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Abstract
Recent advances in text-guided image compres-
sion have shown great potential to enhance the
perceptual quality of reconstructed images. These
methods, however, tend to have significantly de-
graded pixel-wise fidelity, limiting their practical-
ity. To fill this gap, we develop a new text-guided
image compression algorithm that achieves both
high perceptual and pixel-wise fidelity. In partic-
ular, we propose a compression framework that
leverages text information mainly by text-adaptive
encoding and training with joint image-text loss.
By doing so, we avoid decoding based on text-
guided generative models—known for high gen-
erative diversity—and effectively utilize the se-
mantic information of text at a global level. Ex-
perimental results on various datasets show that
our method can achieve high pixel-level and per-
ceptual quality, with either human- or machine-
generated captions. In particular, our method out-
performs all baselines in terms of LPIPS, with
some room for even more improvements when
we use more carefully generated captions.
Project Page: taco-nic.github.io

Code: github.com/effl-lab/TACO

1. Introduction
How can text improve machine vision? This question has
been asked repeatedly in various domains of visual com-
puting, giving birth to a number of vision-language models
with tremendous multi-modal reasoning and generative ca-
pabilities (Radford et al., 2021; Liu et al., 2023a).

The value of text has gained much attention in image com-
pression as well, motivated by the astonishing ability of
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Figure 1. Pixel-wise fidelity vs. perceptual fidelity, at 0.40 bpp.
We compare pixel-wise and perceptual fidelity of image compres-
sion codecs on MS-COCO 30k. The proposed TACO achieves
competitive results in both metrics. The reported figures for Qin
2023 has been measured on MS-COCO 40k, and some figures have
been interpolated from nearest bpp models (�: PSNR-focused, ■:
perception-focused, ▲: text-guided, ×: handcrafted).

modern text-guided generative models to synthesize real-
istic images from the given text prompt (Rombach et al.,
2022). The conventional way to leverage these models is via
text-guided decoding (or textual transform coding; Weiss-
man (2023)): We use text-guided generative model as our
decoder, and the encoding is done by finding a good tex-
tual code. The code may consist of a text prompt plus any
additional latent prompt vectors, that can generate the re-
construction that looks close to the original image. As the
text can be represented with a very small number of bits, we
expect such an approach to be very bit-efficient (Shannon,
1951; Bhown et al., 2018; Weissman, 2023).

Following this intuition, recent works have developed text-
guided neural image compression codecs that can recon-
struct images with high perceptual quality, i.e., either highly
realistic (e.g., low FID) or perceptually similar to the origi-
nal image (e.g., low LPIPS). One line of work shows that
using pretrained text-guided generative models as decoders
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Figure 2. Qualitative results. We compare TACO against MS-ILLM and LIC-TCM, which focuses on perception and PSNR, respectively.
TACO uses slightly less bpp than baselines. Comparing with MS-ILLM, TACO tends to suffer less from hallucinated artifacts (see teeth).
Comparing with LIC-TCM, TACO can reconstruct sharper details (see lips). See Appendix D for more examples.

can give neural codecs that achieve high realism at extremely
low bitrates, e.g., less than 0.01 bits per pixel (Pan et al.,
2022; Lei et al., 2023; Careil et al., 2024). Another line of
work targets conventional bitrates (over 0.1 bpp) and shows
that one can significantly improve the perceptual similarity
of reconstructed images to the original image by using text
captions as additional side information, where the text infor-
mation is inserted to the decoder via some plug-in modules
(Jiang et al., 2023; Qin et al., 2023).

These approaches, however, commonly suffer from substan-
tial degradations in pixel-wise fidelity, i.e., PSNR. For ex-
ample, diffusion-based compression codecs tend to achieve
3–5 dB less PSNR than standard neural image compression
codecs (Careil et al., 2024). Despite the practical impor-
tance of the pixel-wise fidelity (Liu et al., 2023b), it remains
unknown whether or how such PSNR degradation can be
mitigated for text-guided image compression schemes.

Contribution. In this paper, we fill this gap by developing
a text-guided image compression scheme that can achieve
high pixel-level and perceptual quality simultaneously (we
focus more on the perceptual fidelity, e.g., LPIPS, than on re-
alism). Our key hypothesis is that text-guided decoding may
not be an effective strategy for PSNR. For high PSNR, we
must be able to decode with very small generative diversity,
and effectively utilize the semantic information at the global
level (i.e., not affecting only local regions). Diffusion-like
decoders tend to have too much diversity (Pan et al., 2022),
and plug-in approaches tend to have weak control on the
global semantics of the reconstruction (Lei et al., 2023).

Thus, we establish an alternative strategy of utilizing text
only for encoding. Here, the main role of text is to provide
additional supervision on how human perceives the image;
using this information, the encoder can better preserve per-
ceptually meaningful information without discarding it dur-

ing (lossy) compression. By using text only for encoder, we
can leverage existing decoder architectures that can generate
accurate reconstructions with minimal generative diversity.
Furthermore, as we encode the textual information into the
code itself, the injected semantic information can affect the
whole pixels globally without any extra effort.

Based on this intuition, we propose a simple yet effective
encoder-centric text-guided image compression algorithm,
coined TACO (Text-Adaptive COmpression). TACO trans-
forms a popular PSNR-oriented neural codec architecture
(ELIC) into a text-guided one by augmenting the encoder
with a text adapter. The text adapter utilizes a pre-trained
CLIP encoder (Radford et al., 2021) and bi-directional atten-
tion mechanism to inject textual information into the latent
code. Then, TACO trains the model from scratch with a
joint image-text loss, which encourages the reconstruction
to be semantically aligned with the given text.

In our experiments, we find that TACO achieves excellent
performance in both pixel-level and perceptual quality at
standard bpp levels (i.e., ≥ 0.1). In particular, TACO outper-
forms all image compression baselines in terms of LPIPS,
while achieving competitive performance in pixel-level fi-
delity and realism when compared to state-of-the-art meth-
ods in each metric (Figure 1). This trend holds true for
either datasets that come with human-generated image de-
scriptions (e.g., MS-COCO (Lin et al., 2014)), or image-only
datasets paired with machine-generated captions (e.g., CLIC
(Toderici et al., 2020) captioned by OFA (Wang et al., 2022)).
TACO also outperforms conventional LPIPS-focused text-
guided baselines (Jiang et al., 2023; Qin et al., 2023).

Our findings suggest that the core value of text in image
compression—at least in standard bpp range—may hinge
more on its relationship with human perception, than it being
an efficient way to store information (Weissman, 2023).
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2. Related Work
Measuring Reconstruction Quality. The most popular
metric for evaluating the quality of reconstructions is the
pixel-wise distortion from the original image. Typically, the
quantity is measured in mean squared error (MSE) or peak
signal-to-noise ratio (PSNR). However, the pixel-wise dis-
tortion is often found ill-aligned with the human-perceived
image quality (Eskicioglu & Fisher, 1995).

To address this, various perceptual quality metrics have been
proposed. Roughly, the metrics fall into two categories: per-
ceptual distortion and realism. Perceptual distortion quan-
tifies how different two images are for human perception.
Multi-scale structural similarity (Wang et al., 2003, MS-
SSIM) measures the discrepancy of patch-level statistics of
both images in various scales. Learned perceptual image
patch similarity (Zhang et al., 2018, LPIPS) measures the
distortion in the feature space of pretrained neural net classi-
fiers, which are fine-tuned to account for human perception.
Similarly, PieAPP trains a model to approximate the human
judgement on perceptual similarity (Prashnani et al., 2018).

Realism, on the other hand, attempts to quantify how re-
alistic an image is, without necessarily comparing it with
the original image. For example, Fréchet inception distance
(Heusel et al., 2017, FID) measures the distance of (In-
ception) feature distribution of reconstructed images, from
that of natural images. Similarly, KID measures the max-
imum mean discrepancy between the feature distributions
(Bińkowski et al., 2018). A recent work by Jayasumana et al.
(2023) argues that FID/KID are still misaligned with human
perception, and proposes CMMD, an alternative metric that
utilizes pre-trained multimodal embeddings.

Neural Image Compression. An early work by Ballé et al.
(2017) proposes an autoencoder-like image compression
pipeline which achieves competitive pixel-level fidelity and
substantially stronger perceptual quality than handcrafted
codecs, e.g., JPEG. Subsequent works have developed more
advanced hyperpriors on the latent space codes and utilized
more advanced autoencoder-like architectures (Ballé et al.,
2018; Minnen et al., 2018; Cheng et al., 2020; He et al.,
2022; Liu et al., 2023b), which led to even smaller pixel-
wise and perceptual distortions on the reproduced image.

Another line of work focuses on developing neural com-
pression codecs for improved realism. Mentzer et al. (2020)
propose a GAN-based method to generate highly realistic
images at low bitrates. More recent approaches use diffusion
model to generate even more realistic images (Hoogeboom
et al., 2023; Yang & Mandt, 2023). However, these methods
tend to have greater pixel-level or perceptual distortions than
autoencoder-based models. MS-ILLM shows that the trade-
off between the distortion and realism can be more alleviated
by using a more tailored GAN discriminator (Muckley et al.,
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Figure 3. Text-guided decoding strategies vs. TACO. (Top) Text-
guided decoding with diffusion-based decoders (Careil et al., 2024).
(Middle) Text-guided decoder utilizing GAN (Qin et al., 2023).
(Bottom) TACO is a much simpler yet effective strategy.

2023). The fundamental limit of this rate-distortion-realism
tradeoff has been theoretically studied by Blau & Michaeli
(2018), suggesting that both goals may not be achieved
simultaneously given a fixed rate.

Text-guided Image Compression. Following the great suc-
cess of vision-language models, text-guided image compres-
sion algorithms have emerged (Bhown et al., 2018; Weiss-
man, 2023). One line of work aims to leverage pre-trained
text-guided generative models as decoders. Here, the key is
to introduce an appropriate means to control the generation
diversity of these models. Pan et al. (2022) utilize the stable
diffusion (Rombach et al., 2022), and control the diversity
by guiding the reverse step with a JPEG-compressed ver-
sion of the image. Lei et al. (2023) uses ControlNet as the
decoder (Zhang et al., 2023), where the additional control
is done by the ‘sketch’ version of the image, extracted by
an edge detector. A concurrent work by Careil et al. (2024)
also uses the latent diffusion model, and proposes a more
sophisticated local-global encoding for better reconstruc-
tion. These models show superior performance in terms of
realism (e.g., FID), especially at extremely low bpp.

Another line of work proposes to use decoders that are
trained from scratch, using a dataset with image-text pairs
such as MS-COCO (Lin et al., 2014). The network archi-
tecture typically follows GAN-based image compression
codecs (Mentzer et al., 2020), with additional components
to insert textual information into the architectures. Jiang
et al. (2023) proposes to insert textual information to both
encoder and decoder through uni-directional attention-like
modules. Qin et al. (2023) insert text only to the decoder
through semantic-spatial aware blocks. These works have
their main strength on perceptual distortion (e.g., LPIPS) at
conventional bpp.
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In both lines of work, it has been discovered that one can
achieve high realism or perceptual similarity, at the expense
of a substantial increase in pixel-level distortion. It remains
unanswered whether one can attain similar improvements
in the perceptual quality of images from the text, with only
minimal degradation in PSNR.

3. Method
We introduce TACO (Text-Adaptive COmpression), a sim-
ple yet effective text-guided image compression algorithm
that can achieve both high pixel-level and perceptual fidelity.

At a high level, TACO is a simple framework that transforms
a conventional PSNR-oriented image compression backbone
into a text-guided one. TACO first augments the encoder
of the backbone with a text adapter module, which inserts
the textual information into the encoder. Then we train the
overall network from scratch using a joint image-text loss.

3.1. Background: Autoencoder-based Codec

As the backbone architecture, we use ELIC (He et al., 2022),
a PSNR-oriented neural image compression codec. We use
ELIC as a base model due to its popularity and performance,
and TACO does not rely on any of its structural properties.
In principle, we expect TACO to be able to be combined
with other base models to enhance their perceptual quality.

Similar to most autoencoder-based codecs, ELIC roughly
consists of four components: encoder, quantizer, entropy
model, and decoder. An image is processed sequentially
by the components as follows. First, the encoder maps an
image x to a latent feature y. The feature is then quantized
into ŷ. The quantized feature ŷ is (losslessly) compressed
into the code and decompressed with the entropy model.
Finally, the decoder synthesizes the reconstruction x̂ from
the decompressed feature ŷ.

x
encode
−−−−−→ y

quantize & entropy coding
−−−−−−−−−−−−−−−−−−→ ŷ

decode
−−−−−→ x̂ (1)

The encoder, where TACO injects the text information, is
a stack of three residual bottleneck blocks (RBs; He et al.
(2016)). The residual blocks are interleaved with five 5 × 5
convolutional layers (with stride 2) and two attention mod-
ules (Cheng et al., 2020). For a more detailed description,
see the original paper of He et al. (2022).

3.2. TACO: Text-Adaptive Compression

To enable an effective utilization of the textual information,
TACO transforms the backbone image compression model
in two ways. First, TACO injects the text information to
the encoder of the backbone through text adapter. Second,
TACO trains the whole model (i.e., backbone model and
the text adapter) with the combined loss function of rate,
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Figure 4. Text adapter of TACO. The text adapter first extracts
features from the image caption using the CLIP text encoder. The
textual features are then injected into the ELIC encoder through
multiple cross-attention layers, interleaved with linear layers.

distortion, and the joint image-text loss.

Text Adapter. The text adapter takes in the text segment c
associated with the original image x (e.g., image caption) as
an input, and injects the text information into the backbone
encoder to generate the joint image-text latent feature y.

x
encode
−−−−−→ y ⇒ (x, c)

encode + TACO
−−−−−−−−−−−→ y (2)

The text adapter operates in two steps (Figure 4). (1) Em-
bedding: Maps the given text to the joint image-text feature
space. (2) Injection: Gradually processes and injects text
features into the backbone encoder through multiple layers.

Adapter: Embedding. We leverage a pre-trained CLIP en-
coder (Radford et al., 2021), which contains rich semantic
information on image-text correspondences. By using CLIP
features, we expect reductions in the amount of extra compu-
tation and data for further reducing the domain gap between
features. We use CLIP as frozen without fine-tuning.

More concretely, this step generates a length-m sequence
of d-dimensional text tokens. In our experiments, we use
m = 38, the maximum token length of MS-COCO captions,
and d = 512, the dimensionality of CLIP encoder outputs.

c
CLIP encoder
−−−−−−−−−→ e := (e1, . . . , em), ei ∈ R

d. (3)

Adapter: Injection. We use a six-layer network consisting
of three linear layers and three cross-attention (CA) layers.
Here, CAs play a crucial role injecting the text knowledge
to images, or vice versa. This use of CA for knowledge
injection is inspired by Chen et al. (2023), who uses CA for
adapting ViTs to another vision task (dense prediction). In
this work, we repurpose CAs for injection across different
modalities. Each CA plays the following role:
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Figure 5. Compression results: MS-COCO 30k. TACO achieves the best or competitive results in all metrics. In particular, TACO
achieves the best LPIPS among all methods considered, while achieving only ∼1dB less PSNR than LIC-TCM. PerCo achieves an
impressive FID, but TACO outperforms in terms of both PSNR and LPIPS. We also note a strange under-performance of HiFiC in FID
under this setup. This may be due to the resizing operation when measuring FID.

• CA1: Text→Image. Updates image features based on
text tokens. Given a (h,w, k)-dimensional image feature,
we treat each spatial location as an image token. That is,
the set of image tokens can be written as:

v = (v1, . . . , vh×w), vi ∈ R
k. (4)

CA1 computes query from each v ∈ v and keys and values
from e ∈ e. To match the dimensionality of e and v, we
put a linear layer before CA1. The output of the layer is

ṽi = LN(vi) + γ ⊙ Attention(LN(vi),LN(Lin1(e))), (5)

where Attention(·), LN(·), and Lin(·) denotes the atten-
tion, LayerNorm, and linear layer, respectively. Here, γ
is a learnable weight hyperparameter.
• CA2: Image→Text. Updates text tokens based on image

features which are further processed by the backbone
encoder. The operation is similar to CA1, but we compute
queries from the text and keys/values from the image.
• CA3: Text→Image (downsampled). Same operation as

CA1, but with two changes: First, the text tokens have
been updated by image features (by CA2). Second, image
features have been downsampled, so that text affects more
global image features than in CA1.

Joint Image-Text Loss. To train the model, we use a mix-
ture of four different loss functions. Given the original
image x, the text description c, the reconstructed image x̂,
and its quantized latent feature ŷ, we use the loss

r(ŷ) + λ · d(x, x̂) + kp · LPIPS(x, x̂) + kj · Lj(x, x̂, c) (6)

The first three losses are standard: r(·) denotes the rate,
d(·, ·) denotes the MSE, and LPIPS(·, ·) denotes the LPIPS
loss. The fourth loss Lj(·, ·, ·) is what we call the joint image-
text loss, which encourages the reconstructed image to be
semantically close to the given text and the original image.

Formally, the loss is defined as the following:

Lj(x, x̂, c) = Lcon( fI(x̂), fT(c)) + β · ∥ fI(x) − fI(x̂)∥2. (7)

Here, the functions fI(·), fT(·) denote the CLIP image and
text embeddings, and Lcon(·, ·) denotes the contrastive loss
used in CLIP (Radford et al., 2021). In other words, the joint
image-text loss is a mixture of (1) the relevance between the
text and reconstructed image and (2) the CLIP embedding
distance between the original and reconstructed image. We
note that Jiang et al. (2023) also uses a loss similar to eq (7),
but based on the AttnGAN embedding (Xu et al., 2018).

For better PNSR, we do not use the adversarial loss. Such
practice is common in perception-oriented codecs, such
as MS-ILLM or HiFiC, but not in PSNR-oriented codecs.
TACO works by improving the perceptual quality of PSNR-
oriented methods with texts instead of further improving the
perceptual quality of already perceptually good models.

4. Experiments
This section is organized as follows. Section 4.1 describes
the basic experimental setup. Section 4.2 compares TACO
with image compression codecs that do not utilize text. Sec-
tion 4.3 compares with text-guided codecs; these works do
not release code and/or model checkpoints and evaluation
setups vary significantly from paper to paper, necessitating a
more fine-grained comparison. Finally, Section 4.4 provides
various analyses and ablations on TACO.

4.1. Experimental Setup

Datasets. For training, we use the training split of the MS-
COCO dataset (Lin et al., 2014), which consists of 82,783
images with five human-annotated captions for each image;
we use all five captions for training. We randomly crop each
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Figure 6. Compression results: CLIC. TACO outperforms all other baselines in LPIPS, and achieves close-to-best results in PSNR and
FID. In particular, TACO achieves the PSNR very close to LIC-TCM and ELIC, vastly outperforming realism-oriented codecs.
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Figure 7. Compression results: Kodak. Similar to MS-COCO and CLIC, TACO outperforms baselines with a substantial margin in
terms of LPIPs, and closely matches the PSNR of LIC-TCM and ELIC. TACO also performs best in terms of CMMD.

image to 256 × 256 resolution for training.

For evaluation, we use three different datasets. (1) MS-
COCO 30k: We use the “restval” subset of the MS-COCO
validation split, which consists of total 30,504 images. For
evaluation, we center-crop the images to the 256 × 256
resolution; we use center drop to more faithfully preserve
the semantic information in the image caption.1 (2) CLIC
(Toderici et al., 2020): The test set of the Challenge on
Learned Image Compression 2020, consisting of 428 images.
We do not crop these images. (3) Kodak dataset (Franzen,
1999): A natural image dataset that consists of 24 images.
We also evaluate on these images as-is. We note that CLIC
and Kodak do not have any associated captions; we use the
image captions generated by OFA (Wang et al., 2022).

Metrics. We focus on three image quality metrics:

• LPIPS is a perceptual fidelity metric that measures the
distance between the original and reconstructed image in
the deep feature space; we use AlexNet features.
• PSNR is a pixel-wise fidelity metric, measured in dB.
• FID is a realism metric that measures the statistical fi-

1This is slightly different from what is called “Dall-E process-
ing” (Ramesh et al., 2021), which have been used by Agustsson
et al. (2023), in that they perform random cropping.

delity between two image distributions (original and re-
constructed) of inception features. For measuring FID,
we follow Muckley et al. (2023) to resize the images to
299 × 299 resolution before measuring.

As a quantitative realism metric for Kodak dataset, we use a
recently proposed CMMD (Jayasumana et al., 2023) instead
of FID. This is because FID is known to be unstable in small
datasets. For CMMD, we use the publicly available version
of CLIP (w.o. projection). We additionally report results on
MS-SSIM, PieAPP, and CMMD in the Appendix B.

Optimization & Hyperparameters. We use Adam with
batch size 4, and train for 50 epochs. The initial learning
rate is set to 10−4, and we decay the learning rate by 1/10
at epochs 45 and 48. For hyperparameters, we simply use a
fixed set (kp, kj, β) = (3.5, 0.0025, 40) throughout all bpps,
instead of conducting an extensive hyperparameter tuning
for each bpp. To get models of various bitrates, we train
models with λ ∈ {4, 8, 16, 40, 90, 150} × 10−4.

4.2. Results: vs. Image Compression Codecs

We now compare the compression performance of TACO
against various image compression codecs, including:
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Figure 8. Comparison with text-guided decoding baselines. We compare with the MS-COCO 40k results reported by Qin et al. (2023),
to the performance of TACO on the same dataset. We also compare with the MS-COCO 1k result reported by TGIC (Jiang et al., 2023).
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Figure 9. Text adapter vs. TGIC module. We compare the effectiveness of the proposed text adapter with the image-text attention
module, used by Jiang et al. (2023), on CLIC. Our text adapter performance better in all metrics, when attached on ELIC encoder.

• Handcrafted image compression codecs: VTM, BPG.
• PSNR-oriented neural image compression codecs: ELIC

(He et al., 2022), and LIC-TCM (Liu et al., 2023b).
• Perception-oriented neural codecs: HiFiC (Mentzer et al.,

2020) and MS-ILLM (Muckley et al., 2023).

We have used the official checkpoints for evaluation, except
for ELIC (for which no official checkpoint is available).2

We provide quantitative comparisons on MS-COCO 30k,
CLIC, and Kodak on Figures 5 to 7, respectively.

We observe that, in terms of LPIPS (perceptual fidelity),
TACO outperforms all baselines in all datasets. For example,
on MS-COCO 30k, TACO achieves 0.025 LPIPS at 0.226
bpp, which is less than half achieved by the best baseline
(HiFiC), achieving 0.053 at 0.233 bpp. In terms of PSNR,
TACO closely achieves the performance of ELIC and LIC-
TCM, falling within the 1dB range from these baselines. In
realism, TACO outperforms baselines in MS-COCO and
Kodak, but not in CLIC; the gap In CLIC, however, tends to
be very small, especially at a high bpp regime.

2We use the checkpoints from the following Github repo:
https://github.com/VincentChandelier/ELiC-ReImplemetation

4.3. Results: vs. Text-guided Decoding

We now compare the performance of TACO with text-guided
codecs. In particular, we compare with codecs whose goal
is to achieve high LPIPS at non-extreme bpp (i.e., over 0.1
bpp), such as TGIC (Jiang et al., 2023) and “Qin 2023” (Qin
et al., 2023). Two things make a direct comparison difficult:
(1) The baselines do not release official code or have model
checkpoints publicly available. (2) The baselines report per-
formance on non-unified setups: TGIC reports performance
on MS-COCO 1k (along with CUB and Oxford-102), con-
sisting of 1k randomly drawn test set samples. Qin et al.
(2023) reports performance on MS-COCO 40k, i.e., the
whole validation set, without any cropping.

We focus on comparing with (more reproducible) Qin 2023
baseline. We evaluate TACO on MS-COCO 40k and com-
pare it with the results reported in Qin et al. (2023). From
Figure 8, we observe that TACO achieves much better perfor-
mance than the previous text-guided baseline, based on the
text-guided decoding strategy. This is somewhat surprising,
as the original intention of using text-guided encoding has
been on preventing the degradations in PSNR; instead, we
also achieve better LPIPS and FID. This improvement can
be attributed to the effectiveness of the text-adapter-based
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Figure 10. Without text adapter. We observe both CMMD and LPIPS substantially degrade, while there is a tiny gain in PSNR.
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Figure 11. Without joint image text loss. We observe LPIPS severely degrades, while PSNR remains similar, with a tiny gain in CMMD.

knowledge injection strategy.

4.4. Ablation Studies

To validate that both our proposed text adapter and joint
image-text loss improve the performance, we conduct an
ablation study. Through experiments on the Kodak dataset,
we confirm that both components play essential roles.

Without text adapter. From Figure 10, we observe that
perceptual fidelity greatly decreases without a text adapter
(more than 4× in LPIPS). This gap is well-aligned with our
intuition that the textual information plays an important role
in how human perceives visual signals.

Without joint image-text loss. From Figure 11, we observe
that the joint image-text loss contributes in improving not
only the perceptual fidelity, but also realism (with a tiny
degradation in PSNR). We hypothesize that the manifold-
level information transferred from the CLIP embedding,
which is trained with a large-scale dataset, helps the recon-
structed image to remain realistic.

4.5. Further Analyses

We now ask ourselves several questions regarding the valid-
ity and practicality of the proposed method, TACO.

Q1. Is the adapter architecture (Section 3.2) effective?
A. Yes. It outperforms the baseline method for text injec-
tion. We compare it to another text injection mechanism
introduced in TGIC (Jiang et al., 2023), which utilizes sev-
eral convolutional layers to inject text information into the
image encoder (coined “image-text attention module”). We
compare the performance of these two modules for injecting
text information to the encoder, in Figure 9. From the figure,
we observe that the proposed text adapter is indeed much
more effective than what TGIC uses.

Q2. Does TACO preserve textual information better?
A. Yes, and No. TACO-compressed images tend to pre-
serve textual information much better than PSNR-focused
methods, similar to LIC-TCM. We measure various text
similarity scores between machine-generated captions for
the original and reconstructed image (Table 1); we use OFA
for this purpose. We find that the images compressed by
TACO preserve text semantics better than LIC-TCM and
ELIC. On the other hand, the comparison with MS-ILLM
is inconclusive; TACO performs slightly worse, but with
slightly less bpp. In general, we find that models with high
perceptual quality tend to preserve textual information better
than PSNR-oriented compression codecs.

Q3. How much computation does TACO add?
A. ∼ 5–10%, depending on the image resolution. We

8
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Table 1. Comparing text similarity. We compare the text similar-
ity scores for the CLIC images compressed by TACO and other
baseline codecs. We find that TACO achieves much higher text sim-
ilarity score than LIC-TCM, but is slightly worse than MS-ILLM
that uses slightly more bits per pixels.

BLEU-4 (↑) CIDEr-D (↑) SPICE (↑)
(Papineni et al., 2002) (Vedantam et al., 2015) (Anderson et al., 2016)

LIC-TCM (0.2810) 0.76 7.44 0.80
MS-ILLM (0.2314) 0.85 8.39 0.87
ELIC (0.3055) 0.78 7.58 0.81

TACO (0.2146) 0.84 8.21 0.86

Table 2. Computational cost of TACO. We compare the wall-
clock encoding and decoding latency of TACO with baseline image
compression codecs. We average over 100 MS-COCO images
(256×256), randomly drawn from the validation split (0.0148 bpp).
We also compare the computational cost when encoding a high-
resolution image (‘High’ in table), observing that the increasing
cost of attention remains relatively small (+10.2%→ +4.8%).

Enc. (ms) Enc.@High (ms) Dec. (ms) Total (ms)

LIC-TCM 112.07 960.99 125.26 237.33
MS-ILLM 70.39 800.45 53.74 124.14
ELIC 71.35 793.41 102.07 173.42

TACO 78.60 (+10.2%) 832.07 (+4.8%) 102.98 181.58

compare the wall-clock encoding and decoding speed of
the proposed TACO with the baselines in Table 2. We have
measured the latency on a Linux GPU server equipped with
one NVIDIA GeForce RTX 3090 and AMD EPYC 7313
16-Core CPU. From the table, we find that TACO indeed
introduces some latency in compression speed. In particular,
we observe that the encoding time increases by 7ms over
the vanilla ELIC. We note that the overhead, however, is not
very big. TACO still runs much faster than LIC-TCM and
remains comparable with MS-ILLM. Most of the overhead
comes from the CLIP embedding step, which can be effec-
tively parallelized with image encoding steps. Furthermore,
we have used the smallest version of CLIP, which can be
run fast on conventional GPU devices. We also compare
the encoding speed when using a high-resolution image
(1788×2641, second column in the Table 2). As a result,
the computational cost of attention remains relatively small
and we find that the computational cost of CLIP remains
constant with respect to the resolution.

Q4. How many parameters are used in TACO?
A. Not too big—smaller than perception-oriented codecs.
We compare the number of models in Table 3. TACO adds
64.82M parameters to the ELIC, where 63.17M comes from
the CLIP and 1.65M comes from the text adapter. In total,
TACO has 101.75M parameters, which requires ∼400MBs
to be loaded on memory. While this is larger than vanilla
ELIC, it is ∼ 80% smaller than other perception-oriented
codecs, such as MS-ILLM, and HiFiC.

Table 3. Memory efficiency of TACO. We compare the model
parameter sizes of the TACO and baselines. TACO shows superior
memory efficiency than perception-oriented codecs.

Modules Parameters (M)

ELIC 36.93
LIC-TCM 45.41
HiFiC/MS-ILLM 181.72

TACO 101.75

Table 4. Caption dependency. We compare TACO reconstruction
results with four different captions generation methods, spanning
from human to GPT-4. Human and GPT-4 achieves the best re-
sults when measured on 100 random samples of MS-COCO, but
other captioning methods work very competitively (0.0148 bpp).
Underlined denotes the best result.

Human OFA BLIP-2 GPT-4
(Chen et al., 2015) (Wang et al., 2022) (Li et al., 2023) (Achiam et al., 2023)

LPIPS 0.0435 0.0435 0.0435 0.0435
PSNR 27.42 27.41 27.41 27.42

Q5. Can we use other captioning models?
A. Yes. In Table 4, we compare the compression quality of
TACO utilizing captions generated by various methods. We
observe that GPT-4 achieves a human-like result, but other
captioning models perform very competitively. From this
observation, we conjecture that the compression quality of
TACO is less dependent on its writing style, but more on the
core content of the sentences.

5. Conclusion
In this paper, we have studied how one can utilize auxiliary
text information when compressing images. We find that,
in order to achieve high PSNR as well as high perceptual
quality, utilizing the text to generate better codes is a sim-
ple yet effective strategy; using text to guide the decoding
procedure may be much more challenging task.

Limitations and future work. There are several limita-
tions of the proposed framework, which we hope to address
in the future work. First, the additional encoding cost for
handling the text scales quadratically with respect to the se-
quence length. This is due to the design of our text injection
mechanism which computes cross-attention between image
and textual features. In the cases where we expect the text
sequence to be very long, e.g., video-like data with voice
transcripts as text, the encoding time can get prohibitively
long. Another limitation is the scalability of training. Cur-
rently, we train TACO using the image-text dataset, which
is substantially scarcer than image-only or text-only dataset.
To overcome this problem, using a captioning model to gen-
erate image-text pairs for training may be a good baseline.
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Appendix

A. Additional Experimental Details
Implementation of TACO. As illustrated in Figure 4, the base model we use is a version of ELIC, which has an intermediate
feature dimension of 192 and a final feature map dimension of 320. The CLIP encoder we use is the “CLIPTextModel”
with a version of ‘openai/clip-vit-base-patch32,’ available through the HuggingFace. We have set the token length to be 38,
therefore getting the text embedding sequences with the size of R38x512 when inputting the caption to the CLIPTextModel.

Baselines. As mentioned in the main text, for neural codecs, we mostly use the official model checkpoints. For BPG, we
have used version 0.9.8. For VTM, we have used version 19.2.

B. Additional Metrics on Compression Results
We additionally report more compression results, MS-SSIM, PieAPP, and CMMD scores, measured on the MS-COCO 30k,
CLIC, and Kodak datasets.
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Figure A1. Additional quality metrics result on: MS-COCO 30k (top), CLIC (middle), Kodak (bottom)
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C. Additional Ablation Study
Freezing base model. We test whether freezing the base model (ELIC) to be a fully image-trained model is beneficial for
performance or not. We find that this is not true (see Figure A2).
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Figure A2. Ablation result: freezing base model and only training text adapter

D. Additional Qualitative Results
We provide additional visualizations of the compression results of TACO and baselines in Figure A4. As has been observed
in Figure 2, we confirm that TACO suffers from fewer compression artifacts than MS-ILLM while reconstructing sharper
details than LIC-TCM. We find that TACO consistently provides high-quality reconstructions, while LIC-TCM tends to
overly smooth out the textures (see, e.g., the white wall under the cat) and MS-ILLM hallucinates small details (see, e.g.,
eyes of the cat).

• In the top display, we draw attention to two features: “the reflections on glasses,” and “the texture of eyebrow and hair.”
MS-ILLM tends to hallucinate flat reflections on the glasses, and LIC-TCM tends to generate blurry eyebrow and hair.
• In the middle display, we focus on the black metal staircase behind the net. MS-ILLM generates wavy textures on the

metal, and LIC-TCM removes the net in front of the staircase. TACO also generates some hallucinative patterns but to a
lesser degree. Also, we note that TACO is the only compression method that reconstructs (any) stud on the staircase.
• In the bottom display, we highlight the gold hinge. MS-ILLM smooths out the details on the hinge, and LIC-TCM

generates a blurry image overall.
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Neural Image Compression with Text-guided Encoding

Original TACO LIC-TCMMS-ILLM

0.074 bpp 0.094 bpp 0.098 bpp

“A young woman sitting on the grass wearing a hat and glasses”

LIC-TCM

Original TACO

MS-ILLM

0.109 bpp

0.128 bpp 0.120 bpp

“A young man riding a skateboard in a parking lot”

LIC-TCM

Original TACO

MS-ILLM

0.065�bpp

0.080�bpp 0.077�bpp

“An old piano with books and a lamp on it”

Figure A3. Additional Qualitative Results.
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Neural Image Compression with Text-guided Encoding

Original TACO

MS-ILLM LIC-TCM

“A large body of water with palm trees on an island”

0.126 bpp

0.116�bpp

0.138 bpp

“A cat sitting on top of a white sand field”

0.068 bpp

0.051�bpp

0.061 bpp

Original TACO

MS-ILLM LIC-TCM

“A person walking a dog in front of a building”

Original TACO

MS-ILLM LIC-TCM

0.104�bpp

0.107�bpp0.110�bpp

Figure A4. Additional Qualitative Results.
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