
4 49.8 ± 8.0 55.2 ± 6.3 52.9 ± 6.5 57.4 ± 5.0 57.6 ± 6.9 58.8 ± 3.5 56.3 ± 4.4 54.2 ± 3.3 29.7 ± 17.3 59.2 ± 3.6 55.4 ± 3.4 58.3 ± 5.0
6 53.9 ± 5.7 57.9 ± 5.7 54.4 ± 6.4 59.6 ± 5.2 61.9 ± 3.8 60.5 ± 2.4 61.3 ± 4.0 52.9 ± 4.4 63.8 ± 2.0 61.5 ± 3.6 54.6 ± 5.2 61.3 ± 5.5
8 55.5 ± 3.6 59.7 ± 4.1 56.3 ± 7.5 62.7 ± 3.5 63.9 ± 3.4 62.2 ± 3.7 61.5 ± 6.2 56.4 ± 2.3 51.9 ± 13.0 62.6 ± 3.8 56.5 ± 5.9 63.6 ± 2.3
10 58.6 ± 1.8 61.2 ± 3.6 59.0 ± 5.7 63.3 ± 2.4 65.4 ± 2.6 63.8 ± 2.6 62.0 ± 4.5 57.0 ± 3.0 59.3 ± 9.1 64.1 ± 3.6 58.9 ± 6.0 64.4 ± 2.4
12 58.9 ± 1.3 62.4 ± 3.5 60.3 ± 5.8 63.9 ± 2.5 66.9 ± 2.3 65.8 ± 1.9 65.0 ± 2.3 58.0 ± 2.4 60.2 ± 11.8 66.1 ± 2.6 60.0 ± 5.5 66.0 ± 1.7
14 60.0 ± 2.1 63.9 ± 3.5 61.2 ± 7.2 65.7 ± 2.9 68.0 ± 1.7 67.1 ± 0.6 65.1 ± 2.8 58.5 ± 3.2 63.4 ± 5.2 67.1 ± 2.0 61.8 ± 5.0 66.7 ± 1.9
16 60.4 ± 1.8 65.0 ± 2.8 64.8 ± 4.5 67.6 ± 2.4 67.0 ± 2.6 67.1 ± 1.4 65.5 ± 3.3 59.4 ± 2.2 59.1 ± 12.7 67.5 ± 2.4 64.6 ± 3.5 68.3 ± 1.6
18 60.9 ± 1.5 65.1 ± 3.9 62.9 ± 6.2 67.7 ± 1.7 67.1 ± 4.2 67.9 ± 1.3 64.6 ± 3.4 60.6 ± 3.1 62.7 ± 9.6 68.6 ± 2.5 66.7 ± 2.8 68.6 ± 2.2
20 62.0 ± 1.9 66.0 ± 2.6 67.3 ± 2.7 68.9 ± 1.5 69.4 ± 2.2 68.7 ± 0.7 64.8 ± 3.6 60.6 ± 3.2 65.8 ± 4.2 69.5 ± 1.9 67.7 ± 2.8 68.8 ± 1.4

Colorectal Histology
1 42.7 ± 4.1 42.7 ± 4.1 42.7 ± 4.1 42.7 ± 4.1 42.7 ± 4.1 42.7 ± 4.1 42.7 ± 4.1 47.5 ± 5.0 32.7 ± 4.0 42.7 ± 4.1 42.7 ± 4.1 47.9 ± 5.7
2 53.4 ± 6.3 48.1 ± 3.5 45.6 ± 2.0 55.4 ± 6.0 46.9 ± 5.5 53.1 ± 6.3 47.1 ± 6.5 54.2 ± 4.2 39.2 ± 1.2 57.1 ± 4.3 57.4 ± 4.6 55.7 ± 8.9
4 65.4 ± 3.0 58.5 ± 5.4 55.4 ± 5.1 67.5 ± 6.9 56.1 ± 7.2 69.3 ± 5.0 49.5 ± 4.1 66.9 ± 1.6 44.8 ± 3.7 72.7 ± 2.4 68.9 ± 5.3 74.2 ± 4.9
6 68.4 ± 5.9 70.1 ± 8.0 63.0 ± 5.7 74.2 ± 6.6 64.1 ± 7.4 72.7 ± 3.0 51.2 ± 9.1 75.4 ± 1.3 49.4 ± 5.2 76.3 ± 2.6 72.5 ± 7.8 77.3 ± 1.8
8 74.7 ± 5.1 74.8 ± 9.1 67.5 ± 5.6 78.7 ± 5.4 71.5 ± 6.9 78.1 ± 1.5 52.3 ± 4.9 76.7 ± 0.8 49.7 ± 5.2 79.7 ± 1.5 76.0 ± 7.0 80.7 ± 1.4
10 76.7 ± 3.8 76.9 ± 8.0 72.4 ± 8.3 81.2 ± 2.0 78.0 ± 2.8 79.4 ± 2.0 53.4 ± 6.0 76.9 ± 3.6 51.5 ± 4.3 83.3 ± 1.4 80.6 ± 2.9 81.8 ± 1.3
12 79.1 ± 2.5 76.9 ± 8.5 75.1 ± 6.6 82.1 ± 1.5 80.2 ± 0.7 81.2 ± 1.3 56.2 ± 4.4 80.6 ± 1.6 54.3 ± 2.4 83.3 ± 1.7 82.5 ± 3.4 82.8 ± 1.1
14 77.6 ± 5.2 77.0 ± 7.6 76.8 ± 7.1 84.1 ± 1.2 81.2 ± 1.8 83.3 ± 1.9 55.3 ± 5.1 81.9 ± 1.3 55.5 ± 4.8 84.3 ± 1.4 84.2 ± 2.8 84.4 ± 1.0
16 80.5 ± 2.7 77.8 ± 7.0 78.2 ± 5.3 85.4 ± 1.7 82.4 ± 2.0 84.4 ± 1.1 54.2 ± 5.8 81.9 ± 1.6 56.0 ± 4.1 84.9 ± 1.3 85.4 ± 1.6 85.0 ± 0.7
18 81.4 ± 2.1 79.1 ± 6.5 80.9 ± 5.8 86.0 ± 1.8 84.2 ± 1.7 85.2 ± 1.5 55.0 ± 6.9 83.6 ± 0.9 65.9 ± 11.3 85.8 ± 0.8 86.3 ± 1.6 85.7 ± 0.9
20 82.3 ± 3.0 80.9 ± 7.0 82.7 ± 2.9 87.0 ± 0.6 85.4 ± 1.7 85.7 ± 1.4 58.3 ± 6.7 84.2 ± 0.8 80.9 ± 2.1 85.2 ± 1.7 86.8 ± 1.1 85.9 ± 0.8

Patch Camelyon
1 52.0 ± 7.7 52.0 ± 7.7 52.0 ± 7.7 52.0 ± 7.7 52.0 ± 7.7 52.0 ± 7.7 52.0 ± 7.7 47.4 ± 6.0 - 52.0 ± 7.7 52.0 ± 7.7 47.8 ± 5.0
2 55.3 ± 8.4 60.5 ± 7.4 54.0 ± 11.5 56.4 ± 8.2 60.2 ± 3.0 55.2 ± 11.1 55.3 ± 7.9 56.2 ± 0.5 - 49.5 ± 12.9 58.9 ± 3.9 58.3 ± 9.1
4 63.4 ± 7.3 59.6 ± 13.1 62.4 ± 4.4 60.6 ± 11.9 54.4 ± 6.3 66.2 ± 2.8 52.3 ± 2.5 59.5 ± 1.0 - 64.1 ± 4.7 66.0 ± 2.6 64.9 ± 1.7
6 62.7 ± 6.5 60.7 ± 10.3 65.9 ± 2.7 61.4 ± 9.4 56.0 ± 7.3 68.9 ± 2.2 52.1 ± 3.3 59.8 ± 0.5 - 60.0 ± 11.3 64.6 ± 1.9 65.1 ± 6.3
8 70.3 ± 3.9 66.6 ± 5.2 65.9 ± 4.0 65.6 ± 4.2 57.5 ± 3.0 69.9 ± 3.1 53.2 ± 2.6 60.1 ± 1.0 - 64.8 ± 6.9 61.3 ± 6.9 65.8 ± 3.7
10 68.9 ± 4.2 67.5 ± 3.7 68.6 ± 4.7 64.2 ± 5.4 60.3 ± 2.8 71.7 ± 1.5 50.8 ± 2.6 60.3 ± 0.8 - 62.9 ± 10.8 65.6 ± 9.7 64.1 ± 5.1
12 71.5 ± 4.1 69.2 ± 4.9 69.1 ± 4.1 65.6 ± 2.8 61.1 ± 4.0 69.5 ± 4.9 52.3 ± 5.4 60.8 ± 0.9 - 68.4 ± 9.9 67.8 ± 5.4 64.1 ± 3.9
14 74.8 ± 2.7 68.9 ± 5.3 70.4 ± 4.4 67.9 ± 4.8 61.8 ± 5.2 71.2 ± 4.8 51.6 ± 4.4 60.9 ± 0.8 - 66.3 ± 9.0 65.6 ± 11.2 60.6 ± 10.5
16 73.5 ± 3.8 69.9 ± 5.3 69.2 ± 4.6 68.5 ± 3.8 59.9 ± 2.7 73.2 ± 3.5 50.4 ± 3.4 60.8 ± 0.8 - 70.6 ± 6.0 63.5 ± 9.3 65.4 ± 6.3
18 72.4 ± 4.7 70.2 ± 7.5 71.9 ± 5.7 67.4 ± 5.6 63.5 ± 6.6 74.0 ± 1.9 52.5 ± 2.6 60.6 ± 0.6 - 70.8 ± 5.5 70.1 ± 1.6 58.6 ± 8.5
20 73.6 ± 3.2 70.6 ± 7.1 69.1 ± 5.0 68.6 ± 5.1 60.5 ± 5.2 74.6 ± 3.4 50.4 ± 2.2 60.8 ± 0.9 - 73.8 ± 4.0 68.2 ± 4.4 66.0 ± 7.1
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Table 7: Test set accuracy with standard deviations (average of 5 random seeds) at certain iterations t during
AL on CIFAR100 Krizhevsky (2009), Food101 Bossard et al. (2014), ImageNet-100 Gansbeke et al. (2020),
and DomainNet-Real Peng et al. (2019) (from top to bottom) with an ImageNet-1K pretrained Masked
AutoEncoder ViT-H/14 He et al. (2022) as the feature extractor f . Typiclust, and our proposed Drop-
Query use their own respective initialization strategies for the cold-start. Cells are color coded according to
the magnitude of improvement in mean accuracy over the Random baseline. Green cells are positive with
better performance than random whereas red cells are negative with worse performance than random. Bold
values represent the first place mean accuracy at iteration t with the second place value underlined.

t Random Margins pBALD BADGE Typiclust Alfamix DropQuery (Ours)
CIFAR100

1 14.2 ± 1.3 14.2 ± 1.3 14.2 ± 1.3 14.2 ± 1.3 16.2 ± 0.6 14.2 ± 1.3 13.0 ± 0.6
2 21.0 ± 1.5 20.2 ± 1.3 21.4 ± 1.1 21.8 ± 0.6 21.7 ± 0.6 23.7 ± 0.9 22.9 ± 1.5
4 31.0 ± 1.3 30.4 ± 0.8 30.6 ± 0.9 31.3 ± 1.5 29.2 ± 0.8 31.9 ± 0.9 33.1 ± 0.9
6 37.5 ± 1.0 37.6 ± 0.9 38.5 ± 1.2 38.6 ± 1.0 35.0 ± 0.8 37.4 ± 0.9 38.4 ± 0.8
8 42.1 ± 1.2 42.6 ± 0.9 42.8 ± 1.0 43.4 ± 0.9 39.1 ± 0.7 40.8 ± 1.4 42.5 ± 0.7
10 45.8 ± 0.8 45.9 ± 1.0 46.3 ± 0.5 46.9 ± 0.9 41.3 ± 0.9 44.4 ± 2.0 44.7 ± 0.3
12 48.7 ± 0.8 48.1 ± 0.7 49.2 ± 0.8 49.7 ± 0.6 43.8 ± 0.8 46.9 ± 1.0 47.0 ± 0.3
14 50.9 ± 0.6 50.4 ± 0.9 51.6 ± 0.6 51.9 ± 0.3 44.8 ± 0.7 49.1 ± 1.3 48.6 ± 0.3
16 51.9 ± 0.9 52.1 ± 0.4 53.3 ± 1.3 53.5 ± 0.6 46.7 ± 0.4 50.9 ± 1.5 50.3 ± 0.4
18 53.2 ± 0.3 54.1 ± 0.3 54.3 ± 1.0 55.3 ± 0.4 47.8 ± 0.6 52.2 ± 0.8 51.4 ± 0.8
20 55.1 ± 0.4 55.2 ± 0.4 55.9 ± 0.4 56.1 ± 0.5 49.3 ± 0.6 53.9 ± 0.8 52.0 ± 0.9

Food101
1 6.6 ± 0.8 6.6 ± 0.8 6.6 ± 0.8 6.6 ± 0.8 6.4 ± 0.4 6.6 ± 0.8 6.1 ± 0.4
2 10.3 ± 1.0 10.6 ± 1.1 11.0 ± 0.6 10.5 ± 0.6 9.8 ± 0.3 12.4 ± 0.8 12.0 ± 0.7
4 17.6 ± 0.6 17.8 ± 0.8 17.9 ± 0.6 17.9 ± 0.8 13.8 ± 0.5 18.5 ± 0.6 18.5 ± 0.3
6 23.2 ± 0.4 23.0 ± 0.8 23.6 ± 0.7 23.5 ± 1.1 20.1 ± 0.3 23.4 ± 0.6 23.0 ± 0.2
8 27.5 ± 1.2 27.2 ± 0.8 27.6 ± 0.4 27.6 ± 1.0 24.0 ± 0.5 26.8 ± 0.7 26.6 ± 0.5
10 31.0 ± 0.6 30.4 ± 0.4 30.9 ± 1.3 31.1 ± 1.4 27.0 ± 1.1 29.3 ± 0.9 29.4 ± 0.5
12 33.7 ± 0.7 33.1 ± 0.7 34.1 ± 1.0 34.0 ± 0.7 28.6 ± 1.0 32.1 ± 0.7 31.8 ± 0.4
14 36.3 ± 0.5 36.0 ± 0.6 37.0 ± 0.6 36.4 ± 0.5 31.4 ± 0.8 33.9 ± 1.1 33.7 ± 0.2
16 38.3 ± 0.4 38.2 ± 0.6 38.8 ± 1.0 38.5 ± 0.7 33.1 ± 0.8 35.9 ± 0.6 34.7 ± 1.0
18 40.1 ± 0.3 39.3 ± 1.4 40.7 ± 0.5 40.7 ± 0.5 34.8 ± 0.9 37.7 ± 0.7 36.9 ± 0.5
20 41.5 ± 0.3 40.9 ± 0.9 41.5 ± 1.0 42.2 ± 0.8 35.3 ± 0.8 39.2 ± 0.9 37.6 ± 0.7

ImageNet-100
1 20.4 ± 1.1 20.4 ± 1.1 20.4 ± 1.1 20.4 ± 1.1 25.9 ± 1.1 20.4 ± 1.1 22.0 ± 1.3
2 31.4 ± 2.7 30.7 ± 1.3 29.8 ± 0.8 30.0 ± 1.2 36.0 ± 0.8 36.5 ± 0.8 36.8 ± 0.9
4 45.5 ± 2.2 45.2 ± 1.6 45.7 ± 1.1 46.5 ± 1.9 47.1 ± 1.9 46.6 ± 1.3 50.3 ± 1.4
6 54.6 ± 1.3 56.9 ± 2.0 55.3 ± 1.0 57.3 ± 1.4 55.2 ± 0.7 53.8 ± 2.7 58.5 ± 0.5
8 60.1 ± 1.4 62.7 ± 0.8 61.2 ± 1.6 63.3 ± 0.8 58.7 ± 1.1 58.8 ± 4.2 63.1 ± 0.4
10 64.1 ± 0.9 66.6 ± 1.9 66.4 ± 0.9 67.8 ± 1.4 61.7 ± 1.0 63.2 ± 4.0 66.4 ± 0.9
12 67.3 ± 0.5 70.4 ± 1.1 69.4 ± 0.8 70.5 ± 1.2 64.3 ± 1.0 66.2 ± 2.8 68.8 ± 0.9
14 69.2 ± 0.4 72.4 ± 0.9 71.9 ± 0.4 72.8 ± 1.1 65.9 ± 0.5 69.0 ± 1.8 70.4 ± 0.5
16 71.3 ± 0.6 73.9 ± 1.0 72.8 ± 1.2 74.4 ± 0.8 67.1 ± 0.5 70.9 ± 1.6 72.0 ± 0.4
18 72.5 ± 0.6 75.1 ± 0.8 74.5 ± 0.7 75.8 ± 1.3 68.3 ± 0.4 73.0 ± 1.3 73.2 ± 0.9
20 73.5 ± 0.9 76.4 ± 0.5 75.7 ± 0.6 77.2 ± 0.9 68.7 ± 0.8 74.4 ± 1.2 74.3 ± 0.6

DomainNet-Real
1 16.0 ± 0.7 16.0 ± 0.7 16.0 ± 0.7 16.0 ± 0.7 22.9 ± 0.6 16.0 ± 0.7 17.9 ± 0.6
2 25.2 ± 0.6 24.5 ± 0.9 25.8 ± 0.7 25.7 ± 0.7 29.2 ± 0.7 30.1 ± 0.4 30.4 ± 0.4
4 37.7 ± 1.1 38.3 ± 0.6 38.5 ± 0.6 38.9 ± 0.9 35.8 ± 0.5 39.2 ± 0.5 41.9 ± 0.2
6 45.6 ± 0.6 46.4 ± 0.7 46.4 ± 1.0 47.0 ± 0.3 40.3 ± 0.4 43.9 ± 0.5 47.7 ± 0.4
8 50.4 ± 0.6 51.5 ± 0.3 51.5 ± 0.8 52.2 ± 0.9 43.8 ± 0.3 46.9 ± 0.5 51.5 ± 0.3
10 54.1 ± 0.4 55.2 ± 0.3 55.2 ± 0.5 55.8 ± 0.4 46.5 ± 0.6 49.4 ± 0.2 54.3 ± 0.3
12 47.8 ± 0.7 43.2 ± 0.9 45.9 ± 1.8 43.9 ± 1.2 41.1 ± 0.8 43.9 ± 1.7 42.4 ± 1.0
14 57.6 ± 0.2 58.5 ± 0.4 58.8 ± 0.1 59.3 ± 0.1 50.2 ± 0.6 52.5 ± 0.1 56.8 ± 0.3
16 59.8 ± 0.2 60.6 ± 0.3 60.7 ± 0.3 61.4 ± 0.3 52.0 ± 0.4 54.0 ± 0.3 58.7 ± 0.3
18 61.2 ± 0.1 62.0 ± 0.2 62.2 ± 0.3 62.8 ± 0.2 53.9 ± 0.3 55.4 ± 0.2 60.2 ± 0.1
20 62.3 ± 0.2 63.4 ± 0.2 63.4 ± 0.3 64.1 ± 0.2 55.1 ± 0.3 56.7 ± 0.2 61.2 ± 0.2
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