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ABSTRACT
Accurate and robust multimodal multi-task perception is crucial for
modern autonomous driving systems. However, current multimodal
perception research follows independent paradigms designed for
specific perception tasks, leading to a lack of complementary learn-
ing among tasks and decreased performance in multi-task learning
(MTL) due to joint training. In this paper, we propose MaskBEV, a
masked attention-based MTL paradigm that unifies 3D object detec-
tion and bird’s eye view (BEV) map segmentation. MaskBEV intro-
duces a task-agnostic Transformer decoder to process these diverse
tasks, enabling MTL to be completed in a unified decoder without
requiring additional design of specific task heads. To fully exploit
the complementary information between BEV map segmentation
and 3D object detection tasks in BEV space, we propose spatial
modulation and scene-level context aggregation strategies. These
strategies consider the inherent dependencies between BEV seg-
mentation and 3D detection, naturally boosting MTL performance.
Extensive experiments on nuScenes dataset show that compared
with previous state-of-the-art MTL methods, MaskBEV achieves
1.3 NDS improvement in 3D object detection and 2.7 mIoU improve-
ment in BEV map segmentation, while also demonstrating slightly
leading inference speed.

CCS CONCEPTS
• Computing methodologies → Scene understanding; Vision
for robotics.

KEYWORDS
3D perception, multi-task learning, bird’s eye view, BEV map seg-
mentation

1 INTRODUCTION
Perceiving the 3D environment around a vehicle is crucial for au-
tonomous driving systems. Lidar and cameras are widely used in
autonomous driving fusion perception due to their complementary
characteristics. Some object-centric methods [1, 7, 38, 40, 41, 52]
have carefully designed multimodal fusion perception modules to
enhance the performance of 3D object detection. However, they are
difficult to adapt to multi-task requirements and lack flexibility in
generalizing to other tasks. These shortcomings limit their practical
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Figure 1: Comparison between the multi-head multi-task
perception framework with separated BEV encoder and our
proposedMaskBEV. (a) Multiple task heads implementmulti-
task learning (MTL). The previous methods [11, 28, 35] adopt
independent task head design. (b) The unified multi-task
head design fully exploits the complementary advantages
between multiple tasks, and uses one decoder to perform
MTL in the unified BEV features.

application. The traditional single-task perception paradigm is grad-
ually shifting towards multi-task learning (MTL), such as sparse
3D detection tasks and dense BEV map segmentation tasks. Based
on dense bird’s eye view (BEV) representations, a feasible solution
is provided, which has received widespread attention due to its
natural support for multi-task perception. However, experiments
by [11, 28] have found that current MTL paradigms are affected by
the negative transfer problem of multitasking.

BEVFusion [28] proposed that joint training with a shared BEV
encoder led to a decrease in MTL performance, and then mitigated
the negative transfer of MTL by separating the BEV encoder during
training, as shown in Fig.1(a). MetaBEV [11] adopted the routing
multi-task mixture-of-experts technology of natural language pro-
cessing (NLP) and separated BEV features to improve MTL, but its
MTL accuracy is still much lower than that of single tasks. The pow-
erful UniTR unified the image and LiDAR encoder backbones, but
more importantly, these state-of-the-art (SOTA) works [11, 28, 35]
still employed independent prediction head designs, such as the
Transformer head for 3D detection [1, 36] and the CNN head [28, 49]
for map segmentation, as shown in Fig.1(a). Then, MTL is achieved
through a simple combination of 3D detection and BEV segmen-
tation task heads. The design of these multitask methods leads to
unnecessary increases in computational costs and performance
degradation, with complementary features between tasks not being

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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utilized. In this paper, we aim to extend the current multimodal fu-
sion framework by designing a multi-task complementary learning
decoder to construct a unified multi-task perception framework.

In this paper, we introduce MaskBEV, a unified multi-task out-
door 3D perception framework. As shown in Fig. 1(b), unlike pre-
vious task-specific perception heads, our MaskBEV is the first to
achieve simultaneous perception of 3D object detection and BEV
map segmentation in one decoder head. To achieve this aim, we
adopt the advanced Mask2Former [9] paradigm, leveraging the
complementary nature of the BEV map segmentation task and
the 3D object detection task to construct a unified multi-task de-
coder head. Masked attention focuses attention on local features
centered around potential queries. We utilize the union of multi-
task masks in BEV space to guide query-based feature learning. To
maximize the coverage of masks over potential regions of inter-
est while excluding the entire BEV space, we introduce a spatial
modulation strategy that fully considers the geometric relation-
ships of detection and the semantic principles of segmentation.
Moreover, we propose a powerful scene-level feature aggregation
module to aggregate multi-granular contextual features to serve
the BEV map segmentation task better. Specifically, the module
consists of two BEV feature aggregation blocks. The multi-window
window-attention (MWWA) adjusts window sizes on different at-
tention heads to aggregate multi-granularity contextual features.
ASPP [5] implements scene-level global feature extraction from
BEV feature maps in a convolution-based manner. Structurally,
Transformer-based MWWA and convolution-optimized ASPP are
complementary, and the performance gain also demonstrates the
effectiveness of this module.

The query-based decoding paradigm naturally fits the current
3D object detection, the mask decoder structure achieves the seg-
mentation of the BEV map, and the query focus on foreground
regions allows for better updating of queries. In summary, our main
contributions are as follows:

• We propose MaskBEV which is a unified perception frame-
work for 3D object detection and BEV map segmentation
tasks for the first time. The proposed multi-task decoder
based on masked attention can achieve high-performance
joint training.

• We propose a spatial modulation strategy to assist in obtain-
ing multi-task reliable masks and a new scene-level feature
aggregation module to capture multi-granularity and even
scene-level BEV contextual features.

• OurMaskBEV achieves state-of-the-art performance onmulti-
task learning (3D object detection and BEV map segmen-
tation) on nuScenes dataset. Multiple multimodal feature
encoder networks and sensor robustness analyses are also
provided for a comprehensive evaluation of MaskBEV.

2 RELATEDWORK
2.1 3D Object Detection
3D object detection is one of the key tasks in autonomous driving
perception. The performance of Lidar-only methods [18, 39, 42] and
camera-only methods [14, 15, 22, 37] is limited by the deficiencies
of their respective sensors. Multimodal fusion methods [1, 6, 8,
11, 21, 28, 35, 38] recently show significant effectiveness in 3D

object detection. Object-centric detection methods [7, 16, 38, 41,
52] improve detection accuracy by carefully designing potential
object query proposal generation and generation modules. CMT
[38] enriches multimodal 3D features with coordinate encoding and
designs a 3D object detection decoder head through the original
Transformer decoder in DETR. SparseFusion [52] extracts sparse
instance features from the multimodal and fuses them directly to
obtain the final sparse instance features for detection. In addition,
some methods [11, 17, 23, 28, 35]mainly use BEV representation
to fuse the two modalities. BEVFusion [28] applies lift-splat-shoot
(LSS) [31] operations to project image features onto BEV space
and fuses Lidar BEV features in that space. Then, the improved
TransFusion [1] decoder head is used for 3D detection. Current
SOTA methods [11, 17, 35] focus on generating BEV features and
applying this detection head. UniTR [35] achieves unified feature
encoding of images and Lidar through the modality-independent
Transformer encoder. It is worth noting that object-centric method
[7, 38, 40, 41] is difficult to extend to the BEV map segmentation
task.

2.2 BEV Map Segmentation
BEV map segmentation is the task of performing dense semantic
segmentation in a bird’s eye view. Influenced by the development
of 3D object detection in BEV representation, BEV map segmenta-
tion [22, 31, 42] has recently received considerable attention. Such
as LSS [31] achieves BEV map segmentation through ResNet-18
[13] and a multi-scale feature fusion network. Some works [20, 37]
transform images into BEV views through feature projection. BEV-
Former [22], CVT [49], BEVSegFormer [30], and MetaBEV [11]
construct BEV representations in a learnable manner[54] and they
adopt a convolution-based segmentation head similar to the head
of LSS. Convolution-based segmentation heads [31, 49] are widely
used in current SOTA BEV map segmentation methods [11, 28, 35].
Additionally, PETR V2 [26] proposes a query-based segmentation
head from the vanilla DETR [4]. These perception methods aim to
transform each sensor feature into BEV space to achieve multi-task
prediction, including BEV segmentation.

2.3 Multi-Task Learning
MTL has garnered widespread attention and mutual reinforce-
ment in both computer vision and NLP fields. Previous multi-
task research can be roughly divided into camera-only methods
[22, 26, 37], Lidar-only methods [18, 42], and cross-modal fusion
methods [11, 23, 28, 33, 35, 43]. Camera-only methods mostly con-
vert multi-view cameras into BEV feature maps, and perform 3D
object detection or BEV segmentation based on BEV map com-
bined with specific task heads. Lidar-only methods extract features
through the point cloud network [18, 51] and compress them in the
𝑍 -axis direction to obtain BEV representation. Some general MTL
works [11, 22, 28, 35, 42, 43, 48] design unified BEV representations
to achieve multi-task perception, including sparse detection tasks
and dense semantic tasks. However, due to the adoption of indepen-
dent task heads in each architecture, MTL performance is adversely
affected by task conflicts [28], resulting in poorer performance.
Some works [11, 28] adopt separating BEV encoders to mitigate the
negative transfer of multi-task joint training on each single task. In
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Figure 2: Overview of our MaskBEV framework. Multimodal input is passed through the feature encoding network to obtain
the fused BEV features. Based on unified BEV features, our MaskBEV performs BEV map segmentation and 3D detection tasks
on a unified Transformer decoder. Multi-task perception is not a simple task stacking, but a composite task learning process
that promotes each other by utilizing the complementary characteristics of tasks.

contrast to all existing methods, MaskBEV does not independently
design task-specific decoder heads. Instead, it naturally integrates
the individual characteristics of BEV segmentation and object detec-
tion tasks, mutually reinforcing the two tasks in a shared decoder
head. MaskBEV represents a new Transformer-based paradigm for
MTL based on unified BEV representations.

3 METHODS
3.1 Overall Architecture
In this paper, we introduce a new unified multi-task learning de-
coder to address the performance degradation issues of 3D object
detection and BEV map segmentation in joint training. Fig. 2 illus-
trates the architecture of MaskBEV. Given multimodal inputs, they
are encoded into tokens using a multimodal feature encoder, and
then fused into a BEV space through a BEV encoder [28]. Finally, a
decoder based on advanced Mask2Former [9] is used to perform
various 3D perception tasks. Our main innovation focuses on the
decoder module. Convert the multi-task perception results into a
binary mask in masked attention, allowing the query to focus on
the local region of the entire BEV map (Section 3.3). The decoder
decodes segmentation predictions as Transformer-based mask clas-
sification and detection predictions into basic classification and
regression. Scene-level feature aggregation fuses multi-scale fea-
tures to facilitate the BEV map segmentation task (Section 3.4).

3.2 Lidar-Camera Feature Encoder
BEV features can be sourced from most SOTA feature encoding
backbone networks [11, 28, 35]. In our research, we take UniTR
[35] as an example to process multimodal inputs to generate BEV
features. Specifically, modality-specific tokenizers [10, 50] process

multimodal signals to generate input token sequences for subse-
quent Transformer encoders. Image and Lidar tokens learn comple-
mentary features through modality-agnostic Transformer blocks
based on DSVT blocks [34]. Camera and Lidar feature tokens are
fused into a unified BEV space through a convolution-based BEV
encoder [28]. We use the function 𝑓 (·) to represent the multimodal
feature encoding process:

𝐹 = 𝑓 (𝐹𝐶 , 𝐹𝐿), (1)

where 𝐹 is the BEV feature, 𝐹 ∈ R𝐶×𝐻×𝑊 , 𝐶 is the channel dimen-
sion, 𝐻 and𝑊 are the BEV feature map sizes. 𝐹𝐶 is the camera
feature, and 𝐹𝐿 is the Lidar feature. The BEV features are fed to the
decoder for multi-task predictions.

3.3 Unified Multi-Task Transformer Decoder
Previous SOTA works [11, 28, 35] adopt a Transformer-based 3D
detection head [1] and a CNN-based segmentation head [49] to
implement MTL via a simple union as shown in Fig. 1(a). However,
these methods often rely on task-specific decoders and do not con-
sider the unified modeling and complementary effects of multiple
tasks, which can enhance the performance of any single task. To
this end, inspired by the advanced Mask2Former [9] decoder design,
we propose the unified MTL framework MaskBEV. As shown in
Fig. 2, the region of interest for MaskBEV is only a small part of the
entire BEV map. We attempt to focus the cross-attention between
object queries and the BEV feature on the masks of potential tasks
rather than focusing on the whole BEV. The predicted results can
explicitly guide the update of query features. The self-attention be-
tween object queries in the decoder infers the pairwise relationships
between different queries.

Specifically, with the input BEV features 𝐹 ∈ R𝐶×𝐻×𝑊 and a set
of parameterized query features𝑄 ∈ R𝐶×𝑁 , 𝑁 is the query number.
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Figure 3: Illustration of attention mask. Left, purple repre-
sents the modulated mask, and we superimpose the ground
truth. Right, yellow represents modulated 3D objects and
green boxes represent ground truth. The mask of an object
whose center point is on the segmentationmask is not drawn.

Define the anchor for each query 𝐴𝑞 = (𝑥𝑞, 𝑦𝑞, 𝑧𝑞, 𝑙𝑞,𝑤𝑞, ℎ𝑞, 𝜃𝑞),
where 𝑥𝑞, 𝑦𝑞 is the center point, 𝑧𝑞 is bounding box height, 𝑙𝑞,𝑤𝑞 ,
and ℎ𝑞 is length, width and height, 𝜃𝑞 is yaw angle. We encode the
anchor of each query through a multi-layer perception (MLP) to
obtain the position embedding 𝑃𝑞 :

𝑃𝑞 = MLP(PE(𝐴𝑞)) = MLP(Cat(PE(𝑥𝑞), ..., PE(𝜃𝑞))), (2)

where PE(𝐴𝑞) ∈ R2𝐶 , MLP implements 𝑅2𝐶 → 𝑅𝐶 , 𝑃𝑞 ∈ R𝐶 , Cat
means concatenate function.

The query consists of position encoding 𝑃𝑞 and learnable content
query 𝐶𝑞 , 𝑄 = 𝑃𝑞 + 𝐶𝑞 [4, 25]. This allows the network to learn
context and location features simultaneously.

The transformer decoder performs an iterative updating of the
query features toward the desired 3D object detection and BEVmap
segmentation. Specifically, in each iteration layer 𝑙 , the query 𝑄𝑙
focus on their corresponding regions through masked attention:

𝑄𝑙+1 = Softmax(M𝑙−1 +𝑄𝑙𝐾𝑇𝑙 )𝑉𝑙 +𝑄𝑙 , (3)

where 𝐾𝑙 ,𝑉𝑙 = 𝐹𝑊𝑘 , 𝐹𝑊𝑣,𝑊𝑘 and𝑊𝑣 are parameters of linear pro-
jection.M𝑙−1 is the multi-task union mask of the attention mask
from the previous layer.

Specifically, the attention mask is the union of 3D objects in
BEV and BEV map segmentation. However, during the training
process, predictions of potential objects and regions are inaccurate,
and predicted boxes cannot effectively represent the precise loca-
tion of objects in BEV space. To address this, we propose a spatial
modulation strategy to ensure that the attention mask covers as
many objects and semantic regions as possible. Firstly, we use BEV
segmentation prediction results with a threshold greater than 0.1
as the segmentation masks. For 3D objects, we use the top 200 box
prediction results since the max number of objects in one frame is
142, and draw circular regions of interest with the predicted center
point of the box as the center and 1.3 times the length of the box as
the diameter to create object masks. Fig. 3 shows a visual example
of attention masks.

After each iteration, on the one hand, the feed-forward net-
work (FFN) independently decodes 𝑁 object queries containing in-
stance information into 3D boxes and class labels. The FFN predicts
𝛿𝑥, 𝛿𝑦, 𝑧, 𝑙𝑜𝑔(𝑙), 𝑙𝑜𝑔(𝑤), 𝑙𝑜𝑔(ℎ), 𝑠𝑖𝑛(𝜃 ), 𝑐𝑜𝑠 (𝜃 ) of 3D anchor box. And

Head 1

Head 2

Head i

Attention 
Window

Split

MWWA

Bottleneck
ASPP

Split-
Attention

Fused
BEV

Figure 4: Illustration of scene-level feature aggregation. In
MWWA, multi-attention heads independently calculate at-
tention in windows of different sizes to capture multi-scale
features. ASPP captures the scene-level semantic layout of
BEV features.

predict the per class probability (𝑝 ∈ [0, 1]𝐾 ) of 𝐾 object seman-
tic classes. More details of FNN are consistent with previous 3D
detection paper [1]. On the other hand, each query 𝑞𝑖 is projected
to predict its semantic logits 𝑆𝑖 and the mask embedding 𝐸𝑚𝑎𝑠𝑘,𝑖 ,
𝐸𝑚𝑎𝑠𝑘,𝑖 ∈ R𝐶 . Then do the dot product of 𝐸𝑚𝑎𝑠𝑘,𝑖 with the BEV
features, 𝐹𝑎 ∈ R𝐶×𝐻×𝑊 , aggregated by scene-level feature aggre-
gation (see Section 3.4). Finally, the binary BEV mask is obtained
through a sigmoid function.

𝑀𝑎𝑠𝑘𝑏,𝑖 = 𝛿 (𝐸𝑚𝑎𝑠𝑘,𝑖 ⊙ 𝐹𝑎), (4)

where 𝛿 (·)is a sigmoid function, 𝑀𝑎𝑠𝑘𝑏,𝑖 ∈ R𝐻×𝑊 . BEV map se-
mantic segmentation prediction results𝑀𝑎𝑠𝑘𝑠 are as follows:

𝑀𝑎𝑠𝑘𝑠 =

𝑁∑︁
𝑖=1

𝑆𝑖 ·𝑀𝑎𝑠𝑘𝑏,𝑖 . (5)

3.4 Scene-Level Feature Aggregation
Wepropose scene-level feature aggregation to capturemulti-granular
contextual BEV features. Inspired by recent progress in introduc-
ing windows into Transformer [19, 27, 47], we design scene-level
feature aggregation as a hybrid structure, as shown in Fig. 4. For
the input fused BEV features, multi-window windowed attention
(MWWA) performs window attention with windows of different
sizes. MWWA aggregates multi-granular contextual semantic fea-
tures on each attention head. In addition, we apply ASPP [5] and the
bottleneck structure [12] to reduce the channel number by 4× to cap-
ture the global context. Finally, the dual outputs are weighted and
fused through lightweight split-attention [46] and skip-connected
with the original BEV feature map.

Specifically, as shown in Fig. 4(a), MWWA uses a pyramid win-
dow setting. Each window has a different attention range to capture
multi-granular contextual information. It is worth noting that, our
MWWA has different scale windows for each head, unlike standard
multi-head window attention. Specifically, set the window size of
𝑖-th head ℎ𝑖 to 𝑃𝑖 × 𝑃𝑖 . Given the input BEV features 𝐹 ∈ R𝐶×𝐻×𝑊 ,
and split it into 𝑀 sub-BEV features, 𝐹𝑖 ∈ R𝐷×𝐻×𝑊 , 1, 2, · · · , 𝑀 ,
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where 𝐷 is the sub-BEV feature dimension. We assign each sub-
BEV feature an attention head for a specific window 𝑃𝑖 × 𝑃𝑖 . To
dynamically focus on the remote region, we also use the shifted
window operation following [27]. MWWA can be expressed as:

MWWA(𝐹𝑖 , 𝑃𝑖 ) = Cat(ℎ1, ℎ2, · · · , ℎ𝑙 ), (6)

ℎ𝑖 = 𝑓WA (𝐹𝑖 , 𝑃𝑖 ), (7)
where 𝑙 is the number of heads, Cat means concatenate function,
𝑓WA (·) is the window attention.

4 EXPERIMENTS
4.1 Dataset
We evaluate the performance of MaskBEV by comparing it with
exiting SOTA methods on nuScenes [3] dataset. nuScenes is a very
challenging large-scale autonomous driving dataset, containing 700
scenes for training, 150 scenes for validation, and 150 scenes for
testing. It provides point clouds collected with 32-beam Lidar and
six cameras with complete 360 environment coverage. The anno-
tated data can be widely used in tasks such as 3D object detection,
object tracking, and BEV map segmentation. Following [28, 35],
we set the detection range to [−51.2𝑚, 51.2𝑚] for the 𝑋 and 𝑌
axes, and [−5𝑚, 3𝑚] for the 𝑍 axis and the segmentation range to
[−50𝑚, 50𝑚] for the 𝑋 and 𝑌 axes. Our evaluation metrics align
with [3, 28]. For 3D detection, we utilize the standard nuScenes
detection score (NDS) and mean average precision (mAP). For BEV
map segmentation, we follow [28, 49] to calculate the mean inter-
section over union (mIoU) on the overall six categories (drivable
space, pedestrian crossing, walkway, stop line, car-parking area,
and lane divider). The input camera and Lidar size depend on the
specific BEV encoding backbone network.

4.2 Implementation Details
Model. Multimodal feature encoder can be BEVFusion [28] or
UniTR [35]. More configuration details can be found in the previous
paper [28, 35]. The number of perception queries is set to 𝑁=300.
The multi-task decoder adopts 𝐿=3. Scene-level feature aggregation
loops twice. For MWWA, the sub-BEV number 𝑀 is set to 4, 8
heads are used in the attention, and each 2 heads focus on the same
scale. The window sizes 𝑃𝑖 are set to 3 × 3, 6 × 6, 9 × 9, and 18 × 18
respectively.
Loss. For the loss of 3D object detection 𝐿3𝐷 , we adopt the focal loss
[24] for classification and 𝐿1 loss for 3D bounding box regression,
and the loss weights of the two are set to 2.0 and 0.25 respectively.
We use the standard focal loss 𝐿𝑠𝑒𝑔 for BEV map segmentation. The
losses of the two tasks are simply added with weights to form the
overall loss 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝛼𝐿3𝐷 + 𝛽𝐿𝑠𝑒𝑔 . To balance multiple training
tasks, we set the weights 𝛼 and 𝛽 to 3 and 1 respectively.
Training. Different from the training strategy of the general archi-
tecture [11, 28] that separates the BEV encoders for different tasks,
our MaskBEV jointly trains 3D detection and BEV map segmenta-
tion tasks in the unified encoder-decoder framework. We trained
our model on 8 NVIDIA A800 GPUs by AdamW optimizer [29]. We
used a batch size of 8 and 24 and trained for 20 epochs for BEVFu-
sion [28] and UniTR [35] encoder backbone. Both encoder backbone
with the once-cycle learning policy [32] and a maximum learning

rate of 2e−3. We follow [28, 35] using the CBGS [53] strategy and
the multi-modal data augmentation.

4.3 Main Results
Our MaskBEV is designed for MTL (3D object detection and BEV
map segmentation), and we mainly focus on MTL methods on
nuScenes. We use UniTR [35] as the feature encoding backbone
network in experiments. As shown in Table 1, despite the negative
transfer [28] of MTL, our MaskBEV achieves SOTA performance
on MTL with 72.9 NDS and 73.9 mIoU and outperforms previous
SOTA UniTR by +1.3 NDS and +2.7 mIoU. UniTR, like BEVFusion
[28] and MetaBEV [11], adopts a separate BEV encoders strategy
to perform MTL. MaskBEV outperforms MetaBEV by +3.1 NDS
and +7.0 mIoU, where MetaBEV adopts an MTL optimization mod-
ule. Furthermore, MaskBEV achieves comparable results to UniTR
trained with single-task learning (STL) in 3D detection (72.9 NDS
𝑣 .𝑠 . 73.3 NDS) and map segmentation (73.9 mIoU 𝑣 .𝑠 . 74.7 mIoU).
The results show that exploiting the complementary characteristics
between multiple tasks improves the performance of MTL. Fig. 5
shows some qualitative results. The yellow and green marks show
that our MaskBEV performance onMTL is far better than the UniTR
performance on MTL, and is close to the UniTR performance on
STL. See Fig. 6 for more visualizations and a video in Appendix.

4.4 Robustness Against BEV Encoder
To demonstrate robustness, we evaluate our MTL framework on
different BEV feature encoder backbone networks [28, 35]. Since
MetaBEV [11] is not open source, we do not use it as a baseline. All
experiments are performed on the nuScenes val set. The results in
Table 2 show that the performance of each method is impaired on
MTL, but our MaskBEV can bring consistent improvements to them,
which proves the effectiveness of MaskBEV on MTL. Specifically,
for BEVFusion [28], our proposed multi-task head can obtain +1.2
NDS and +3.4 mIoU improvements compared to the separate BEV
encoders strategy. The separation strategy proposed by BEVFusion
can improve MTL performance. On the stronger baseline UniTR
[35], our MaskBEV achieves improvements of +1.4 NDS and +2.7
mIoU. The results show that MaskBEV can be used as a general
MTL framework.

Moreover, we compare inference latency with open source meth-
ods in Table 3. Taking BEVFusion [28] and UniTR [35] as baselines
respectively, our methods both achieve slightly leading inference
speed, but greatly improve the performance.

4.5 Ablation Studies
Network configurations. In Table 4, we analyze the impact of
different segmentation mask thresholds. We observe that lower
thresholds help increase mask coverage and improve performance,
as we analyzed in Sec 3.3. Table 5 suggests that using only boxes
as masks limits the performance. We aim to expand the potential
regions of interest appropriately, and the 1.3 times enlargement
of circular regions validates this idea. This brings a performance
improvement of +0.6 mAP and validates our motivation.
Scene-level feature aggregation. In Table 6, we ablate the impact
of scene-level feature aggregation. Both MWWA and ASPP posi-
tively contribute to the final performance. The 1𝑠𝑡 and 2𝑛𝑑 rows



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Comparisons with previous state-of-the-art methods on nuScenes val set. ’L’ and ’C’ represent Lidar and camera,
respectively. Single-task learning means the 3D detection and map segmentation are trained independently. Multi-task learning
(MTL) means joint training of two tasks. ∗ indicates MTL results for a fair comparison. † represents object-centric methods,
specifically designed for 3D detection, which are difficult to generalize to map segmentation. ‡ indicates separate BEV encoders.
The best is in bold.

Methods Modality mAP NDS Drivable Ped.Cross Walkway StopLine Carpark Divider Mean

Single-task learning
BEVFormer [22] C 41.6 51.7 80.1 - - - - 25.7 -
BEVFusion [28] C 35.6 41.2 81.7 54.8 58.4 47.4 50.7 46.4 56.6
X-Align [2] C - - 82.4 55.6 59.3 49.6 53.8 47.4 58.0
PETR v2† [26] C 42.1 52.4 85.6 - - - - 49.0 -
QAF2D† [16] C 50.0 58.6 - - - - - - -
CenterPoint [42] L 59.6 66.8 75.6 48.4 57.5 36.5 31.7 41.9 48.6
BEVFusion [28] L 64.7 69.3 75.6 48.4 57.5 36.4 31.7 41.9 48.6
MetaBEV-T [11] L 64.2 69.3 87.9 63.4 71.6 55.0 55.1 55.7 64.8
FocalFormer3D† [7] L 66.4 70.9 - - - - - - -
SAFDNet† [45] L 66.3 71.0 - - - - - - -
MVP [43] L+C 66.1 70.0 76.1 48.7 57.0 36.9 33.0 42.2 49.0
TransFusion† [1] L+C 67.3 71.2 - - - - - - -
BEVFusion [28] L+C 68.5 71.4 85.5 60.5 67.6 52.0 57.0 53.7 62.7
X-Align [2] L+C - - 86.8 65.2 70.0 58.3 57.1 58.2 65.7
MetaBEV-T [11] L+C 68.0 71.5 89.6 68.4 74.8 63.3 64.4 61.8 70.4
MSMDFusion [17] L+C 69.3 72.1 - - - - - - -
DeepInteraction† [40] L+C 69.9 72.6 - - - - - - -
CMT† [38] L+C 70.3 72.9 - - - - - - -
FocalFormer3D-F† [7] L+C 70.5 73.1 - - - - - - -
SparseFusion† [52] L+C 71.0 73.1 - - - - - - -
UniTR [35] L+C 70.5 73.3 90.5 73.8 79.1 68.0 72.7 64.0 74.7
IS-FUSION† [41] L+C 72.8 74.0 - - - - - - -
Multi-task learning
BEVFusion‡ [28] L+C 65.8 69.8 83.9 55.7 63.8 43.4 54.8 49.6 58.5
MetaBEV‡ [11] L+C 65.4 69.8 88.5 64.9 71.8 56.7 61.1 58.2 66.9
UniTR∗‡ [35] L+C 68.2 71.6 88.9 70.1 76.4 61.9 69.0 61.1 71.2
MaskBEV L+C 69.8 72.9 90.0 73.1 78.4 66.8 71.9 63.1 73.9

Table 2: Comparison of the basic BEV feature encoding back-
bone networks on nuScenes val split.

Method Training Strategy mAP NDS mIoU

BEVFusion [28]
STL 68.5 71.4 62.7

MTL(shared) - 69.7 54.0
MTL(separate) 65.8 69.8 58.5

BEVFusion+MaskBEV MTL(shared) 67.3 71.0 61.9

UniTR [35]
STL 70.5 73.3 74.7

MTL(shared) 67.6 71.4 69.5
MTL(separate) 68.2 71.6 71.2

UniTR+MaskBEV MTL(shared) 69.8 72.9 73.9

show that extracting multi-scale features with windowed atten-
tion brings performance improvements to multi-task perception.
Their complementary improvements in the 3𝑟𝑑 row are understand-
able since MWWA focuses on multi-granularity features and ASPP
focuses on the global contexts.

Table 3: Multi-task latency and performance on nuScenes val
set. Latency is measured on an A800 GPU.

Models Latency (ms) NDS mIoU

BEVFusion [28] 167.4 69.7 54.0
BEVFusion+MaskBEV 149.5 71.0 61.9
UniTR [35] 138.1 71.6 71.2
UniTR+MaskBEV 122.8 72.9 73.9

Table 4: Segmentation mask threshold.

mAP NDS mIoU

0.1 69.8 72.9 73.9
0.2 69.7 72.9 73.8
0.4 69.5 72.7 73.3
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Figure 5: Qualitative results of MaskBEV on MTL, including 3D object detection and BEV map segmentation tasks. MaskBEV
shows better results than the MTL variant of UniTR [35] and comparable results to the STL variant of UniTR.

Table 5: Detection mask design.

mAP NDS mIoU

Box 69.3 72.6 73.9
Circle 69.5 72.7 74.0
1.3 × 69.8 72.9 73.9

Table 6: Ablation study on the scene-level feature aggregation

MWWA ASPP mAP NDS mIoU

! 69.6 72.6 73.5
! 69.3 72.5 73.3

! ! 69.8 72.9 73.9

4.6 Robustness Against Sensor Failure
We follow the same evaluation protocols adopted in UniTR [35] to
demonstrate the robustness of our MaskBEV for Lidar and camera

Table 7: Robustness setting results of camera failure cases
on nuScenes val set. F means the front camera. * indicates
single-task training, and reported by UniTR [35]. UniTR†
and our MaskBEV is multi-task learning.

Method Clean Missing F Preserve F Stuck
mAP NDS mAP NDS mAP NDS mAP NDS

TransFusion* [1] 66.9 70.9 65.3 70.1 64.4 69.3 65.9 70.2
BEVFusion* [23] 67.9 71.0 65.9 70.7 65.1 69.9 66.2 70.3
UniTR* [35] 70.5 73.3 68.5 72.4 66.5 71.2 68.1 71.8
UniTR† [35] 68.2 71.6 66.1 70.5 64.3 69.4 65.8 70.1
UniTR+MaskBEV 69.8 72.9 67.9 71.9 66.0 70.6 67.6 71.5

malfunctioning. We refer readers to [23, 44] for more implemen-
tation details. As shown in Table 7 and 8, under certain camera
and Lidar failure conditions, our MTL method shows comparable
results with STL variant of UniTR, and outperforms MTL variant of
UniTR. which proves the robustness of MaskBEV to sensor failure
conditions.



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

: Car : Truck : Pedestrian : Drivable Area : Walkway : Crosswalk : Stop Line

3D Object Detection (in Camera View) 3D Object Detection (in BEV) BEV Map Segmentation

Figure 6: Qualitative results of MaskBEV on MTL, including 3D object detection and BEV map segmentation tasks.

Table 8: Ablation of Lidar beam failure with NDS evaluation
metric. ’L’ and ’C’ represent Lidar and camera, respectively.
† and our MaskBEV is multi-task learning.

Method C+L
(1-beam)

C+L
(4-beam)

C+L
(16-beam)

C+L
(32-beam)

BEVFusion [28] 52.0 63.2 64.4 71.4
MSMDFusion [17] 45.7 59.3 69.3 72.1
UniTR [35] 59.5 68.5 72.2 73.3
UniTR† [35] 54.3 65.7 67.9 71.6
MaskBEV 57.3 67.8 71.4 72.9

5 CONCLUSION
This paper proposes a unified and general multimodal multi-task
learning (MTL) paradigm. MaskBEV completes multi-task 3D per-
ception based on bird’s eye view (BEV) representation in a shared
Transformer decoder. By fully exploiting the inherent dependen-
cies between BEV map segmentation and 3D object detection tasks,
MaskBEV alleviates the current performance degradation problem

of MTL. MaskBEV breaks the common practice of designing spe-
cific decoding paradigms for specific perception tasks. MaskBEV
achieves performance improvements and increased inference speed
on MTL applications with multiple strong baseline methods. We
believe that MaskBEV can provide a solid foundation for promoting
the development of more efficient and universal MTL systems.
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