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Abstract

In this paper, we investigate the impact of stochasticity and large stepsizes on the
implicit regularisation of gradient descent (GD) and stochastic gradient descent
(SGD) over 2-layer diagonal linear networks. We prove the convergence of GD
and SGD with macroscopic stepsizes in an overparametrised regression setting and
provide a characterisation of their solution through an implicit regularisation prob-
lem. Our characterisation provides insights on how the choice of minibatch sizes
and stepsizes lead to qualitatively distinct behaviors in the solutions. Specifically,
we show that for sparse regression learned with 2-layer diagonal linear networks,
large stepsizes consistently benefit SGD, whereas they can hinder the recovery of
sparse solutions for GD. These effects are amplified for stepsizes in a tight window
just below the divergence threshold, known as the "edge of stability" regime.

1 Introduction

The stochastic gradient descent algorithm (SGD) [51] is the foundational algorithm for almost all
neural network training. Though a remarkably simple algorithm, it has led to many impressive
empirical results and is a key driver of deep learning. However the performances of SGD are quite
puzzling from a theoretical point of view as (1) its convergence is highly non-trivial and (2) there
exist many global minimums for the training objective which generalise very poorly [66].

To explain this second point, the concept of implicit regularisation has emerged: if overfitting is
harmless in many real-world prediction tasks, it must be because the optimisation process is implicitly
favoring solutions that have good generalisation properties for the task. The canonical example is
overparametrised linear regression with more trainable parameters than number of samples: although
there are infinitely many solutions that fit the samples, GD and SGD explore only a small subspace of
all the possible parameters. As a result, it can be shown that they implicitly converge to the closest
solution in terms of the ℓ2 distance, and this without explicit regularisation [66, 24].

Currently, most theoretical works on implicit regularisation have primarily focused on continuous
time approximations of (S)GD where the impact of crucial hyperparameters such as the stepsize
and the minibatch size are ignored. One such common simplification is to analyse gradient flow,
which is a continuous time limit of GD and minibatch SGD with an infinitesimal stepsize. By
definition, this analysis does not capture the effect of stepsize or stochasticity. Another approach
is to approximate SGD by a stochastic gradient flow [60, 48], which tries to capture the noise and
the stepsize using an appropriate stochastic differential equation. However, there are no theoretical
guarantees that these results can be transferred to minibatch SGD as used in practice. This is a
limitation in our understanding since the performances of most deep learning models are often
sensitive to the choice of stepsize and minibatch size. The importance of stepsize and SGD minibatch
size is common knowledge in practice and has also been systematically established in controlled
experiments [36, 42, 20].
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Figure 1: Noiseless sparse regression with a diagonal
linear network using SGD and GD, with parameters
initialized at the scale of α = 0.1 (Section 2). The test
losses at convergence for various stepsizes are plotted
for GD and SGD. Small stepsizes correspond to gradi-
ent flow (GF) performance. We see that increasing the
stepsize improves the generalisation properties of SGD,
but deteriorates that of GD. The dashed vertical lines
at stepsizes γ̃SGD

max and γ̃GD
max denote the largest stepsizes

for which SGD and GD, respectively, converge. See
Section 2 for the precise experimental setting.
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In this work, we aim to expand our understanding of the impact of stochasticity and stepsizes by
analysing the (S)GD trajectory in 2-layer diagonal networks (DLNs). In Fig. 1, we show that even in
our simple network, there are significant differences between the nature of the solutions recovered by
SGD and GD at macroscopic stepsizes. We discuss this behavior further in the later sections.

The 2-layer diagonal linear network which we consider is a simplified neural network that has received
significant attention lately [61, 57, 26, 50]. Despite its simplicity, it surprisingly reveals training
characteristics which are observed in much more complex architectures, such as the role of the
initialisation [61], the role of noise [48, 50], or the emergence of saddle-to-saddle dynamics [6, 49]. It
therefore serves as an ideal proxy model for gaining a deeper understanding of complex phenomenons
such as the roles of stepsizes and of stochasticity as highlighted in this paper. We also point out that
implicit bias and convergence for more complex architectures such as 2-layer ReLU networks, matrix
multiplication are not yet fully understood, even for the simple gradient flow. Therefore studying the
subtler effects of large stepsizes and stochasticity in these settings is currently out of reach.

1.1 Main results and paper organisation

The overparametrised regression setting and diagonal linear networks are introduced in Section 2.
We formulate our theoretical results (Theorems 1 and 2) in Section 3: we prove that for macroscopic
stepsizes, gradient descent and stochastic gradient descent over 2-layer diagonal linear networks
converge to a zero-training loss solution β⋆∞. We further provide a refined characterization of
β⋆∞ through a trajectory-dependent implicit regularisation problem, that captures the effects of
hyperparameters of the algorithm, such as stepsizes and batchsizes, in useful and analysable ways.
In Section 4 we then leverage this crisp characterisation to explain the influence of crucial parameters
such as the stepsize and batch-size on the recovered solution. Importantly our analysis shows a
stark difference between the generalisation performances of GD and SGD for large stepsizes,
hence explaining the numerical results seen in Fig. 1 for the sparse regression setting. Finally, in
Section 5, we use our results to shed new light on the Edge of Stability (EoS) phenomenon [14].

1.2 Related works

Implicit bias. The concept of implicit bias from optimization algorithm in neural networks has been
studied extensively in the past few years, starting with early works of Telgarsky [55], Neyshabur
et al. [45], Keskar et al. [36], Soudry et al. [53]. The theoretical results on implicit regularisation
have been extended to multiplicative parametrisations [23, 25], linear networks [34], and homoge-
neous networks [40, 35, 13]. For regression loss on diagonal linear networks studied in this work,
Woodworth et al. [61] demonstrate that the scale of the initialisation determines the type of solution
obtained, with large initialisations yielding minimum ℓ2 norm solutions—the neural tangent kernel
regime [30] and small initialisation resulting in minimum ℓ1 norm solutions—the rich regime [13].
The analysis relies on the link between gradient descent and mirror descent established by Ghai et al.
[21] and further explored by Vaskevicius et al. [56], Wu and Rebeschini [62]. These works focus
on full batch gradient, and often in the inifitesimal stepsize limit (gradient flow), leading to general
insights and results that do not take into account the effects of stochasticity and large stepsizes.

The effect of stochasticity in SGD on generalisation. The relationship between stochasticity in
SGD and generalisation has been studied in various works [41, 29, 11, 38, 64]. Empirically, models
generated by SGD exhibit better generalisation performance than those generated by GD [37, 31, 27].
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Explanations related to the flatness of the minima picked by SGD have been proposed [28]. Label
noise has been shown to influence the implicit bias of SGD [26, 8, 15, 50] by implicitly regularising
the sharp minimisers. Recently, studying a stochastic gradient flow that models the noise of SGD in
continuous time with Brownian diffusion, Pesme et al. [48] characterised for diagonal linear networks
the limit of their stochastic process as the solution of an implicit regularisation problem. However
similar explicit characterisation of the implicit bias remains unclear for SGD with large stepsizes.

The effect of stepsizes in GD and SGD. Recent efforts to understand how the choice of stepsizes
affects the learning process and the properties of the recovered solution suggest that larger stepsizes
lead to the minimisation of some notion of flatness of the loss function [52, 37, 44, 33, 64, 43],
backed by empirical evidences or stability analyses. Larger stepsizes have also been proven to be
beneficial for specific architectures or problems: two-layer network [39], regression [63], kernel
regression [7] or matrix factorisation [59]. For large stepsizes, it has been observed that GD enters
an Edge of Stability (EoS) regime [32, 14], in which the iterates and the train loss oscillate before
converging to a zero-training error solution; this phenomenon has then been studied on simple toy
models [1, 67, 12, 16] for GD. Recently, [2] presented empirical evidence that large stepsizes can
lead to loss stabilisation and towards simpler predictors.

2 Setup and preliminaries

Overparametrised linear regression. We consider a linear regression over inputs X =
(x1, . . . , xn) ∈ (Rd)n and outputs y = (y1, . . . , yn) ∈ Rn. We consider overparametrised problems
where input dimension d is (much) larger than the number of samples n. In this case, there exists
infinitely many linear predictors β⋆ ∈ Rd which perfectly fit the training set, i.e., yi = ⟨β⋆, xi⟩ for
all 1 ⩽ i ⩽ n. We call such vectors interpolating predictors or interpolators and we denote by S the
set of all interpolators S = {β⋆ ∈ Rd s.t. ⟨β⋆, xi⟩ = yi,∀i ∈ [n]}. Note that S is an affine space of
dimension greater than d− n and equal to β⋆ + span(x1, . . . , xn)

⊥ for any β⋆ ∈ S. We consider
the following quadratic loss: L(β) = 1

2n

∑n
i=1(⟨β, xi⟩ − yi)

2, for β ∈ Rd.

2-layer linear diagonal network. We parametrise regression vectors β as functions βw of trainable
parameters w ∈ Rp. Although the final prediction function x 7→ ⟨βw, x⟩ is linear in the input x,
the choice of the parametrisation drastically changes the solution recovered by the optimisation
algorithm [25]. In the case of the linear parametrisation βw = w many first-order methods (SGD,
GD, with or without momentum) converge towards the same solution and the choice of stepsize does
not impact the recovered solution beyond convergence. In an effort to better understand the effects
of stochasticity and large stepsize, we consider the next simple parametrisation, that of a 2-layer
diagonal linear neural network given by:

βw = u⊙ v where w = (u, v) ∈ R2d . (1)

This parametrisation can be viewed as a simple neural network x 7→ ⟨u, σ(diag(v)x)⟩ where the
output weights are represented by u, the inner weights is the diagonal matrix diag(v), and the
activation σ is the identity function. In this spirit, we refer to the entries of w = (u, v) ∈ R2d as
the weights and to β := u ⊙ v ∈ Rd as the prediction parameter. Despite the simplicity of the
parametrisation (1), the loss function F over parameters w = (u, v) ∈ R2d is non-convex (and thus
the corresponding optimization problem is challenging to analyse), and is given by:

F (w) := L(u⊙ v) =
1

2n

n∑
i=1

(yi − ⟨u⊙ v, xi⟩)2 . (2)

Mini-batch SGD. We minimise F using mini-batch SGD: let w0 = (u0, v0) and for k ⩾ 0,

wk+1 = wk − γk∇FBk
(wk) , where FBk

(w) :=
1

2b

∑
i∈Bk

(yi − ⟨u⊙ v, xi⟩)2 , (3)

where γk are stepsizes, Bk ⊂ [n] are mini-batches of b ∈ [n] distinct samples sampled uniformly and
independently, and ∇FBk

(wk) are minibatch gradients of partial loss over Bk, FBk
(w) := LBk

(u⊙v)
defined above. Classical SGD and full-batch GD are special cases with b = 1 and b = n, respectively.
For k ⩾ 0, we consider the successive prediction parameters βk := uk ⊙ vk built from the weights
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wk = (uk, vk). We analyse SGD initialised at u0 =
√
2α ∈ Rd>0 and v0 = 0 ∈ Rd, resulting in

β0 = 0 ∈ Rd independently of the chosen weight initialisation α2.

Experimental details. We consider the noiseless sparse regression setting where (xi)i∈[n] ∼
N (0, Id) and yi = ⟨β⋆ℓ1 , xi⟩ for some s-sparse vector β⋆ℓ1 . We perform (S)GD over the DLN with
a uniform initialisation α = α1 ∈ Rd where α > 0. Fig. 1 and Fig. 2 (left) correspond to the
setup (n, d, s, α) = (20, 30, 3, 0.1), Fig. 2 (right) to (n, d, s, α) = (50, 100, 4, 0.1) and Fig. 3 to
(n, d, s, α) = (50, 100, 2, 0.1).

Notations. Let H := ∇2L = 1
n

∑
i xix

⊤
i denote the Hessian of L, and for a batch B ⊂ [n] let

HB := ∇2LB = 1
|B|
∑
i∈B xix

⊤
i denote the Hessian of the partial loss over the batch B. Let L

denote the “smoothness” such that ∀β, ∥HBβ∥2 ⩽ L∥β∥2, ∥HBβ∥∞ ⩽ L∥β∥∞ for all batches
B ⊂ [n] of size b. A real function (e.g, log, exp) applied to a vector must be understood as
element-wise application, and for vectors u, v ∈ Rd, u2 = (u2i )i∈[d], u ⊙ v = (uivi)i∈[d] and
u/v = (ui/vi)i∈[d]. We write 1, 0 for the constant vectors with coordinates 1 and 0 respectively. The
Bregman divergence [9] of a differentiable convex function h : Rd → R is defined as Dh(β1, β2) =
h(β1)− (h(β2) + ⟨∇h(β2), β1 − β2⟩).

3 Implicit bias of SGD and GD

We start by recalling some known results on the implicit bias of gradient flow on diagonal linear
networks before presenting our main theorems on characterising the (stochastic) gradient descent
solutions (Theorem 1) as well as proving the convergence of the iterates (Theorem 2).

3.1 Warmup: gradient flow

We first review prior findings on gradient flow on diagonal linear neural networks. Woodworth
et al. [61] show that the limit β∗

α of the gradient flow dwt = −∇F (wt)dt initialised at (u0, v0) =
(
√
2α,0) is the solution of the minimal interpolation problem:

β∗
α = argmin

β⋆∈S
ψα(β

⋆) , where ψα(β) =
1

2

d∑
i=1

(
βiarcsinh(

βi
α2
i

)−
√
β2
i + α4

i + α2
i

)
. (4)

The convex potential ψα is the hyperbolic entropy function (or hypentropy) [21]. Depending on
the structure of the vector α, the generalisation properties of β⋆α highly vary. We point out the two
main characteristics of α that affect the behaviour of ψα and therefore also the solution β⋆α.

1. The Scale of α. For an initialisation vector α we call the ℓ1-norm ∥α∥1 the scale of the
initialisation. It is an important quantity affecting the properties of the recovered solution β⋆α. To
see this let us consider a uniform initialisation of the form α = α1 for a scalar value α > 0.
In this case the potential ψα has the property of resembling the ℓ1-norm as the scale α vanishes:
ψα ∼ ln(1/α)∥.∥1 as α→ 0. Hence, a small initialisation results in a low ℓ1-norm solution which
is known to induce sparse recovery guarantees [10]. This setting is often referred to as the “rich”
regime [61]. In contrast, using a large initialisation scale leads to solutions with low ℓ2-norm:
ψα ∼ ∥.∥22/(2α2) as α→ ∞, a setting known as the “kernel” or “lazy” regime. Overall, to retrieve
the minimum ℓ1-norm solution, one should use a uniform initialisation with small scale α, see Fig. 7
in Appendix D for an illustration and [61, Theorem 2] for a precise characterisation.

2. The Shape of α. In addition to the scale of the initialisation α, a lesser studied aspect is its
“shape”, which is a term we use to refer to the relative distribution of {αi}i along the d coordinates
[3]. It is a crucial property because having α → 0 does not necessarily lead to the potential ψα being
close to the ℓ1-norm. Indeed, we have that ψα(β)

α→0∼ ∑d
i=1 ln(

1
αi
)|βi| (see Appendix D), therefore

if the vector ln(1/α) has entries changing at different rates, then ψα(β) is a weighted ℓ1-norm. In
words, if the entries of α do not go to zero “uniformly", then the resulting implicit bias minimizes a

2In Appendix C, we show that the (S)GD trajectory with this initialisation exactly matches that of another
common parametrisation βw = w2

+ − w2
− with initialisation w+,0 = w−,0 = α. The second layer of our

diagonal linear network is set to 0 in order to obtain results that are easier to interpret. However, our proof
techniques can be applied directly to a general initialisation, at the cost of additional notations in our Theorems.
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weighed ℓ1-norm. This phenomenon can lead to solutions with vastly different sparsity structure than
the minimum ℓ1-norm interpolator. See Fig. 7 and Example 1 in Appendix D.

3.2 Implicit bias of (stochastic) gradient descent

In Theorem 1, we prove that for an initialisation
√
2α ∈ Rd and for arbitrary stepsize sequences

(γk)k⩾0 if the iterates converge to an interpolator, then this interpolator is the solution of a
constrained minimisation problem which involves the hyperbolic entropy ψα∞ defined in (4), where
α∞ ∈ Rd is an effective initialisation which depends on the trajectory and on the stepsize sequence.
Later, we prove the convergence of iterates for macroscopic step sizes in Theorem 2.
Theorem 1 (Implicit bias of (S)GD). Let (uk, vk)k⩾0 follow the mini-batch SGD recursion (3)
initialised at (u0, v0) = (

√
2α,0) and with stepsizes (γk)k⩾0. Let (βk)k⩾0 = (uk ⊙ vk)k⩾0 and

assume that they converge to some interpolator β⋆∞ ∈ S. Then, β⋆∞ satisfies:

β⋆∞ = argmin
β⋆∈S

Dψα∞
(β⋆, β̃0) , (5)

where Dψα∞
is the Bregman divergence with hyperentropy potential ψα∞ of the effective initialisa-

tion α∞, and β̃0 is a small perturbation term. The effective initialisation α∞ is given by,

α2
∞ = α2 ⊙ exp

(
−

∞∑
k=0

q
(
γk∇LBk

(βk)
))

, (6)

where q(x) = − 1
2 ln((1− x2)2) satisfies q(x) ⩾ 0 for |x| ⩽

√
2, with the convention q(1) = +∞.

The perturbation term β̃0 ∈ Rd is explicitly given by β̃0 = 1
2

(
α2

+ − α2
−
)
, where q±(x) = ∓2x−

ln((1∓ x)2), and α2
± = α2 ⊙ exp (−∑∞

k=0 q±(γk∇LBk
(βk))).

Trajectory-dependent characterisation. The characterisation of β⋆∞ in Theorem 1 holds for any
stepsize schedule such that the iterates converge and goes beyond the continuous-time frameworks
previously studied [61, 48]. The result even holds for adaptive stepsize schedules which keep
the stepsize scalar such as AdaDelta [65]. An important aspect of our result is that α∞ and β̃0
depend on the iterates’ trajectory. Nevertheless, we argue that our formulation provides useful
ingredients for understanding the implicit regularisation effects of (S)GD for this problem compared
to trivial characterisations (such as e.g., minβ ∥β − β⋆∞∥). Importantly, the key parameters α∞, β̃0
depend on crucial parameters such as the stepsize and noise in a useful and analysable manner:
understanding how they affect α∞ and β̃0 coincides with understanding how they affect the recovered
solution β⋆∞ and its generalisation properties. This is precisely the object of Sections 4 and 5 where
we discuss the qualitative and quantitative insights from Theorem 1 in greater detail.

The perturbation β̃0 can be ignored. We show in Proposition 16, under reasonable assumptions
on the stepsizes, that |β̃0| ⩽ α2 and α∞ ⩽ α (component-wise). The magnitude of β̃0 is therefore
negligible in front of the magnitudes of β⋆ ∈ S and one can roughly ignore the term β̃0. Hence, the
implicit regularisation Eq. (5) can be thought of as β⋆∞ ≈ argminβ⋆∈S Dψα∞

(β⋆, 0) = ψα∞(β⋆),
and thus the solution β⋆∞ minimises the same potential function that the solution of gradient flow (see
Eq. (4)), but with an effective initialisation α∞. Also note that for γk ≡ γ → 0 we have α∞ → α
and β̃0 → 0 (Proposition 19), recovering the previously known result for gradient flow (4).

Deviation from gradient flow. The difference with gradient flow is directly associated with the
quantity

∑
k q(γk∇LBk

(βk)). Also, as the (stochastic) gradients converge to 0 and q(x) x→0∼ x2,
one should think of this sum as roughly being

∑
k∇LBk

(βk)
2: the larger this sum, the more the

recovered solution differs from that of gradient flow. The full picture of how large stepsizes and
stochasticity impact the generalisation properties of β⋆∞ and the recovery of minimum ℓ1-norm
solution is nuanced as clearly seen in Fig. 1.

3.3 Convergence of the iterates

Theorem 1 provides the implicit minimisation problem but says nothing about the convergence of the
iterates. Here we show under very reasonable assumptions on the stepsizes that the iterates indeed
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converge towards a global optimum. Note that since the loss F is non-convex, such a convergence
result is non-trivial and requires an involved analysis.

Theorem 2 (Convergence of the iterates). Let (uk, vk)k⩾0 follow the mini-batch SGD recursion (3)
initialised at u0 =

√
2α ∈ Rd>0 and v0 = 0, and let (βk)k⩾0 = (uk ⊙ vk)k⩾0. Recall the

“smoothness” parameter L on the minibatch loss defined in the notations. There exist B > 0 verifying
B = Õ(minβ⋆∈S ∥β⋆∥∞) and a numerical constant c > 0 such that for stepsizes satisfying γk ⩽ c

LB ,
the iterates (βk)k⩾0 converge almost surely to the interpolator β⋆∞ solution of Eq. (5).

In fact, we can be more precise by showing an exponential rate of convergence of the losses as well
as characterise the rate of convergence of the iterates as follows.

Proposition 1 (Quantitative convergence rates). Under the assumptions of Theorem 2, we have:

E [L(βk)] ⩽
(
1− 1

2
γα2λb

)k
L(β0) and E

[∥∥βk − β⋆αk

∥∥2] ⩽ C

(
1− 1

2
γα2λb

)k
,

where λb > 0 is the largest value such that λbH ⪯ EB[HB], C =
2B(α2λ+min)

−1
(
1 + (4Bλmax)(α

2λ+min)
−1
)
L(β0) and λ+min, λmax > 0 are respectively the

smallest non-null and the largest eigenevalues of H , and β⋆αk
is the interpolator that minimises the

perturbed hypentropy hk of parameter αk, as defined in Eq. (7) (next subsection).

The convergence of the losses is proved directly using the time-varying mirror structure that we
exhibit in the next subsection, the convergence of the iterates is proved by studying the curvature of
the mirror maps on a small neighborhood around the affine interpolation space.

3.4 Sketch of proof through a time varying mirror descent

As in the continuous-time framework, our results heavily rely on showing that the iterates (βk)k
follow a mirror descent recursion with time-varying potentials on the convex loss L(β). To show this,
we first define the following quantities:

α2
k := α+,k ⊙α−,k and ϕk :=

1

2
arcsinh

(
α2

+,k −α2
−,k

2α2
k

)
∈ Rd ,

where α±,k := α exp
(
− 1

2

∑k−1
i=0 q±

(
γℓ∇LBℓ

(βℓ)
))

∈ Rd. Finally for k ⩾ 0, we define the

potentials (hk : Rd → R)k⩾0 as:

hk(β) = ψαk
(β)− ⟨ϕk, β⟩. (7)

Where ψαk
is the hyperbolic entropy function defined Eq. (4). Now that all the relevant quantities are

defined, we can state the following proposition which explicits the time-varying stochastic mirror
descent.

Proposition 2. The iterates (βk = uk ⊙ vk)k⩾0 from Eq. (3) satisfy the Stochastic Mirror Descent
recursion with varying potentials (hk)k:

∇hk+1(βk+1) = ∇hk(βk)− γk∇LBk
(βk) ,

where hk : Rd → R for k ⩾ 0 are defined Eq. (7). Since ∇h0(β0) = 0 we have:

∇hk(βk) ∈ span(x1, . . . , xn). (8)

Theorem 1 and 2 and Proposition 1 follow from this key proposition: by suitably modifying classical
convex optimization techniques to account for the time-varying potentials, we can prove the con-
vergence of the iterates towards an interpolator β⋆∞ along with that of the relevant quantities α±,k,
αk and ϕk. The implicit regularisation problem then directly follows from: (1) the limit condition
∇h∞(β∞) ∈ Span(x1, . . . , xn) as seen from Eq. (8) and (2) the interpolation condition Xβ⋆∞ = y.
Indeed, these two conditions exactly correspond to the KKT conditions of the convex problem Eq. (5).
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4 Analysis of the impact of the stepsize and stochasticity on α∞

In this section, we analyse the effects of large stepsizes and stochasticity on the implicit bias of
(S)GD. We focus on how these factors influence the effective initialisation α∞, which plays a key
role as shown in Theorem 1. From its definition in Eq. (6), we see that α∞ is a function of the
vector

∑
k q(γk∇LBk

(βk)). We henceforth call this quantity the gain vector. For simplicity of
the discussions, from now on, we consider constant stepsizes γk = γ for all k ⩾ 0 and a uniform
initialisation of the weights α = α1 with α > 0. We can then write the gain vector as:

Gainγ := ln

(
α2

α2∞

)
=
∑
k

q(γ∇LBk
(βk)) ∈ Rd .

Following our discussion in section 3.1 on the scale and the shape of α∞, we recall the link between
the scale and shape of Gainγ and the recovered solution:

1. The scale of Gainγ , i.e. the magnitude of ∥Gainγ∥1 indicates how much the implicit bias of
(S)GD differs from that of gradient flow: ∥Gainγ∥1 ∼ 0 implies that α∞ ∼ α and therefore the
recovered solution is close to that of gradient flow. On the contrary, ∥Gainγ∥1 >> ln(1/α) implies
that α∞ has effective scale much smaller than α thereby changing the implicit regularisation Eq. (5).

2. The shape of Gainγ indicates which coordinates of β in the associated minimum weighted ℓ1
problem are most penalised. First recall from Section 3.1 that a uniformly large Gainγ leads to ψα∞
being closer to the ℓ1-norm. However, with small weight initialisation α→ 0, we have,

ψα∞(β) ∼ ln(
1

α
)∥β∥1 +

d∑
i=1

Gainγ(i)|βi| , (9)

In this case, having a heterogeneously large vector Gainγ leads to a weighted ℓ1 norm as the effective
implicit regularisation, where the coordinates of β corresponding to the largest entries of Gainγ are
less likely to be recovered.

4.1 The scale of Gainγ is increasing with the stepsize

The following proposition highlights the dependencies of the scale of the gain ∥Gainγ∥1 in terms of
various problem constants.
Proposition 3. Let Λb, λb > 0 3 be the largest and smallest values, respectively, such that λbH ⪯
EB
[
H2

B
]
⪯ ΛbH . For any stepsize γ > 0 satisfying γ ⩽ c

BL (as in Theorem 2), initialisation α1 and
batch size b ∈ [n], the magnitude of the gain satisfies:

λbγ
2
∑
k

EL(βk) ⩽ E [∥Gainγ∥1] ⩽ 2Λbγ
2
∑
k

EL(βk) , (10)

where the expectation is over a uniform and independent sampling of the batches (Bk)k⩾0.

The slower the training, the larger the gain. Eq. (10) shows that the slower the training loss
converges to 0, the larger the sum of the loss and therefore the larger the scale of Gainγ . This means
that the (S)GD trajectory deviates from that of gradient flow if the stepsize and/or noise slows down
the training. This supports observations previously made from stochastic gradient flow [48] analysis.

The bigger the stepsize, the larger the gain. The effect of the stepsize on the magnitude of the gain
is not directly visible in Eq. (10) because a larger stepsize tends to speed up the training. For stepsize
0 < γ ⩽ γmax = c

BL as in Theorem 2 we have that (see Appendix G.1):∑
k

γ2L(βk) = Θ

(
γ ln

(
1

α

)∥∥β⋆ℓ1∥∥1) . (11)

Eq. (11) clearly shows that increasing the stepsize boosts the magnitude ∥Gainγ∥1 up until the limit
of γmax. Therefore, the larger the stepsize the smaller is the effective scale of α∞. In turn, larger gap
between α∞ and α leads to a larger deviation of (S)GD from the gradient flow.

3Λb, λb > 0 are data-dependent constants; for b = n, we have (λn,Λn) = (λ+
min(H), λmax(H)) where

λ+
min(H) is the smallest non-null eigenvalue of H; for b = 1, we have mini ∥xi∥22 ⩽ λ1 ⩽ Λ1 ⩽ maxi ∥xi∥22.
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Figure 2: Left: the scale of Gainγ explodes as γ → γ̃max for both GD and SGD. Right: β⋆
sparse is fixed, we

perform 100 runs of GD and SGD with different feature matrices, and we plot the d coordinates of Gainγ

(for GD and SGD) on the x-axis (which is in log scale for better visualisation). The shape of GainSGD
γ is

homogeneous whereas that of GD is heterogeneous with much higher magnitude on the support of β⋆
sparse. The

shape of GainGD
γ is proportional to the expected gradient at initialisation which is (β⋆

sparse)
2.

Large stepsizes and Edge of Stability. The previous paragraph holds for stepsizes smaller than γmax

for which we can theoretically prove convergence. But what if we use even bigger stepsizes? Let
(βγk )k denote the iterates generated with stepsize γ and let us define γ̃max := supγ⩾0{γ s.t. ∀γ′ ∈
(0, γ),

∑
k L(β

γ′

k ) < ∞}, which corresponds to the largest stepsize such that the iterates still
converge for a given problem (even if not provably so). From Proposition 3 we have that γmax ⩽ γ̃max.
As we approach this upper bound on convergence γ → γ̃max, the sum

∑
k L(β

γ
k ) diverges. For such

large stepsizes, the iterates of gradient descent tend to “bounce” and this regime is commonly referred
to as the Edge of Stability. In this regime, the convergence of the loss can be made arbitrarily slow
due to these bouncing effects. As a consequence, as seen through Eq. (10), the magnitude of Gainγ
can be become arbitrarily big as observed in Fig. 2 (left). In this regime, the recovered solution tends
to dramatically differ from the gradient flow solution, as seen in Fig. 1.

Impact of stochasticity and linear scaling rule. Assuming inputs xi sampled from N (0, σ2Id)

with σ2 > 0, we obtain E [∥Gainγ∥1] = Θ
(
γ σ

2d
b ln

(
1
α

)
∥β⋆ℓ1∥1

)
, w.h.p. over the dataset (see Ap-

pendix G.3, Proposition 17). The scale of Gainγ decreases with batch size and there exists a factor n
between that of SGD and that of GD. Additionally, the magnitude of Gainγ depends on γ

b , resembling
the linear scaling rule commonly used in deep learning [22].

By analysing the magnitude ∥Gainγ∥1, we have explained the distinct behavior of (S)GD with
large stepsizes compared to gradient flow. However, our current analysis does not qualitatively
distinguish the behavior between SGD and GD beyond the linear stepsize scaling rules, in contrast
with Fig. 1. A deeper understanding of the shape of Gainγ is needed to explain this disparity.

4.2 The shape of Gainγ explains the differences between GD and SGD

In this section, we restrict our presentation to single batch SGD (b = 1) and full batch GD (b = n).
When visualising the typical shape of Gainγ for large stepsizes (see Fig. 2 - right), we note that GD
and SGD behave very differently. For GD, the magnitude of Gainγ is higher for coordinates in the
support of β⋆ℓ1 and thus these coordinates are adversely weighted in the asymptotic limit of ψα∞ (per
(9)). This explains the distinction seed in Fig. 1, where GD in this regime has poor sparse recovery
despite having a small scale of α∞, as opposed to SGD that behaves well.

The shape of Gainγ is determined by the sum of the squared gradients
∑
k∇LBk

(βk)
2, and in

particular by the degree of heterogeneity among the coordinates of this sum. Precisely analysing
the sum over the whole trajectory of the iterates (βk)k is technically out of reach. However, we
empirically observe for the trajectories shown in Fig. 2 that the shape is largely determined within the
first few iterates as formalized in the observation below.

Observation 1.
∑
k∇LBk

(βk)
2 ∝∼ E[∇LBk

(β0)
2] .
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In the simple case of a Gaussian noiseless sparse recovery problem (where yi = ⟨β⋆sparse, xi⟩ for
some sparse vector β⋆sparse), we can control these gradients for GD and SGD (Appendix G.4) as:

∇L(β0)2 = (β⋆sparse)
2 + ε , for some ε verifying ∥ε∥∞ <<

∥∥β⋆sparse∥∥2∞ , (12)

Ei0 [∇Li0(β0)2] = Θ
(
∥β⋆sparse∥221

)
. (13)

The gradient of GD is heterogeneous. Since β⋆sparse is sparse by definition, we deduce from Eq. (25)
that ∇L(β0) is heterogeneous with larger values corresponding to the support of β⋆sparse. Along
with observation 1, this means that Gainγ has much larger values on the support of β⋆sparse. The
corresponding weighted ℓ1-norm therefore penalises the coordinates belonging to the support of
β⋆sparse, which hinders the recovery of β⋆sparse (as explained in Example 1, Appendix D).

The stochastic gradient of SGD is homogeneous. On the contrary, from Eq. (26), we have that the
initial stochastic gradients are homogeneous, leading to a weighted ℓ1-norm where the weights are
roughly balanced. The corresponding weighted ℓ1-norm is therefore close to the uniform ℓ1-norm
and the classical ℓ1 recovery guarantees are expected.

Overall summary of the joint effects of the scale and shape. In summary we have the following
trichotomy which fully explains Fig. 1:

1. for small stepsizes, the scale is small, and (S)GD solutions are close to that of gradient flow;

2. for large stepsizes the scale is significant and the recovered solutions differ from GF:

• for SGD the shape of α∞ is uniform, the associated norm is closer to the ℓ1-norm and
the recovered solution is closer to the sparse solution;

• for GD, the shape is heterogeneous, the associated norm is weighted such that it hinders
the recovery of the sparse solution.

In this last section, we relate heuristically these findings to the Edge of Stability phenomenon.

5 Edge of Stability: the neural point of view

In recent years it has been noticed that when training neural networks with ‘large’ stepsizes at the
limit of divergence, GD enters the Edge of Stability (EoS) regime. In this regime, as seen in Fig. 3,
the iterates of GD ‘bounce’ / ’oscillate’. In this section, we come back to the point of view of
the weights wk = (uk, vk) ∈ R2d and make the connection between our previous results and the
common understanding of the EoS phenomenon. The question we seek to answer is: in which case
does GD enter the EoS regime, and if so, what are the consequences on the trajectory? Keep in
mind that this section aims to provide insights rather than formal statements. We study the GD
trajectory starting from a small initialisation α = α1 where α << 1 such that we can consider
that gradient flow converges close to the sparse interpolator β⋆sparse = βw⋆

sparse
corresponding to

the weights w⋆sparse = (
√

|β⋆sparse|, sign(β⋆sparse)
√
|β⋆sparse|) (see Lemma 1 in [49] for the mapping

from the predictors to weights for gradient flow). The trajectory of GD as seen in Fig. 3 (left) can be
decomposed into up to 3 phases.

First phase: gradient flow. The stepsize is appropriate for the local curvature (as seen in Fig. 3,
lower right) around initialisation and the iterates of GD remain close to the trajectory of gradient flow
(in black in Fig. 3). If the stepsize is such that γ < 2

λmax(∇2F (w⋆
sparse))

, then it is compatible with the
local curvature and the iterates can converge: in this case GF and GD converge to the same point (as
seen in Fig. 1 for small stepsizes). For larger γ > 2

λmax(∇2F (w⋆
sparse))

(as is the case for γGD in Fig. 3,
lower right), the iterates cannot converge to β⋆sparse and we enter the oscillating phase.

Second phase: oscillations. The iterates start oscillating. The gradient of F writes ∇(u,v)F (w) ∼
(∇L(β) ⊙ v,∇L(β) ⊙ u) and for w in the vicinity of w⋆sparse we have that ui ≈ vi ≈ 0 for
i /∈ supp(β⋆sparse). Therefore for w ∼ w⋆sparse we have that ∇uF (w)i ≈ ∇vF (w)i ≈ 0 for
i /∈ supp(β⋆sparse) and the gradients roughly belong to Span(ei, ei+d)i∈supp(β⋆

sparse)
. This means

9
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Figure 3: GD at the EoS. Left: For GD, the coordinates on the support of β⋆
sparse oscillate and drift towards 0.

Right, top: The GD train losses saturate before eventually converging. Bottom: GF converges towards a solution
that has a high hessian maximum eigenvalue. GD cannot converge towards this solution because of its large
stepsize: it therefore drifts towards a solution that has a curvature just below 2/γ.

.

that only the coordinates of the weights (ui, vi) for i ∈ supp(β⋆sparse) can oscillate and similarly for
(βi)i∈supp(β⋆

sparse)
(as seen Fig. 3 left).

Last phase: convergence. Due to the oscillations, the iterates gradually drift towards a region of
lower curvature (Fig. 3, lower right, the sharpness decreases) where they may (potentially) converge.
Theorem 1 enables us to understand where they converge: the coordinates of βk that have oscillated
significantly along the trajectory belong to the support of β⋆sparse, and therefore Gainγ(i) becomes
much larger for i ∈ supp(β⋆sparse) than for the other coordinates. Thus, the coordinates of the
solution recovered in the EoS regime are heavily penalised on the support of the sparse solution.
This is observed in Fig. 3 (left): the oscillations of (βi)i∈supp(β⋆

sparse)
lead to a gradual shift of these

coordinates towards 0, hindering an accurate recovery of the solution β⋆sparse.

SGD in the EoS regime. In contrast to the behavior of GD where the oscillations primarily occur
on the non-sparse coordinates of ground truth sparse model, for SGD we see a different behavior in
Fig. 6 (Appendix A). For stepsizes in the EoS regime, just below the non-convergence threshold: the
fluctuation of the coordinates occurs evenly over all coordinates, leading to a uniform α∞. These
fluctuations are reminiscent of label-noise SGD [2], that have been shown to recover the sparse
interpolator in diagonal linear networks [50].

6 Conclusion

We study the effect of stochasticity along with large stepsizes when training DLNs with (S)GD.
We prove convergence of the iterates as well as explicitly characterise the recovered solution by
exhibiting an implicit regularisation problem which depends on the iterates’ trajectory. In essence
the impact of stepsize and minibatch size are captured by the effective initialisation parameter α∞
that depends on these choices in an informative way. We then use our characterisation to explain key
empirical differences between SGD and GD and provide further insights on the role of stepsize and
stochasticity. In particular, our characterisation explains the fundamentally different generalisation
properties of SGD and GD solutions at large stepsizes as seen in Fig. 1: without stochasticity, the use
of large stepsizes can prevent the recovery of the sparse interpolator, even though the effective scale
of the initialization decreases with larger stepsize for both SGD and GD. We also provide insights on
the link between the Edge of Stability regime and our results.
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Organisation of the Appendix.

1. In Appendix A, we provide additional experiments for uncentered data as well as on the
behaviour of the sharpness and trace of the Hessian along the trajectory of the iterates. We
finally provide an experiment highlighting the EoS regime for SGD.

2. In Appendix B, we prove that (βk) follows a Mirror descent recursion with varying potentials.
We explicit these potentials and discuss some consequences.

3. In Appendix C we prove that (S)GD on the 1
2 (w

2
+ − w2

−) and u⊙ v parametrisations with
suitable initialisations lead to the same sequence (βk).

4. In Appendix D, we show that the hypentropy ψα converges to a weighted-ℓ1-norm when
α converges to 0 non-uniformly. We then discuss the effects of this weighted ℓ1-norm for
sparse recovery.

5. In Appendix E, we provide our descent lemmas for mirror descent with varying potentials
and prove the boundedness of the iterates.

6. In Appendix F, we prove our main results: Theorem 1 and Theorem 2, as well as quantitative
convergence (Proposition 1).

7. In Appendix G, we prove the lemmas and propositions given in the main text.
8. In Appendix H, we provide technical lemmas used throughout the proof of Theorem 1 and

Theorem 2.
9. In Appendix I, we provide concentration results for random matrices and random vectors,

used to estimate with high probability (w.r.t. the dataset) quantities related to the data.
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A Additional experiments and results

A.1 Uncentered data

When the data is uncentered, the discussion and the conclusion for GD are somewhat different.
This paragraph is motivated by the observation of Nacson et al. [44] who notice that GD with large
stepsizes helps to recover low ℓ1 solutions for uncentered data (Fig. 4). We make the following
assumptions on the uncentered inputs.
Assumption 1. There exist µ ∈ Rd and δ, c0, c1, c2 > 0 such that for all s-sparse vectors β verifying
⟨µ, β⟩ ⩾ c0∥β∥∞∥µ∥∞, there exists ε ∈ Rd such that (X⊤X)β = ⟨β, µ⟩µ+ε where ∥ε∥2 ⩽ δ∥β∥2
and c1⟨β, µ⟩2µ2 ⩽ 1

n

∑
i x

2
i ⟨xi, β⟩2 ⩽ c2⟨β, µ⟩2µ2.

Assumption 1 is not restrictive and holds with high probability for N (µ1, σ2Id) inputs when µ >> σ1
(see Lemma 9 in Appendix). The following lemma characterises the initial shape of SGD and GD
gradients for uncentered data.
Proposition 4 (Shape of the (stochastic) gradient at initialisation). Under Assumption 1 and if
⟨µ, β⋆sparse⟩ ⩾ c0∥β∥∞∥µ∥∞, the squared full batch gradient and the expected stochastic gradient
descent at initialisation satisfy, for some ε satisfying ∥ε∥∞ << ∥βsparse∥2:

∇L(β0) = ⟨β⋆sparse, µ⟩2µ2 + ε , (14)

Ei∼Unif([n])[∇Li(β0)2] = Θ
(
⟨β⋆sparse, µ⟩2µ2

)
. (15)

In this case the initial gradients of SGD and of GD are both homogeneous, explaining the behaviours
of gradient descent in Fig. 4 (App. A): large stepsizes help in the recovery of the sparse solution
in the presence of uncentered data, as opposed to centered data. Note that for decentered data with
a µ ∈ Rd orthogonal to β⋆sparse, there is no effect of decentering on the recovered solution. If the
support of µ is the same as that of β⋆sparse, the effect is detrimental and the same discussion as in the
centered data case applies.

Fig. 4: for uncentered data the solutions of GD and SGD have similar behaviours, corroborating
Proposition 4.

100 101

Stepsize γ

10−5

10−4

10−3

10−2
Test losses ||βγ∞ − β∗`1 ||22

SGD

GD

Figure 4: Noiseless sparse regression with a 2-layer DLN with uncentered data xi ∼ N (µ1, Id) where µ = 5.
All the stepsizes lead to convergence to a global solution and the solutions of SGD and GD have similar
behaviours, corroborating Proposition 4. The setup corresponds to (n, d, s, α) = (20, 30, 3, 0.1).

A.2 Behaviour of the maximal value and trace of the hessian

Here in Fig. 5, we provide some additional experiments on the behaviour of: (1) the maximum
eigenvalue of the hessian ∇2F (wγ∞) at the convergence of the iterates of SGD and GD (2) the trace
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of hessian at the convergence of the iterates. As is clearly observed, increasing the stepsize for GD
leads to a ‘flatter’ minimum in terms of the maximum eigenvalue of the hessian, while increasing the
stepsize for SGD leads to a ‘flatter’ minimum in terms of its trace. These two solutions have very
different structures. Indeed from the value of the hessian Eq. (22) at a global solution, and (very)
roughly assuming that ‘X⊤X = Id’ and that ‘α ∼ 0’ (pushing the EoS phenomenon), one can
see that minimising λmax(∇2F (w)) under the constraints X(w2

+ − w2
−) = y and w+ ⊙ w− = 0 is

equivalent to minimising ∥β∥∞ under the constaint Xβ = y. On the other hand minimising the trace
of the hessian is equivalent to minimising the ℓ1-norm.

10−1 100
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λmax(∇2F (wγ∞))

SGD

GD

10−1 100
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Trace(∇2F(wγ

∞))
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Figure 5: Noiseless sparse regression setting. Diagonal linear network. Centered data. Behaviour of 2 different
types of flatness of the recovered solution by SGD and GD depending on the stepsize. The setup corresponds to
(n, d, s, α) = (20, 30, 3, 0.1).

A.3 Edge of Stability for SGD
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Figure 6: SGD at the edge of stability: all coordinates fluctuate, and the sparse solution is recovered. As opposed
to GD at the EoS, since all coordinates fluctuate, the coordinates to recover are not more penalised than the
others.
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B Main ingredients behind the proof of Theorem 1 and Theorem 2

In this section, we show that the iterates (βk)k⩾0 follow a stochastic mirror descent with varying
potentials. At the core of our analysis, this result enables us to (i) prove convergence of the iterates
to an interpolator and (ii) completely characterise the inductive bias of the algorithm (SGD or GD).
Unveiling a mirror-descent like structure to characterise the implicit bias of a gradient method is
classical. For gradient flow over diagonal linear networks [61], the iterates follow a mirror flow with
respect to the hypentropy (4) with parameter α the initialisation scale, while for stochastic gradient
flow [48] the mirror flow has a continuously evolving potential.

B.1 Mirror descent and varying potentials

We recall that for a strictly convex reference function h : Rd → R, the (stochastic) mirror descent
iterates algorithm write as [5, 18], where the minimum is assumed to be attained over Rd and unique:

βk+1 = argminβ∈Rd {ηk⟨gk, β⟩+Dh(β, βk)} , (16)

for stochastic gradients gk, stepsize γk ⩾ 0, and Dh(β, β
′) = h(β)− h(β′)− ⟨∇h(β′), β − β′⟩ is

the Bregman divergence associated to h. Iteration (16) can also be cast as

∇h(βk+1) = ∇h(βk)− γkgk . (17)

Now, let (hk) be strictly convex reference functions Rd → R. Whilst in continuous time, there is only
one natural way to extend mirror flow to varying potentials, in discrete time the varying potentials
can be incorporated in (16) (replacing h by hk and leading to ∇hk(βk+1) = ∇hk(βk)− γkgk), the
mirror descent with varying potentials we study in this paper incorporates hk+1 and hk in (17). The
iterates are thus defined as through:

βk+1 = argminβ∈Rd

{
ηk⟨gk, β⟩+Dhk+1,hk

(β, βk)
}
,

where Dhk+1,hk
(β, β′) = hk+1(β)− hk(β

′)− ⟨∇hk(β′), β − β′⟩, a recursion that can also be cast
as:

∇hk+1(βk+1) = ∇hk(βk)− γkgk .

To derive convergence of the iterates, we prove analogs to classical mirror descent lemmas, generalised
to time-varying potentials.

B.2 The iterates (βk) follow a stochastic mirror descent with varying potential recursion

In this section we show and prove that the iterates (βk)k follow a stochastic mirror descent with
varying potentials. Before stating the proposition, we recall the definition of the potentials. To do so
we introduce several quantities.

Let q, q± : R → R ∪ {∞} be defined as:

q±(x) = ∓2x− ln
(
(1∓ x)2) ,

q(x) =
1

2
(q+(x) + q−(x)) = −1

2
ln
(
(1− x2)2

)
,

with the convention that q(1) = ∞. Notice that q(x) ⩾ 0 for |x| ⩽
√
2 and q(x) < 0 otherwise. For

the iterates βk = uk ⊙ vk ∈ Rd, we recall the definition of the following quantities:

α±,k = α exp(−1

2

k−1∑
i=0

q±(γℓ∇LBℓ
(βℓ))) ∈ Rd>0 ,

α2
k = α+,k ⊙α−,k ,

ϕk =
1

2
arcsinh

(α2
+,k −α2

−,k
2α2

k

)
∈ Rd .

Finally for k ⩾ 0, we define the potentials (hk : Rd → R)k⩾0 as:

hk(β) = ψαk
(β)− ⟨ϕk, β⟩ , (18)
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where ψαk
is the hyperbolic entropy defined in (4) of scale αk:

ψαk
(β) =

1

2

d∑
i=1

(
βiarcsinh(

βi
α2
k,i

)−
√
β2
i + α4

k,i + α2
k,i

)
where αk,i corresponds to the ith coordinate of the vector αk.

Now that all the relevant quantities are define, we can state the following proposition which explicits
the time-varying stochastic mirror descent followed by (βk)k

Proposition 5. The iterates (βk = uk ⊙ vk)k⩾0 from Eq. (3) satisfy the Stochastic Mirror Descent
recursion with varying potentials (hk)k:

∇hk+1(βk+1) = ∇hk(βk)− γk∇LBk
(βk) , (19)

where hk : Rd → R for k ⩾ 0 are defined Eq. (18). Since ∇h0(β0) = 0 we have:

∇hk(βk) ∈ span(x1, . . . , xn)

Proof. Using Proposition 6, we study the 1
2 (w

2
+ − w2

−) parametrisation instead of the u⊙ v, indeed
this is the natural parametrisation to consider when doing the calculations as it “separates" the
recursions on w+ and w−.

Let us focus on the recursion of w+:

w+,k+1 = (1− γk∇LBk
(βk)) · w+,k .

We have:

w2
+,k+1 = (1− γk∇LBk

(βk))
2 · w2

+,k

= exp (ln((1− γk∇LBk
(βk))

2)) · w2
+,k ,

with the convention that exp(ln(0)) = 0. This leads to:

w2
+,k+1 = exp

(
− 2γk∇LBk

(wk) + 2γk∇LBk
(βk) + ln((1− γk∇LBk

(βk))
2)
)
· w2

+,k

= exp
(
− 2γk∇LBk

(βk)− q+(γk∇LBk
(βk))

)
· w2

+,k ,

since q+(x) = −2x− ln((1− x)2). Expanding the recursion and using that w+,k=0 is initialised at
w+,k=0 = α, we thus obtain:

w2
+,k = α2 exp(−

k−1∑
ℓ=0

q+(γℓ∇LBℓ
(βℓ))) exp (−2

k−1∑
ℓ=0

γℓ∇LBℓ
(βℓ))

= α2
+,k exp (−2

k−1∑
ℓ=0

γℓ∇LBℓ
(βℓ)) ,

where we recall that α2
±,k = α2 exp(−∑k−1

ℓ=0 q±(γℓgℓ)). One can easily check that we similarly
get:

w2
−,k = α2

−,k exp (+2

k−1∑
ℓ=0

γℓ∇LBℓ
(βℓ)) ,

leading to:

βk =
1

2
(w2

+,k − w2
−,k)

=
1

2
α2

+,k exp (−2

k−1∑
ℓ=0

γℓ∇LBℓ
(βℓ))−

1

2
α2

−,k exp (+2

k−1∑
ℓ=0

γℓ∇LBℓ
(βℓ)) .

Using Lemma 4, the previous equation can be simplified into:

βk = α+,kα−,k sinh
(
− 2

k−1∑
ℓ=0

γℓ∇LBℓ
(βℓ) + arcsinh

(α2
+,k −α2

−,k
2α+,kα−,k

))
,
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which writes as:

1

2
arcsinh

( βk
α2
k

)
− ϕk = −

k−1∑
ℓ=0

γℓ∇LBℓ
(βℓ) ∈ span(x1, . . . , xn) ,

where ϕk = 1
2 arcsinh

(α2
+,k−α2

−,k

2α2
k

)
, α2

k = α+,k ⊙α−,k and since the potentials hk are defined in
Eq. (18) as hk = ψαk

− ⟨ϕk, ·⟩ with

ψα(β) =
1

2

d∑
i=1

(
βiarcsinh(

βi
α2
i

) −
√
β2
i +α4

i +α2
i

)
(20)

specifically such that ∇hk(βk) = 1
2 arcsinh

(
βk

α2
k

)
− ϕk. Hence,

∇hk(βk) =
∑
ℓ<k

γℓ∇LBℓ
(βℓ) ,

so that:

∇hk+1(βk+1) = ∇hk(βk)− γk∇LBk
(βk) ,

which corresponds to a Mirror Descent with varying potentials (hk)k.

C Equivalence of the u⊙ v and 1
2
(w2

+ − w2
−) parametrisations

We here prove the equivalence between the 1
2 (w

2
+ − w2

−) and u⊙ v parametrisations, that we use
throughout the proofs in the Appendix.
Proposition 6. Let (βk)k⩾0 and (β′

k)k⩾0 be respectively generated by stochastic gradient descent
on the u⊙ v and 1

2 (w
2
+ − w2

−) parametrisations:

(uk+1, vk+1) = (uk, vk)− γk∇u,v

(
LBk

(u⊙ v)
)
(uk, vk) ,

and
w±,k+1 = w±,k − γk∇w±

(
LBk

(
1

2
(w2

+ − w2
−))
)
(w+,k, w−,k) ,

initialised as u0 =
√
2α, v0 = 0 and w+,0 = w−,0 = α. Then for all k ⩾ 0, we have βk = β′

k.

Proof. We have:
w±,0 = α , w±,k+1 = (1∓ γk∇LBk

(β′
k))w±,k ,

and

u0 =
√
2α , v0 = 0 , uk+1 = uk − γk∇LBk

(βk)vk , vk+1 = vk − γk∇L(βk)uk .
Hence,

βk+1 = (1 + γ2k∇L(βk)2)βk − γk(u
2
k + v2k)∇LBk

(βk) ,

and
β′
k+1 = (1 + γ2k∇LBk

(β′
k)

2)β′
k − γk(w

2
+,k + w2

−,k)∇LBk
(β′
k) .

Then, let zk = 1
2 (u

2
k − v2k) and z′k = w+,kw−k. We have z0 = α2, z′0 = α2 and:

zk+1 = (1− γ2k∇LBk
(βk)

2)zk , z′k+1 = (1− γ2k∇LBk
(β′
k)

2)z′k .

Using a2 + b2 =
√
(2ab)2 + (a2 − b2)2 for a, b ∈ R, we finally obtain that:

u2k + v2k =
√
(2βk)2 + (2zk)2 , w2

+,k + w2
−,k =

√
(2β′

k)
2 + (2z′k)

2 .

We conclude by observing that (βk, zk) and (β′
k, z

′
k) follow the exact same recursions, initialised at

the same value (0,α2) .
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D Convergence of ψα to a weighted ℓ1 norm and harmful behaviour

We show that when taking the scale of the initialisation to 0, one must be careful in the characterisation
of the limiting norm, indeed if each entry does not go to zero "at the same speed", then the limit norm
is a weighted ℓ1-norm rather than the classical ℓ1 norm.
Proposition 7. For α ⩾ 0 and a vector h ∈ Rd, let α̃ = α exp(−h ln(1/α)) ∈ Rd. Then we have
that for all β ∈ Rd

ψα̃(β) ∼
α→0

ln(
1

α
) ·

d∑
i=1

(1 + hi)|βi|.

Proof. Recall that

ψα̃(β) =
1

2

d∑
i=1

(
βiarcsinh(

βi
α̃2
i

) −
√
β2
i + α̃i

4 + α̃2
i

)
Using that arcsinh(x) ∼

|x|→∞
sgn(x) ln(|x|), and that ln( 1

α̃2
i
) = (1 + hi) ln(

1
α2 ) we obtain that

ψα̃(β) ∼
α→0

1

2

d∑
i=1

sgn(βi)βi(1 + hi) ln(
1

α2
)

=
1

2
ln(

1

α2
)

d∑
i=1

(1 + hi)|βi|.

The following Fig. 7 illustrates the effect of the non-uniform shape α on the corresponding potential
ψα.

Figure 7: Left: Uniform α = α1: a smaller scale α leads to the potential ψα being closer to the ℓ1-norm. Right:
A non uniform α can lead to the recovery of a solution which is very far from the minimum ℓ1-norm solution.
The affine line corresponds to the set of interpolators when n = 1, d = 2 and s = 1.

More generally, for α such that αi → 0 for all i ∈ [d] at rates such that ln(1/αi) ∼ qi ln(1/maxi αi),
we retrieve a weighted ℓ1 norm:

ψα(β)

ln(1/α2)
→

d∑
i=1

qi|βi| .
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Hence, even for arbitrary small maxi αi, if the shape of α is ‘bad’, the interpolator βα that minimizes
ψα can be arbitrary far away from β⋆ℓ1 the interpolator of minimal ℓ1 norm.

We illustrate the importance of the previous proposition in the following example.

Example 1. We illustrate how, even for arbitrary small maxi αi, the interpolator β⋆α that minimizes
ψα can be far from the minimum ℓ1 norm solution, due to the shape of α that is not uniform. The
message of this example is that for α → 0 non-uniformly across coordinates, if the coordinates of
α that go slowly to 0 coincide with the non-null coordinates of the sparse interpolator we want to
retrieve, then β⋆α will be far from the sparse solution.

A simple counterexample can be built: let β⋆sparse = (1, . . . , 1, 0, . . . , 0) (with only the s = o(d) first
coordinates that are non-null), and let (xi), (yi) be generated as yi = ⟨β⋆sparse, xi⟩ with xi ∼ N (0, 1).
For n large enough (n of order s ln(d) where s is the sparsity), the design matrix X is RIP [10], so
that the minimum ℓ1 norm interpolator β⋆ℓ1 is exactly equal to β⋆sparse.

However, if α is such that maxi αi → 0 with hi >> 1 for j ⩽ s and hi = 1 for i ⩾ s+ 1 (hi as in
Proposition 7), β⋆α will be forced to verify β⋆α,i = 0 for i ⩽ s and hence ∥β⋆α,1 − β⋆ℓ1∥1 ⩾ s.

E Main descent lemma and boundedness of the iterates

The goal of this section is to prove the following proposition, our main descent lemma: for well-
chosen stepsizes, the Bregman divergences (Dhk

(β⋆, βk))k⩾0 decrease. We then use this proposition
to bound the iterates for both SGD and GD.

Proposition 8. There exist a constant c > 0 and B > 0 such that B = O(infβ⋆∈S ∥β⋆∥∞) for GD
and B = O(ln(1/α) infβ⋆∈S ∥β⋆∥∞) for SGD, such that if γk ⩽ c

LB for all k, then we have, for all
k ⩾ 0 and any interpolator β⋆ ∈ S:

Dhk+1
(β⋆, βk+1) ⩽ Dhk

(β⋆, βk)− γkLBk
(βk) .

To prove this result, we first provide a general descent lemma for time-varying mirror descent
(Proposition 9, appendix E.1), before proving the proposition for fixed iteration k and bound B > 0
on the iterates infinity norm in Appendix E.2 (Proposition 10). We finally use this to prove a bound
on the iterates infinity norm in appendix E.3.

E.1 Descent lemma for (stochastic) mirror descent with varying potentials

In the following we adapt a classical mirror descent equality but for time varying potentials, that
differentiates from Orabona et al. [47] in that it enables us to prove the decrease of the Bregman
divergences of the iterates. Moreover, as for classical MD, it is an equality.

Proposition 9. For h, g : Rd → R functions, let Dh,g(β, β
′) = h(β)− g(β′)− ⟨∇g(β′), β − β′⟩4

for β, β′ ∈ Rd. Let (hk) strictly convex functions defined Rd L a convex function defined on Rd. Let
(βk) defined recursively through β0 ∈ Rd, and

βk+1 ∈ argminβ∈Rd

{
γk⟨∇L(βk), β − βk⟩+Dhk+1,hk

(β, βk)
}
,

where we assume that the minimum is unique and attained in Rd. Then, (βk) satisfies

∇hk+1(βk+1) = ∇hk(βk)− γk∇L(βk) ,

and for any β ∈ Rd,

Dhk+1
(β, βk+1) = Dhk

(β, βk)− γk⟨∇L(βk), βk − β⟩+Dhk+1
(βk, βk+1)

−
(
hk+1 − hk

)
(βk) +

(
hk+1 − hk

)
(β) .

Proof. Let β ∈ Rd. Since we assume that the minimum through which βk+1 is computed is attained
in Rd, the gradient of the function Vk(β) = γk⟨∇L(βk), β − βk⟩ +Dhk+1,hk

(β, βk) evaluated at
βk+1 is null, leading to ∇hk+1(βk+1) = ∇hk(βk)− γk∇L(βk).

4for h = g, we recover the classical Bregman divergence that we denote Dh = Dh,h
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Then, since ∇Vk(βk+1) = 0, we haveDVk
(β, βk+1) = Vk(β)−Vk(βk+1). Using ∇2Vk = ∇2hk+1,

we also have DVk
= Dhk+1

. Hence:

Dhk+1
(β, βk+1) = γk⟨∇L(βk), β − βk+1⟩+Dhk+1,hk

(β, βk)−Dhk+1,hk
(βk+1, βk) .

We write γk⟨∇L(βk), β − βk+1⟩ = γk⟨∇L(βk), β − βk⟩ + γk⟨∇L(βk), βk − βk+1⟩. We also
have γk⟨∇L(βk), βk − βk+1⟩ = ⟨∇hk(βk)−∇hk+1(βk+1), βk − βk+1⟩ = Dhk,hk+1

(βk, βk+1) +

Dhk+1,hk
(βk+1, β

k), so that γk⟨∇L(βk), βk−βk+1⟩−Dhk+1,hk
(βk+1, β

k) = Dhk,hk+1
(βk, βk+1).

Thus,

Dhk+1
(β, βk+1) = Dhk+1,hk

(β, βk)− γk
(
Df (β, βk) +Df (βk, β)

)
+Dhk,hk+1

(βk, βk+1) ,

and writing Dh,g(β, β
′) = Dg(β, β

′) + h(β)− g(β) concludes the proof.

E.2 Proof of Proposition 10

In next proposition, we use Proposition 9 to prove our main descent lemma. To that end, we bound
the error terms that appear in Proposition 9 as functions of LBk

(βk) and norms of βk, βk+1, so that
for explicit stepsizes, the error terms can be cancelled by half of the negative quantity −2LBk

(βk).

Additional notation: let L2, L∞ > 0 such that ∀β, ∥HBβ∥2 ⩽ L∥β∥2, ∥HBβ∥∞ ⩽ L∥β∥∞ for all
batches B ⊂ [n] of size b.
Proposition 10. Let k ⩾ 0 and B > 0. Provided that ∥βk∥∞, ∥βk+1∥∞, ∥β⋆∥∞ ⩽ B and γk ⩽ c

LB
where c > 0 is some numerical constant, we have:

Dhk+1
(β⋆, βk+1) ⩽ Dhk

(β⋆, βk)− γkLBk
(βk) . (21)

Proof. Let β⋆ ∈ S be any interpolator. From Proposition 9:

Dhk+1
(β⋆, βk+1) = Dhk

(β⋆, βk)− 2γkLBk
(βk) +Dhk+1

(βk+1, βk)− (hk+1 − hk)(βk) + (hk+1 − hk)(β
⋆).

We want to bound the last three terms of this equality. First, to bound the last two we apply Lemma 7
assuming that ∥β⋆∥∞, ∥βk+1∥∞ ⩽ B:

−(hk+1 − hk)(βk) + (hk+1 − hk)(β
⋆) ⩽ 24BL2γ

2
kLBk

(βk)

We now bound Dhk+1
(βk, βk+1). Classical Bregman manipulations provide that

Dhk+1
(βk, βk+1) = Dh∗

k+1
(∇hk+1(βk+1),∇hk+1(βk))

= Dh∗
k+1

(∇hk(βk)− γk∇LBk
(βk),∇hk+1(βk)) .

From Lemma 6 we have that hk+1 is min(1/(4α2
k+1), 1/(4B)) strongly convex on the ℓ∞-centered

ball of radius B therefore h∗k+1 is max(4α2
k+1, 4B) = 4B (for α small enough or B big enough)

smooth on this ball, leading to:

Dhk+1
(βk, βk+1) ⩽ 2B∥∇hk(βk)− γk∇LBk

(βk)−∇hk+1(βk)∥22
⩽ 4B

(
∥∇hk(βk)−∇hk+1(βk)∥22 + ∥γk∇LBk

(βk)∥22
)
.

Using |∇hk(β)−∇hk+1(β)| ⩽ 2δk where δk = q(γk∇LBk
(βk)), we get that:

Dhk+1
(βk, βk+1) ⩽ 8B∥δk∥22 + 4BLγ2kLBk

(βk) .

Now, ∥δk∥22 ⩽ ∥δk∥1∥δk∥∞ and using Lemma 5, ∥δk∥1∥δk∥∞ ⩽
4∥γk∇LBk

(βk)∥22∥γk∇LBk
(βk)∥2∞ ⩽ 2∥γk∇LBk

(βk)∥22 since ∥γk∇LBk
(βk)∥∞ ⩽

γkL∞∥βk − β∞∥ ⩽ γk × 2LB ⩽ 1/2 is verified for γk ⩽ 1/(4LB). Thus,

Dhk+1
(βk, βk+1) ⩽ 40BL2γ

2
kLBk

(βk) .

Hence, provided that ∥βk∥∞ ⩽ B, ∥βk+1∥∞ ⩽ B and γk ⩽ 1/(4LB), we have:

Dhk+1
(β⋆, βk+1) ⩽ Dhk

(β⋆, βk)− 2γkLBk
(βk) + 64L2γ

2
kBLBk

(βk) ,

and thus
Dhk+1

(β⋆, βk+1) ⩽ Dhk
(β⋆, βk)− γkLBk

(βk) .

if γk ⩽ c
BL , where c = 1

64 .
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E.3 Bound on the iterates

We now bound the iterates (βk) by an explicit constant B that depends on ∥β⋆∥1 (for any fixed
β⋆ ∈ S).

The first bound we prove holds for both SGD and GD, and is of the form O(∥β⋆∥1 ln(1/α2) while
the second bound, that holds only for GD (b = n) is of order O(∥β⋆∥1) (independent of α). While a
bound independent of α is only proved for GD, we believe that such a result also holds for SGD, and
in both cases B should be thought of order O(∥β⋆∥1).

E.3.1 Bound that depends on α for GD and SGD

A consequence of Proposition 10 is the boundedness of the iterates, as shown in next corollary. Hence,
Proposition 10 can be applied using B a uniform bound on the iterates ℓ∞ norm.

Corollary 1. Let B = 3∥β⋆∥1 ln
(
1 +

∥β⋆∥1

α2

)
. For stepsizes γk ⩽ c

BL , we have ∥βk∥∞ ⩽ B for all
k ⩾ 0.

Proof. We proceed by induction. Let k ⩾ 0 such that ∥βk∥∞ ⩽ B for some B > 0 and
Dhk

(β⋆, βk) ⩽ Dh0
(β⋆, β0) (note that these two properties are verified for k = 0, since β0 = 0).

For γk sufficiently small (i.e., that satisfies γk ⩽ c
B′L where B′ ⩾ ∥βk+1∥∞, ∥βk∥∞, ∥β⋆∥∞), using

Proposition 10, we have Dhk+1
(β⋆, βk+1) ⩽ Dhk

(β⋆, βk) so that Dhk+1
(β⋆, βk+1) ⩽ Dh0

(β⋆, β0),
which can be rewritten as:

d∑
i=1

α2
k+1,i(

√
1 + (

βk+1,i

α2
k+1,i

)2 − 1) ⩽
d∑
i=1

β⋆i arcsinh(
βk+1,i

α2
) .

Hence, ∥βk+1∥1 ⩽ ∥β⋆∥1 ln(1 +
∥βk+1∥1

α2 ). We then notice that for x, y > 0, x ⩽ y ln(1 + x) =⇒
x ⩽ 3y ln(1 + y): if x > y ln(1 + y) and x > y, we have that y ln(1 + y) < y ln(1 + x), so that
1 + y < 1 + x, which contradicts our assumption. Hence, x ⩽ max(y, y ln(1 + y)). In our case,
x =

∥∥βk+1
∥∥
1
/α2, y = ∥β⋆∥1/α2 so that for small alpha, ln(1 + y) ⩾ 1.

Hence, we deduce that ∥βk+1∥1 ⩽ B, where B = ∥β⋆∥1 ln(1 +
∥β⋆∥1

α2 ).

This is true as long as γk is tuned using B′ a bound on max(∥βk∥∞, ∥βk+1∥∞). Using the continuity
of βk+1 as a function of γk (βk being fixed), we show that γk ⩽ 1

2 × c
BL can be used using this B.

Indeed, let ϕ : R+ → Rd be the function that takes as entry γk ⩾ 0 and outputs the corresponding
∥βk+1∥∞: ϕ is continuous. Let γr = 1

2 × c
rL for r > 0 and r̄ = sup {r ⩾ 0 : B < ϕ(γr)} (the

set is upper-bounded; if is is empty, we do not need what follows since it means that any stepsize
leads to ∥βk+1∥∞ ⩽ B). By continuity of ϕ, ϕ(γr̄) = B. Furthermore, for all r that satisfies
r ⩾ max(ϕ(γr), B) ⩾ max(ϕ(γr), ∥βk∥∞, ∥β⋆∥∞), we have, using what is proved just above, that
∥βk+1∥∞ ⩽ B and thus ϕ(γr) ⩽ B for such a r:

Lemma 1. For r > 0 such that r ⩾ max(ϕ(γr), B), we have ϕ(γr) ⩽ B.

Now, if r̄ > B, by definition of r̄ and by continuity of ϕ, since ϕ(r̄) = B, there exists some
B < r < r̄ such that ϕ(γr) > B (definition of the supremum) and ϕ(γr) ⩽ 2B (continuity of ϕ).
This particular choice of r thus satisfies r > B and and ϕ(γr) ⩽ 2B ⩽ 2r, leading to ϕ(γr) ⩽ B,
using Lemma 1, hence a contradiction: we thus have r̄ ⩽ B.

This concludes the induction: for all r ⩾ B, we have r ⩾ r̄ so that ϕ(γr) ⩽ B and thus for all
stepsizes γ ⩽ c

2LB , we have ∥βk+1∥∞ ⩽ B.

E.3.2 Bound independent of α

We here assume in this subsection that b = n. We prove that for gradient descent, the iterates are
bounded by a constant that does not depend on α.

Proposition 11. Assume that b = n (full batch setting). There exists some B = O(∥β⋆∥1) such that
for stepsizes γk ⩽ c

BL , we have ∥βk∥∞ ⩽ B for all k ⩾ 0.
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Proof. We first begin by proving the following proposition: for sufficiently small stepsizes, the
loss values decrease. In the following lemma we provide a bound on the gradient descent iterates
(w+,k, w−,k) which will be useful to show that the loss is decreasing.

Proposition 12. For γk ⩽ c
LB where B ⩾ max(∥βk∥∞, ∥βk+1∥∞), we have L(βk+1) ⩽ L(βk)

Proof. Oddly, using the time-varying mirror descent recursion is not the easiest way to show the
decrease of the loss, due to the error terms which come up. Therefore to show that the loss is
decreasing we use the gradient descent recursion. Recall that the iterates wk = (w+,k, w−,k) ∈ R2d

follow a gradient descent on the non convex loss F (w) = 1
2∥y − 1

2X(w2
+ − w2

−)∥2.

For k ⩾ 0, using the Taylor formula we have that F (wk+1) ⩽ F (wk)− γk(1− γkLk

2 )∥∇F (wk)∥2
with the local smoothness Lk = supw∈[wk,wk+1]

λmax(∇2F (w)). Hence if γk ⩽ 1/Lk for all k we
get that the loss is non-increasing. We now bound Lk. Computing the hessian ot F , we obtain that:

∇2F (wk) =

(
diag(∇L(βk)) 0

0 −diag(∇L(βk))
)

+

(
diag(w+,k)H diag(w+,k) −diag(w−,k)H diag(w+,k)

−diag(w+,k)H diag(w−,k) diag(w−,k)H diag(w−,k)

)
.

(22)

Let us denote by M =

(
M+ M+,−
M+,− M−

)
∈ R2d×2d the second matrix in the previous equality. With

this notation ∥∇2F (wk)∥ ⩽ ∥∇L(βk)∥∞ + 2∥M∥ (where the norm corresponds to the Schatten
2-norm which is the largest eigenvalue for symmetric matrices). Now, notice that:

∥M∥2 = sup
u∈R2d,∥u∥=1

∥Mu∥2

= sup
u+∈Rd,∥u+∥=1

u−∈Rd,∥u−∥=1

(a,b)∈R2,a2+b2=1

∥∥∥M (
a · u+
b · u−

)∥∥∥2 .

We have:∥∥∥M (
a · u+
b · u−

)∥∥∥2 =
∥∥∥(aM+u+ + bM+−u−

aM+−u+ + bM−u−

)∥∥∥2
= ∥aM+u+ + bM+−u−∥2 + ∥aM+−u+ + bM−u−∥2

⩽ 2
(
a2∥M+u+∥2 + b2∥M+−u−∥2 + a2∥M+−u+∥2 + b2∥M−u−∥2

)
⩽ 2
(
∥M+∥2 + ∥M+−∥2 + ∥M−∥2

)
.

Since ∥M±∥ ⩽ λmax · ∥w±∥2∞ and ∥M+−∥ ⩽ λmax∥w+∥∞∥w−∥∞ we finally get that

∥M∥2 ⩽ 6λ2max ·max(∥w+∥2∞, ∥w−∥2∞)2

⩽ 6λ2max(∥w2
+∥∞ + ∥w2

−∥∞)2

⩽ 12λ2max∥w2
+ + w2

−∥2∞ .

We now upper bound this quantity in the following lemma.

Lemma 2. For all k ⩾ 0, the following inequality holds component-wise:

w2
+,k + w2

−,k =
√
4α4

k + β2
k .

Proof. Notice from the definition of w+,k and w−,k given in the proof of Proposition 5 that:

|w+,k||w−,k| = α−,kα+,k = α2
k. (23)
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And α0 = α2. Now since αk is decreasing coordinate-wise (under our assumptions on the stepsizes,
γ2k∇L(βk)2 ⩽ (1/2)2 < 1), we get that.:

w2
+,k + w2

−,k = 2
√
α4
k + β2

k ⩽ 2
√
α4 + β2

k

leading to w2
+,k + w2

−,k ⩽
√
4α4 +B2.

From Lemma 2, w2
+,k +w2

−,k is bounded by 2
√
α4 +B2. Putting things together we finally get that

∥∇2F (w)∥ ⩽ ∥∇L(β)∥∞ + 8λmax
√
4∥α∥4∞ +B2. Hence,

Lk ⩽ sup
∥β∥∞⩽B

∥∇L(β)∥∞ + 8λmax

√
∥α∥4∞ +B2 ⩽ LB + 8λmax

√
∥α∥4∞ +B2 ⩽ 10LB ,

for B ⩾ ∥α∥2∞.

We finally prove the bound on ∥βk∥∞ independent of α for a uniform initialisation α = α1, using
the monotonic property of L.

Proposition 13. Assume that b = n (full batch setting). There exists some B = O(∥β⋆∥1) such that
for stepsizes γk ⩽ c

BL , we have ∥βk∥∞ ⩽ B for all k ⩾ 0.

Proof. In this proof, we first let B be a bound on the iterates. Tuning stepsizes using this bound, we
prove that the iterates are bounded by a some B′ = O(∥β⋆∥1). Finally, we conclude by using the
continuity of the iterates (at a finite horizon) that this explicit bound can be used to tune the stepsizes.

Writing the mirror descent with varying potentials, we have, since ∇h0(β0) = 0,

∇hk(βk) = −
∑
ℓ<k

γℓ∇L(βℓ) ,

leading to, by convexity of hk:

hk(βk)− hk(β
⋆) ⩽ ⟨∇hk(βk), βk − β⋆⟩ = −

∑
ℓ<k

⟨γℓ∇L(βℓ), βk − β⋆⟩ .

We then write, using ∇L(β) = H(β − β⋆) for H = XX⊤, that −∑ℓ<k⟨γℓ∇L(βℓ), βk − β⋆⟩ =
−∑ℓ<k γℓ⟨X⊤(β̄k − β⋆), X⊤(βk − β⋆)⟩ ⩽∑ℓ<k γℓ

√
L(β̄k)L(βk), leading to:

hk(βk)− hk(β
⋆) ⩽ 2

√∑
ℓ<k

γℓL(β̄k)
∑
ℓ<k

γℓL(βk) ⩽ 2
∑
ℓ<k

γℓL(β̄k) ⩽ 2Dh0
(β⋆, β0) ,

where the last inequality holds provided that γk ⩽ 1
CLB . Thus,

ψαk
(βk) ⩽ ψαk

(β⋆) + 2ψα0
(β⋆) + ⟨ϕk, βk − β⋆⟩ .

Then, ⟨ϕk, βk − β⋆⟩ ⩽ ∥ϕk∥1∥βk − β⋆∥∞ and ∥ϕk∥1 ⩽ Cλmax

∑
k<K γ

2
kL(βk) ⩽

Cλmaxγmaxh0(β
⋆). Then, using

∥β∥∞ − 1

ln(1/α2)
⩽

ψα(β)

ln(1/α2)
⩽ ∥β∥1

(
1 +

ln(∥β∥1 + α2)

ln(1/α2)

)
,

we have:

∥βk∥∞ ⩽
1

ln(1/α2)
+ ∥β⋆∥1

(
1 +

ln(∥β⋆∥1 + α2)

ln(1/α2)

)
+ ∥β⋆∥1

(
1 +

ln(∥β⋆∥1 + α2)

ln(1/α2)

)
+B0Cλmaxγmaxh0(β

⋆)/ ln(1/α2)

⩽ R+B0Cλmaxγmaxh0(β
⋆)/ ln(1/α2) ,

where R = O(∥β⋆∥1) is independent of α. Hence, since B0 = supk<∞ ∥βk∥∞ <∞, we have:

B0(1− Cλmaxγmaxh0(β
⋆)/ ln(1/α2)) ⩽ R =⇒ B0 ⩽ 2R ,
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provided that γmax ⩽ 1/(2Cλmaxh0(β
⋆)/ ln(1/α2)) (note that h0(β⋆)/ ln(1/α2) is independent of

α2).

Hence, if for all k we have γk ⩽ 1
C′LB where B bounds all ∥βk∥∞, we have ∥βk∥∞ ⩽ 2R for all k,

where R = O(∥β⋆∥1) is independent of α and stepsizes γk.

Let K > 0 be fixed, and

γ̄ = inf

{
γ > 0 s.t. sup

k⩽K
∥βk∥∞ > 2R

}
.

For γ ⩾ 0 a constant stepsize, let
φ(γ) = sup

k⩽K
∥βk∥∞ ,

which is a continuous function of γ. For r > 0, let γr = 1
C′Lr .

An important feature to notice is that if γ < γr and r bounds all ∥βk∥∞, k ⩽ K, then φ(γ) ⩽ R,
as shown above. We will show that we have γ̄ ⩾ γ2R. Reasoning by contradiction, if γ̄ < γ2R: by
continuity of φ, we have φ(γ̄) ⩽ R and thus, there exists some small 0 < ε < γ2R − γ̄ such that for
all γ ∈ [γ̄, γ̄ + ε], we have φ(γ̄) ⩽ 2R.

However, such γ’s verify both φ(γ) ⩽ 2R (since γ ∈ [γ̄, γ̄ + ε] and by definition of ε) and γ ⩽ γ2R
(by definition of ε), and hence φ(γ) ⩽ R. This contradicts the infimum of γ̄, and hence γ̄ ⩾ γ2R.
Thus, for γ ⩽ γ2R = 1

2C′LR , we have ∥βk∥∞ ⩽ R.

F Proof of Theorem 1 and 2, and of Proposition 1

F.1 Proof of Theorem 1 and 2

We are now equipped to prove Theorem 1 and Theorem 2, condensed in the following Theorem.

Theorem 3. Let (uk, vk)k⩾0 follow the mini-batch SGD recursion (3) initialised at u0 =
√
2α ∈

Rd>0 and v0 = 0, and let (βk)k⩾0 = (uk ⊙ vk)k⩾0. There exists and explicit B > 0 and a numerical
constant c > 0 such that:

1. For stepsizes satisfying γk ⩽ c
LB , the iterates satisfy ∥γk∇LBk

(βk)∥∞ ⩽ 1 and ∥βk∥∞ ⩽
B for all k;

2. For stepsizes satisfying γk ⩽ c
LB , (βk)k⩾0 converges almost surely to some β⋆∞ ∈ S,

3. If (βk)k and the neurons (uk, vk)k respectively converge to a model β⋆∞ and neurons
(u∞, v∞) satisfying β⋆∞ ∈ S (and β⋆∞ = u∞ ⊙ v∞), then for almost all stepsizes (with
respect to the Lebesgue measure), the limit β⋆∞ satisfies:

β⋆∞ = argmin
β⋆∈S

Dψα∞
(β⋆, β̃0) ,

for α∞ ∈ Rd>0 and β̃0 ∈ Rd satisfying

α2
∞ = α2 ⊙ exp

(
−

∞∑
k=0

q
(
γk∇LBk

(βk)
))

,

where q(x) = − 1
2 ln((1− x2)2) ⩾ 0 for |x| ⩽

√
2, and β̃0 is a perturbation term equal to:

β̃0 =
1

2

(
α2

+ −α2
−
)
,

where, q±(x) = ∓2x− ln((1∓ x)2), and α2
± = α2 ⊙ exp (−∑∞

k=0 q±(γk∇LBk
(βk))).

Proof. Point 1. The first point of the Theorem is a direct consequence of Corollary 1 and the bounds
proved in appendix E.3.
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Point 2. Then, for stepsizes γk ⩽ c
LB , using Proposition 8 for any interpolator β⋆ ∈ S:

Dhk+1
(β⋆, βk+1) ⩽ Dhk

(β⋆, βk)− γkLBk
(βk) . (24)

Hence, summing: ∑
k

γkLBk
(βk) ⩽ Dh0(β

⋆, β0) ,

so that the series converges.

Under our stepsize rule, ∥γk∇LBk
(βk)∥∞ ⩽ 1

2 , leading to ∥q(γk∇LBk
(βk)∥∞ ⩽

3∥γk∇LBk
(βk)∥2∞ by Lemma 5. Using ∥∇LBk

(βk)∥2 ⩽ 2L2LBk
(βk), we have that ln(α±,k),

ln(αk) all converge.

We now show that
∑
k γkL(βk) <∞. We have:∑

ℓ<k

L(βk) =
∑
ℓ<k

γkLBk
(βk) +Mk ,

where Mk =
∑
ℓ<k γk(L(βk)− LBk

(βk)). We have that (Mk) is a martingale with respect to the
filtration (Fk) defined as Fk = σ(βℓ, ℓ ⩽ k). Using our upper-bound on

∑
ℓ<k γkLBk

(βk), we
have:

Mk ⩾
∑
ℓ<k

γkL(βk)−
∑
ℓ<k

γkLBk
(βk) ⩾ −Dh0(β

⋆, β0) ,

and hence (Mk) is a lower bounded martingale. Using Doob’s first martingale convergence theorem
(a lower bounded super-martingale converges almost surely, Doob [17]), (Mk) converges almost
surely. Consequently, since

∑
ℓ<k γkL(βk) =

∑
ℓ<k γkLBk

(βk)+Mk, we have that
∑
ℓ<k γkL(βk)

converges almost surely (the first term is upper bounded, the second converges almost surely).

We now prove the convergence of (βk). Since it is a bounded sequence, let βσ(k) be a convergent
sub-sequence and let β⋆∞ denote its limit: βσ(k) → β⋆∞.

Almost surely,
∑
k γkL(βk) <∞ and so γkL(βk) → 0, leading to L(βk) → 0 since the stepsizes are

lower bounded, so that L(βσ(k)) → 0, and hence L(β⋆∞) = 0: this means that β⋆∞ is an interpolator.

Since the quantities (αk)k, (α±,k)k and (ϕk)k converge almost surely to α∞, α± and ϕ∞, we get
that the potentials hk uniformly converge to h∞ = ψα∞ − ⟨ϕ∞, ·⟩ on all compact sets. Now notice
that we can decompose ∇h∞(β⋆∞) as:

∇h∞(β⋆∞) =
(
∇h∞(β⋆∞)−∇h∞(βσ(k))

)
+
(
∇h∞(βσ(k))−∇hσ(k)(βσ(k))

)
+∇hσ(k)(βσ(k)).

The first two terms converge to 0: the first is a direct consequence of the convergence of the extracted
subsequence, the second is a consequence of the uniform convergence of hσ(k) to h∞ on compact sets.
Finally the last term is always in Span(x1, . . . , xn) due to Proposition 5, leading to ∇h∞(β⋆∞) ∈
Span(x1, . . . , xn). Consequently, ∇h∞(β⋆∞) ∈ Span(x1, . . . , xn). Notice that from the definition

of h∞, we have that ∇h∞(β⋆∞) = ∇ψα∞(β⋆∞) − ϕ∞. Now since ϕ∞ = 1
2 arcsinh(

α2
+−α2

−
2α2

∞
),

one can notice that β̃0 is precisely defined such that ∇ψα∞(β̃0) = ϕ∞. Therefore ∇ψα∞(β⋆∞) −
∇ψα∞(β̃0) ∈ Span(x1, . . . , xn). This condition along with the fact that β⋆∞ is an interpolator are
exactly the optimality conditions of the convex minimisation problem:

min
β⋆∈S

Dψα∞
(β⋆, β̃0)

Therefore β⋆∞ must be equal to the unique minimiser of this problem. Since this is true for any
sub-sequence we get that βk converges almost surely to:

β⋆∞ = argmin
β∈S

Dψα∞
(β⋆, β̃0).

Point 3. From what we just proved, note that it is sufficient to prove that αk,α±,k, ϕk converge to
limits α∞,α±,∞, ϕ∞ satisfying α∞,α±,∞ ∈ Rd>0 (with positive and non-null coordinates) and
ϕ∞ ∈ Rd. Indeed, if this holds and since we assume that the iterates converge to some interpolator, we
proved just above that this interpolator is uniquely defined through the desired implicit regularization
problem. We thus prove the convergence of αk,α±,k, ϕk.
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Note that the convergence of uk, vk is equivalent to the convergence of w±,k in the w2
+ − w2

−
parameterisation used in our proofs, that we use there too. We have:

w±,k+1 = (1∓ γk∇LBk
(βk))⊙ w±,k ,

so that
ln(w2

±,k) =
∑
ℓ<k

ln((1∓ γℓ∇LBℓ
(βℓ))

2) .

We now assume that stepsizes are such that for all ℓ ⩾ 0 and i ∈ [d], stepsizes are such that we have
|γℓ∇iLBℓ

(βℓ)| ≠ 1: this is true for all stepsizes except a countable number of stepsizes, and so this
is true for almost all stepsizes. Since we assume that the iterates βk converge to some interpolator,
this leads to γℓ∇LBℓ

(βℓ) → 0 if we assume that stepsizes do not diverge.

Taking the limit, we have

ln(w2
±,∞) =

∑
ℓ<∞

ln((1∓ γℓ∇LBℓ
(βℓ))

2) .

This limit is in ({−∞} ∪ R)d (since w±,∞ ∈ Rd), and a coordinate of the limit is equal to −∞ if
and only if the sum on the RHS diverges to −∞ (note that from our assumption just above, no term
of the sum can be equal to −∞).

We have ln((1∓ γℓ∇LBℓ
(βℓ))

2) ∼ ∓2γℓ∇LBℓ
(βℓ) as ℓ→ ∞, so that if for some coordinate i we

have
∑
ℓ γℓ∇iLBℓ

(βℓ) = ∓∞, then the coordinate i of the limit satisfies ln(w2
i,±,∞) = +∞, which

is impossible. Hence, the sum
∑
ℓ γℓ∇LBℓ

(βℓ) is in Rd (and is thus converging); consequently,∑
ℓ γ

2
ℓ∇LBℓ

(βℓ)
2 converges and thus

∑
ℓ q(γℓ∇LBℓ

(βℓ)) and
∑
ℓ q±(γℓ∇LBℓ

(βℓ)) all converge:
the sequences αk,α±,k thus converge to limits in Rd>0, and ϕk converges, concluding our proof.

F.2 Proof of Proposition 1

We begin with the following Lemma, that explicits the curvature of Dh around the set of interpolators.

Lemma 3. For all k ⩾ 0, if L(βk) ⩽ 1
2λmax

(α2λ+min)
2, we have

∥∥βk − β⋆αk

∥∥2 ⩽

2B(α2λ+min)
−1L(βk).

Proof. Recall that the sequence zk = ∇hk(βk) satisfies z0 = 0 and zk+1 = zk − γkL(βk), so that
we have that zk ∈ V = Im(XX⊤) for all k ⩾ 0. Then, let βαk be the unique minimizer of hk over S
the space of interpolators: βαk is exactly characterized by X⊤βαk = Y and ∇hk(βαk ) ∈ V . We define
zαk ∈ V as zαk = ∇hk(βαk ).
Now, fix zα = zαk and h = hk, and let us define ψ : z ∈ V → Dh∗(z, zα) and ϕ : z ∈ V →
L(∇h∗(z)). We next show that for all z ∈ V , there exists µz such that ∇2ϕ(z) ⩾ µz∇2ψ(z), and
that µz ⩾ µ for z in an open convex set of V around zα, for some µ > 0. For A ∈ Rd×d an
operator/matrix on Rd, let us denote AV its restriction/co-restriction to V .

First, for z ∈ V , we have ∇2ψ(z) = ∇2(h∗(z) − h∗(z) − ⟨∇h∗(zα), z − zα⟩)(z) = ∇2h∗(z)V .
Then, ∇ϕ(z) = ∇2h∗(z)∇L(∇h∗(z)), so that ∇2ϕ(z) =

(
∇2h∗(z)∇2L(∇h∗(z))∇2h∗(z)

)
V
+

∇3h∗(z)(∇L(∇h∗(z)), ·, ·)V .

Since h is 1/(2α2) smooth (on Rd and thus on V ), h∗ is 2α2 strongly con-
vex (on V and on Rd). Using V = Im(XX⊤) and ∇2L ≡ XX⊤, we
have

(
∇2h∗(z)∇2L(∇h∗(z))∇2h∗(z)

)
V

= ∇2h∗(z)V∇2L(∇h∗(z))V∇2h∗(z)V , and thus(
∇2h∗(z)∇2L(∇h∗(z))∇2h∗(z)

)
V
⪰ 2α2λ+min∇2h∗(z)V .

For the other term of ∇2ϕ, namely ∇3h∗(z)(∇L(∇h∗(z)), ·, ·)V , we compute ∇3
ijkh

∗(z) =

1i=j=k2α
2
i,k sinh(zi), leading to: ∇3h∗(z)(∇L(∇h∗(z)), ·, ·)V = diag(2α2 sinh(z) ⊙

(XX⊤(2α2 sinh(z)− βα)))V . Thus, writing βz = 2α2
i,k sinh(z) = ∇h∗(z) the primal surrogate of
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z, we have:
∇3h∗(z)(∇L(∇h∗(z)), ·, ·)V = diag(2α2

i,k sinh(z)⊙ (XX⊤(βz − βαk )))V

⪰ −
∥∥XX⊤(βz − βαk )

∥∥
∞ diag(2α2

k ⊙ | sinh(z)|)V
⪰ −

∥∥XX⊤(βz − βαk )
∥∥
∞ diag(2α2

k ⊙ cosh(z))V

= −
∥∥XX⊤(βz − βαk )

∥∥
∞∇2ψ(z) .

Wrapping things together,

∇2ϕ(z) ⪰
(
2α2λ+min −

∥∥XX⊤(βz − βα)
∥∥
∞)∇2ψ(z) .

Let Z =
{
z ∈ V :

∥∥XX⊤(βz − βαk )
∥∥
∞ < α2λ+min

}
that satisfies{

β ∈ V : L(βz) < 1
2λmax

(α2λ+min)
2
}

⊂ Z . Z is an open convex set of V containing zα. On Z ,

∇2ϕ ⪰ α2λ+min∇2ψ, and ψ(zα) = ϕ(zα) = 0, so that for all z ∈ Z , we have ϕ(z) ⩾ α2λ+minψ(z).
Hence, for all z ∈ Z , we have Dhk

(βαk , βz) ⩽ Dh⋆(z, zα) ⩽ (α2λ+min)
−1L(βz), and using the fact

thatDhk
is 1

4B strongly convex, we obtain, for βz = βk (since zk ∈ V ): if L(βk) ⩽ 1
2λmax

(α2λ+min)
2,

we have ∥βαk − βk∥22 ⩽ (α2λ+min)
−1L(βk).

Proposition 14. As assume L is Lr-relatively smooth with respect to all the hk’s. Then for all β we
have the following inequality.

γk(L(βk+1)− L(β)) ⩽ Dhk
(β, βk)−Dhk+1

(β, βk+1)− (1− γkLr)Dhk
(βk+1, βk)

+ (hk+1 − hk)(β)− (hk+1 − hk)(βk+1) .

Proof. For any β, βk, βk+1, the following holds (three points identity for time varying potentials,
Proposition 9):
Dhk

(β, βk)−Dhk+1
(β, βk+1) =

[
hk(β)− (hk(βk) + ⟨∇hk(βk), β − βk⟩)

]
−
[
hk+1(β)− (hk+1(βk+1) + ⟨∇hk+1(βk+1), β − βk+1⟩)

]
= hk(β)− hk+1(β) + ⟨∇hk+1(βk+1)−∇hk(βk), β − βk+1⟩

+ hk+1(βk+1)−
[
hk(βk) + ⟨∇hk(βk), βk+1 − βk⟩

]
= hk(β)− hk+1(β) + ⟨∇hk+1(βk+1)−∇hk(βk), β − βk+1⟩

+ hk+1(βk+1)− hk(βk+1) +Dhk
(βk+1, βk).

Rearranging and plugging in our mirror update we obtain that for all β:
γk⟨∇L(βk), βk+1 − β⟩ = Dhk

(β, βk)−Dhk+1
(β, βk+1)

−Dhk
(βk+1, βk)− (hk+1 − hk)(βk+1) + (hk+1 − hk)(β).

From the convexity of L and its Lr-relative smoothness we also have that:
L(βk+1) ⩽ L(β) + ⟨∇L(βk), βk+1 − β⟩+ LrDhk

(βk+1, βk),

Finally:
γk(L(βk+1)− L(β)) ⩽ Dhk

(β, βk)−Dhk+1
(β, βk+1)− (1− γkLr)Dhk

(βk+1, βk)

+ (hk+1 − hk)(β)− (hk+1 − hk)(βk+1).

Note that in our setting, for any β, k 7→ hk(β) is increasing. We can therefore write that:
γk(L(βk+1)− L(β)) ⩽ Dhk

(β, βk)−Dhk+1
(β, βk+1)− (1− γkLr)Dhk

(βk+1, βk) + (hk+1 − hk)(β).

In particular, for β = β∗:
γkL(βk+1) ⩽ Dhk

(β∗, βk)−Dhk+1
(β∗, βk+1)− (1− γkL)Dhk

(βk+1, βk) + (hk+1 − hk)(β
∗)

− (hk+1 − hk)(βk+1)

⩽ Dhk
(β∗, βk)−Dhk+1

(β∗, βk+1)− (1− γkLr)Dhk
(βk+1, βk) + (hk+1 − hk)(β

∗)

and in β = βk:
γkL(βk+1) ⩽ γkL(βk)−Dhk+1

(βk, βk+1)− (1− γkLr)Dhk
(βk+1, βk) + (hk+1 − hk)(βk)

− (hk+1 − hk)(βk+1)

⩽ γkL(βk)−Dhk+1
(βk, βk+1)− (1− γkLr)Dhk

(βk+1, βk) + (hk+1 − hk)(βk)
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Proof of Proposition 1. We apply Proposition 14 for β = βk, with Lr = 4BL (using Lemma 6) and
replacing L by LBk

, to obtain:

γk(LBk
(βk+1)− LBk

(βk)) ⩽ −Dhk+1
(βk, βk+1)− (1− γkLr)Dhk

(βk+1, βk)

+ (hk+1 − hk)(βk)− (hk+1 − hk)(βk+1) ,

and thus, taking the mean wrt Bk,

γk(EBk
L(βk+1)− L(βk)) ⩽ −EBk

Dhk+1
(βk, βk+1)− (1− γkLr)EBk

Dhk
(βk+1, βk)

+ EBk
(hk+1 − hk)(βk)− EBk

(hk+1 − hk)(βk+1)

⩽ −(1− γkLr)EBk
Dhk

(βk+1, βk)

+ EBk
(hk+1 − hk)(βk)− EBk

(hk+1 − hk)(βk+1) .

First, as in the proof of Proposition 10, using the fact that hk is ln(1/αk) smooth,

Dhk
(βk+1, βk) ⩾

1

2 ln(1/αk)
∥∇hk(βk)− γk∇LBk

(βk)−∇hk(βk) +∇hk+1(βk+1)−∇hk(βk+1)∥22

⩾ − 1

2 ln(1/αk)
∥∇hk(βk)−∇hk+1(βk)∥22 +

1

4 ln(1/αk)
∥γk∇LBk

(βk)∥22 ,

and thus

EDhk
(βk+1, βk) ⩾ E

[
− 1

2 ln(1/αk)
∥∇hk(βk)−∇hk+1(βk)∥22 +

λb
2 ln(1/αk)

γ2kLB(βk)

]
.

Now, we apply Lemma 7 assuming that ∥β⋆∥∞, ∥βk+1∥∞ ⩽ B (which is satisfied since we are
under the assumption of Theorem 2):

(hk+1 − hk)(βk)− (hk+1 − hk)(β
⋆) ⩽ 24BLγ2kLBk

(βk) .

Using |∇hk(β)−∇hk+1(β)| ⩽ 2δk where δk = q(γk∇LBk
(βk)) as in Proposition 10, we have:

E∥∇hk(βk)−∇hk+1(βk)∥22 ⩽ 16Bγ2kE∥∇LBk
(βk)∥2 ⩽ 32BLγ2kEL(βk) .

Wrapping everything together,

E [L(βk+1)− L(βk)] ⩽ −(1− γk4BL)
λb

2 ln(1/αk)
γkEL(βk)

+
(
γ2k(1− 4γkBL)24BL+

32BL

ln(1/αk)

)
γ2kEL(βk) .

Thus, for γk ⩽ c′

LB ln(1/αk)
, we have the first part of Proposition 1.

Using Lemma 3, we then have:

E
[∥∥βk − β⋆αk

∥∥2] = E
[
1{L(βk)⩽ 1

2λmax
(α2λ+

min)
2}
∥∥βk − β⋆αk

∥∥2]
+ E

[
1{L(βk)>

1
2λmax

(α2λ+
min)

2}
∥∥βk − β⋆αk

∥∥2]
⩽ E

[
1{L(βk)⩽ 1

2λmax
(α2λ+

min)
2}2B(α2λ+min)

−1L(βk)
]

+ P
(
L(βk) >

1

2λmax
(α2λ+min)

2

)
× 4B2

⩽ 2B(α2λ+min)
−1E [L(βk)]

+
E [L(βk)]

1
2λmax

(α2λ+min)
2
× 4B2

= 2B(α2λ+min)
−1
(
1 +

4Bλmax

α2λ+min

)
E [L(βk)] .
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G Proof of miscellaneous results mentioned in the main text

In this section, we provide proofs for results mentioned in the main text and that are not directly
directed to the proof of Theorem 3.

G.1 Proof of Proposition 3 and the sum of the losses

We start by proving the following proposition, present as is in the first 9 pages of this paper. We then
continue with upper and lower bounds (of similar magnitude) on the sum of the losses.
Proposition 3. Let Λb, λb > 0 5 be the largest and smallest values, respectively, such that λbH ⪯
EB
[
H2

B
]
⪯ ΛbH . For any stepsize γ > 0 satisfying γ ⩽ c

BL (as in Theorem 2), initialisation α1 and
batch size b ∈ [n], the magnitude of the gain satisfies:

λbγ
2
∑
k

EL(βk) ⩽ E [∥Gainγ∥1] ⩽ 2Λbγ
2
∑
k

EL(βk) , (10)

where the expectation is over a uniform and independent sampling of the batches (Bk)k⩾0.

Proof. From Lemma 5, for all −1/2 ⩽ x ⩽ 1/2, it holds that x2 ⩽ q(x) ⩽ 2x2. We have, using
∥γk∇LBk

(βk)∥∞ ⩽ 1/2 (which holds under the stepsize assumption):

E∥Gainγ∥1 = −E
∑
i

ln
(α∞,i

α

)
=
∑
ℓ<∞

∑
i

Eq
(
γℓ∇iLBℓ

(βℓ)
)

⩽ 2
∑
ℓ<∞

∑
i

E
(
γℓ∇iLBℓ

(βℓ)
)2

=
∑
ℓ<∞

γ2ℓE∥∇LBℓ
(βℓ)∥22

⩽ 4Λb
∑
ℓ<∞

γ2ℓELBℓ
(βℓ) ,

since E∥∇LBℓ
(βℓ)∥22 ⩽ 2ΛbLBℓ

(βℓ). For the left handside we use q(x) ⩾ x2 for |x| ⩽ 1/2 and
E∥∇LBk

(βℓ)∥22 ⩾ 2λbLBk
(βℓ). Finally, since Bℓ independent freom βℓ, we have ELBℓ

(βℓ) =
EL(βℓ).
Proposition 15. For stepsizes γk ≡ γ ⩽ c

LB (as in Theorem 2), we have:∑
k⩾0

γ2EL(βk) = Θ (γ∥β⋆∥1 ln(1/α)) .

Proof. We first lower bound
∑
k<∞ γ2kLBk

(βk). We have the following equality, that holds for any
k:

Dhk+1
(β⋆, βk+1) = Dhk

(β⋆, βk)− 2γLBk
(βk) +Dhk+1

(βk, βk+1)

+
(
hk − hk+1

)
(βk)−

(
hk − hk+1

)
(β⋆) ,

leading to, by summing for k ∈ N:∑
k<∞

2γLBk
(βk) = Dh0

(β⋆, β0)− lim
k→∞

Dhk
(β⋆, βk)+

∑
k<∞

Dhk+1
(βk, βk+1)+

∑
k<∞

(
hk−hk+1

)
(βk)−

(
hk−hk+1

)
(β⋆) .

First, since hk → h∞, βk → β∞, we have limk→∞Dhk
(β⋆, βk) = 0. Then, Dhk+1

(βk, βk+1) ⩾ 0.
Finally, |

(
hk − hk+1

)
(βk)−

(
hk − hk+1

)
(β⋆)| ⩽ 16BL2γ

2LBk
(βk). Hence :∑

k<∞
2γ(1 + 16γBL2)LBk

(βk) ⩾ Dh0
(β⋆, β0) ,

5Λb, λb > 0 are data-dependent constants; for b = n, we have (λn,Λn) = (λ+
min(H), λmax(H)) where

λ+
min(H) is the smallest non-null eigenvalue of H; for b = 1, we have mini ∥xi∥22 ⩽ λ1 ⩽ Λ1 ⩽ maxi ∥xi∥22.
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and thus
∑
k<∞ γLBk

(βk) ⩾ Dh0(β
⋆, β0)/4 for γ ⩽ c/(BL) (with c ⩾ 16). This gives the RHS

inequality. The LHS is a direct consequence of bounds proved in previous subsections.

Hence, we have that
γ2
∑
k

L(βk) = Θ (γDh0
(β⋆, β0)) .

Noting that Dh0(β
⋆, β0) = h0(β

⋆) = Θ
(
ln(1/α)∥β⋆∥1

)
concludes the proof.

G.2 β̃0 is negligible

In the following proposition we show that β̃0 is close to 0 and therefore one should think of the
implicit regularization problem as β⋆∞ = argminβ⋆∈S ψα∞(β⋆)

Proposition 16. Under the assumptions of Theorem 2,

|β̃0| ⩽ α2,

where the inequality must be understood coordinate-wise.

Proof.

|β̃0| =
1

2
|α2

+ − α2
−|

=
1

2
α2
∣∣ exp(−∑

k

q+(γk∇L(βk))− exp(−
∑
k

q−(γk∇L(βk))
∣∣

⩽ α2,

where the inequality is because q+(γk∇L(βk)) ⩾ 0, q−(γk∇L(βk)) ⩾ 0 for all k.

G.3 Impact of stochasticity and linear scaling rule

Proposition 17. With probability 1 − 2ne−d/16 − 3/n2 over the xi ∼iid N (0, σ2Id), c1 dσ
2

b (1 +

o(1)) ⩽ λb ⩽ Λb ⩽ c2
dσ2

b (1 + o(1)) ,

so that under these assumptions,∑
k

γkEL(βk) = Θ
(γ
b
σ2∥β⋆∥1 ln(1/α)

)
.

Proof. The bound on λb,Λb is a direct consequence of the concentration bound provided in Lemma 13.

G.4 (Stochastic) gradients at the initialisation

To understand the behaviour and the effects of the stochasticity and the stepsize on the shape of
Gainγ , we analyse a noiseless sparse recovery problem under the following standard assumption 2
[10] and as common in the sparse recovery literature, we make the following assumption 3 on the
inputs.

Assumption 2. There exists an s-sparse ground truth vector β⋆sparse where s verifies n = Ω(s ln(d)),
such that yi = ⟨β⋆sparse, xi⟩ for all i ∈ [n].

Assumption 3. There exists δ, c1, c2 > 0 such that for all s-sparse vectors β, there exists ε ∈ Rd
such that (X⊤X)β = β + ε where ∥ε∥∞ ⩽ δ∥β∥2 and c1∥β∥221 ⩽ 1

n

∑
i x

2
i ⟨xi, β⟩2 ⩽ c2∥β∥221.

The first part of Assumption 3 closely resembles the classical restricted isometry property (RIP) and
is relevant for GD while the second part is relevant for SGD. Such an assumption is not restrictive
and holds with high probability for Gaussian inputs N (0, σ2Id) (see Lemma 10 in Appendix).
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Based on the claim above, we analyse the shape of the (stochastic) gradient at initialisation. For GD
and SGD, it respectly writes, where g0 = ∇Li0(β0)2, i0 ∼ Unif([n]):

∇L(β0)2 = [X⊤Xβ⋆]2 , Ei0 [g0] =
1

n

∑
i

x2i ⟨xi, β⋆⟩2.

The following lemma then shows that while the initial stochastic gradients of SGD are homogeneous,
it is not the case for that of GD.
Proposition 18. Under Assumption 3, the squared full batch gradient and the expected stochastic
gradient at initialisation satisfy, for some ε verifying ∥ε∥∞ <<

∥∥β⋆sparse∥∥2∞:

∇L(β0)2 = (β⋆sparse)
2 + ε , (25)

Ei0 [∇Li0(β0)2] = Θ
(
∥β⋆∥221

)
. (26)

Proof of Proposition 18. Under Assumption 3, we have using:

∇L(β0)2 = (X⊤Xβ⋆sparse)

= (β⋆sparse + ε)2

= β⋆sparse
2 + ε2 + 2εβ⋆sparse .

We have
∥∥ε2 + 2εβ⋆sparse

∥∥
∞ ⩽ ∥ε∥2∞ + 2∥ε∥∞

∥∥β⋆sparse∥∥∞, and we conclude by using ∥ε∥∞ ⩽

δ
∥∥β⋆sparse∥∥2.

Then,

Ei∼Unif([n])[∇Li(β0)2] =
1

n
x2i ⟨xi, β⋆sparse⟩ ,

and we conclude using Assumption 3.

Proof of Proposition 4. The proof proceeds as that of Proposition 18.

G.5 Convergence of α∞ and β̃0 for γ → 0

Proposition 19. Let β̃0(γ), α∞(γ) be as defined in Theorem 1, for constant stepsizes γk ≡ γ. We
have:

β̃0(γ) → 0 , α∞ → α1 ,

when γ → 0.

Proof. We have, as proved previoulsy, that∥∥∥∥∥∑
k

γ2∇LBk
(βk)

2

∥∥∥∥∥
1

⩽
∑
k

γ2
∥∥∇LBk

(βk)
2
∥∥
1

=
∑
k

γ2∥∇LBk
(βk)∥22

⩽ 2Lγ2
∑
k

LBk
(βk)

⩽ 2LγDh0
(β⋆, β0) ,

for γ ⩽ c
BL . Thus,

∑
k γ

2∇LBk
(βk)

2 → 0 as γ → 0 (note that βk implicitly depends on γ, so that
this result is not immediate).

Then, for γ ⩽ c
LB ,∥∥ln(α2

∞/α
2)
∥∥
1
⩽
∑
k

∥q(γL(βk)∥1 ⩽ 2
∑
k

γ2
∥∥∇LBk

(βk)
2
∥∥
1
,
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which tends to 0 as γ → 0. Similarly,
∥∥ln(α2

+,∞/α
2)
∥∥
1
→ 0 and

∥∥ln(α2
−,∞/α

2)
∥∥
1
→ 0 as γ → 0,

leading to β̃0(γ) → 0 as γ → 0.

H Technical lemmas

In this section we present a few technical lemmas, used and referred to throughout the proof of ??.
Lemma 4. Let α+, α− > 0 and x ∈ R, and β = α2

+e
x − α2

−e
−x. We have:

arcsinh
( β

2α+α−

)
= x+ ln

(α+

α−

)
= x+ arcsinh

(α2
+ − α2

−
2α+α−

)
.

Proof. First,
β

2α+α−
=

1

2

(α+

α− e
x −

(α+

α−
)−1

e−x
)

=
ex+ln(α+/α−) − e−x−ln(α+/α−)

2
= sinh(x+ ln(α+/α−)) ,

hence the result by taking the arcsinh of both sides. Note also that we have ln(α+/α−) =

arcsinh(
α2

+−α2
−

2α+α−
).

Lemma 5. If |x| ⩽ 1/2 then x2 ⩽ q(x) ⩽ 2x2

Lemma 6. On the ℓ∞ ball of radius B, the quadratic loss function β 7→ L(β) is 4λmax max(B,α2)-
relatively smooth w.r.t all the hk’s.

Proof. We have:

∇2hk(β) = diag
( 1

2
√
α4
k + β2

)
⪰ diag

( 1

2
√
α4 + β2

)
,

since αk ⩽ α component-wise. Thus, ∇2hk(β) ⪰ 1
2 min

(
min1⩽i⩽d

1
2|βi| ,

1
2α2

)
Id =

1
max(4∥β∥∞,4α2)Id, and hk is 1

max(4B,4α2) -strongly convex on the ℓ∞ norm of radius B. Since

L is λmax-smooth over Rd, we have our result.

Lemma 7. For k ⩾ 0 and for all β ∈ Rd:

|hk+1(β)− hk(β)| ⩽ 8L2γ
2
kLBk

(βk)∥β∥∞.

Proof. We have α2
+,k+1 = α2

+,ke
−δ+,k and α2

−,k+1 = α2
−,ke

−δ−,k , for δ+,k = q̃(γk∇LBk
(βk)) and

δ−,k = q̃(−γk∇LBk
(βk)). And αk+1 = αk exp(−δk) where δk := δ+,k+δ−,k = q(γk∇LBk

(βk)).

To prove the result we will use that for β ∈ Rd, we have |(hk+1 − hk)(β)| ⩽∑d
i=1

∫ |βi|
0

|∇ihk+1(x)−∇ihk(x)|dx.

First, using that| arcsinh(a)− arcsinh(b)| ⩽ | ln(a/b)| for ab > 0. We have that∣∣∣ arcsinh( x

α2
k+1

)
− arcsinh

( x
α2
k

)∣∣∣ ⩽ ln

(
α2
k

α2
k+1

)
= δk ,

since δk ⩾ 0 due to our stepsize condition.

We now prove that |ϕk+1 − ϕk| ⩽ |δ+,k−δ−,k|
2 . We have ϕk = arcsinh

(α2
+,k−α2

−,k

2α+,kα−,k

)
and hence,

|ϕk+1 − ϕk| =
∣∣∣∣∣arcsinh(α2

+,k − α2
−,k

2α+,kα−,k

)
− arcsinh

(α2
+,k+1 − α2

−,k+1

2α+,k+1α−,k+1

)∣∣∣∣∣ .
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Then, assuming that α+,k,i ⩾ α−,k,i, we have:

α2
+,k+1,i − α2

−,k+1,i

2α+,k+1,iα−,k+1,i
= eδk,i/2

α2
+,k,ie

−δ+,k,i − α2
−,k,ie

−δ−,k,i

2α+,k,iα−,k,i

⩽


e

δ+,k,i−δ−,k,i
2

α2
+,k,i − α2

−,k,i
2α+,k,iα−,k,i

if δ+,k,i ⩾ δ−,k,i

e
δ−,k,i−δ+,k,i

2

α2
+,k,i − α2

−,k,i
2α+,k,iα−,k,i

if δ−,k,i ⩾ δ+,k,i

⩾


e−

δ+,k,i−δ−,k,i
2

α2
+,k,i − α2

−,k,i
2α+,k,iα−,k,i

if δ+,k,i ⩾ δ−,k,i

e−
δ−,k,i−δ+,k,i

2

α2
+,k,i − α2

−,k,i
2α+,k,iα−,k,i

if δ−,k,i ⩾ δ+,k,i

.

We thus have
α2

+,k+1,i−α2
−,k+1,i

2α+,k+1,iα−,k+1,i
∈
[
e−

|δ+,k,i−δ−,k,i|
2 , e

|δ+,k,i−δ−,k,i|
2

]
× α2

+,k,i−α2
−,k,i

2α+,k,iα−,k,i
, and this holds

similarly if α+,k,i ⩽ α−,k,i. Then, using | arcsinh(a)− arcsinh(b)| ⩽ | ln(a/b)| we obtain that:

|ϕk+1 − ϕk| =
∣∣∣∣∣arcsinh(α2

+,k − α2
−,k

2α+,kα−,k

)
− arcsinh

(α2
+,k+1 − α2

−,k+1

2α+,k+1α−,k+1

)∣∣∣∣∣
⩽

|δ+,k − δ−,k|
2

.

Wrapping things up, we have:

|∇hk(β)−∇hk+1(β)| ⩽ δk +
|δ+,k − δ−,k|

2
⩽ 2δk ,

This leads to the following bound:
|hk+1(β)− hk(β)| ⩽ ⟨|2δk|, |β|⟩

⩽ 2∥δk∥1∥β∥∞.

Recall that δk = q(γk∇LBk
(βk), hence from Lemma 5 if γk∥∇LBk

(βk)∥∞ ⩽ 1/2, we get that

∥δk∥1 ⩽ 2γ2k∥∇LBk
(βk)∥22 ⩽ 4L2γ

2
kLBk

(βk).

Putting things together we obtain that
|hk+1(β)− hk(β)| ⩽ ⟨|2δk|, |β|⟩

⩽ 8L2γ
2
kLBk

(βk)∥β∥∞.

I Concentration inequalities for matrices

In this last section of the appendix, we provide and prove several concentration bounds for random
vectors and matrices, with (possibly uncentered) isotropic gaussian inputs. These inequalities can
easily be generalized to subgaussian random variables via more refined concentration bounds, and to
non-isotropic subgaussian random variables [19], leading to a dependence on an effective dimension
and on the subgaussian matrix Σ. We present these lemmas before proving them in a row.

The next two lemmas closely ressemble the RIP assumption, for centered and then for uncentered
gaussians.
Lemma 8. Let x1, . . . , xn ∈ Rd be i.i.d. random variables of law N (0, Id) and H = 1

n

∑n
i=1 xix

⊤
i .

Then, denoting by C the set of all s-sparse vector β ∈ Rd satisfying ∥β∥2 ⩽ 1, there exist C4, C5 > 0
such that for any ε > 0, if n ⩾ C4s ln(d)ε

−2,

P

(
sup
β∈S

∥Hβ − β∥∞ ⩾ ε

)
⩽ e−C5n .
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Lemma 9. Let x1, . . . , xn ∈ Rd be i.i.d. random variables of law N (µ, σ2Id) and H =
1
n

∑n
i=1 xix

⊤
i . Then, denoting by C the set of all s-sparse vector β ∈ Rd satisfying ∥β∥2 ⩽ 1,

there exist C4, C5 > 0 such that for any ε > 0, if n ⩾ C4s ln(d)ε
−2,

P

(
sup
β∈S

∥∥Hβ − µ⟨µ, β⟩ − σ2β
∥∥
∞ ⩾ ε

)
⩽ e−C5n .

We then provide two lemmas that estimate the mean Hessian of SGD.
Lemma 10. Let x1, . . . , xn be i.i.d. random variables of law N (0, Id). Then, there exist c1, c2 > 0
such that with probability 1− 1

d2 and if n = Ω(s5/4 ln(d)), we have for all s-sparse vectors β:

c1∥β∥221 ⩽
1

n

n∑
i=1

x2i ⟨xi, β⟩2 ⩽ c2∥β∥221 ,

where the inequality is meant component-wise.
Lemma 11. Let x1, . . . , xn be i.i.d. random variables of law N (µ, σ2Id). Then, there exist
c0, c1, c2 > 0 such that with probability 1− c0

d2 − 1
nd and if n = Ω(s5/4 ln(d)) and µ ⩾ 4σ

√
ln(d)1,

we have for all s-sparse vectors β:

µ2

2

(
⟨µ, β⟩2 + 1

2
σ2∥β∥22

)
⩽

1

n

∑
i

x2i ⟨xi, β⟩2 ⩽ 4µ2
(
⟨µ, β⟩2 + 2σ2∥β∥22

)
.

where the inequality is meant component-wise.

Finally, next two lemmas are used to estimate λb,Λb in our paper.
Lemma 12. Let x1, . . . , xn ∈ Rd be i.i.d. random variables of law N (µ1, σ2Id). Let H =
1
n

∑n
i=1 xix

⊤
i and H̃ = 1

n

∑n
i=1 ∥xi∥

2
xix

⊤
i . There exist numerical constants C2, C3 > 0 such that

P
(
C2

(
µ2 + σ2)dH ⪯ H̃ ⪯ C3

(
µ2 + σ2)dH

)
⩾ 1− 2ne−d/16 .

Lemma 13. Let x1, . . . , xn ∈ Rd be i.i.d. random variables of law N (µ1, σ2Id) for some µ ∈ R.

Let H = 1
n

∑n
i=1 xix

⊤
i and for 1 ⩽ b ⩽ n let H̃b = EB

[(
1
b

∑
i∈B xix

⊤
i

)2]
where B ⊂ [n] is

sampled uniformly at random in {B ⊂ [n] s.t. |B| = b}. With probability 1− 2ne−d/16 − 3/n2, we
have, for some numerical constants c1, c2, c3, C > 0:(
c1
d(µ2 + σ2)

b
− c2

(σ2 + µ2) ln(n)√
d

− c3
µ2d

n

)
H ⪯ H̃b ⪯ C

(
d(µ2 + σ2)

b
+

(σ2 + µ2) ln(n)√
d

+ µ2d

)
Proof of Lemma 8. For j ∈ [d], we have:

(Hβ)j =
1

n

n∑
i=1

xij⟨xi, β⟩

=
1

n

n∑
i=1

d∑
j′=1

xijxij′βj′

=
1

n

n∑
i=1

x2ijβj +
1

n

n∑
i=1

∑
j′ ̸=j

xijxij′βj′

=
βj
n

n∑
i=1

x2ij +
1

n

n∑
i=1

xij
∑
j′ ̸=j

xij′βj′ .

We thus notice that E [Hβ] = β, and

(Hβ)j = βj +
βj
n

n∑
i=1

(x2ij − 1) +
1

n

n∑
i=1

zi ,
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where zi = xij
∑
j′ ̸=j xij′βj′ , and

∑
j′ ̸=j xij′βj′ ∼ N (0, ∥β∥2 − β2

j ) and ∥β∥2 − β2
j ⩽ 1. Hence,

zj +x2ij − 1 is a centered subexponential random variables (with a subexponential parameter of order
1). Thus, for t ⩽ 1:

P

(∣∣∣∣∣βjn
n∑
i=1

(x2ij − 1) +
1

n

n∑
i=1

zi

∣∣∣∣∣ ⩾ t

)
⩽ 2e−cnt

2

.

Hence, using an ε-net of C =
{
β ∈ Rd : ∥β∥2 ⩽ 1 , ∥β∥0

}
(of cardinality less than ds × (C/ε)s,

and for ε of order 1), we have, using the classical ε-net trick explained in [Chapt. 9, [58] or [App. C,
Even and Massoulie [19]]:

P

(
sup

β∈C, j∈[d]

|(Hβ)j − βj | ⩾ t

)
⩽ d×ds(C/ε)s×2e−cnt

2

= exp
(
−c ln(2)nt2 + (s+ 1) ln(d) + s ln(C/ε)

)
.

Consequently, for t = ε and if n ⩾ C4s ln(d)/ε
2, we have:

P

(
sup

β∈C, j∈[d]

|(Hβ)j − βj | ⩾ t

)
⩽ exp

(
−C5nt

2
)
.

Proof of Lemma 9. We write xi = σzi + µ where zi ∼ N (0, Id). We have:

X⊤Xβ =
1

n

n∑
i=1

(µ+ σzi)⟨µ+ σzi, β⟩

= µ⟨µ, β⟩+ σ2

n

n∑
i=1

zi⟨zi, β⟩+
σ

n

n∑
i=1

µ⟨zi, β⟩+
σ

n

n∑
i=1

zi⟨µ, β⟩

= µ⟨µ, β⟩+ σ2

n

n∑
i=1

zi⟨zi, β⟩+ σµ⟨ 1
n

n∑
i=1

zi, β⟩+
σ⟨µ, β⟩
n

n∑
i=1

zi .

The first term is deterministic and is to be kept. The second one is of order σ2β whp using Lemma 8.
Then, 1

n

∑n
i=1 zi ∼ N (0, Id/n), so that

P

(∣∣∣∣∣⟨ 1n
n∑
i=1

zi, β⟩
∣∣∣∣∣ ⩾ t

)
⩽ 2e−nt

2/(2∥β∥2
2) ,

and

P

(∣∣∣∣∣ 1n
n∑
i=1

zij

∣∣∣∣∣ ⩾ t

)
⩽ 2e−nt

2/2 .

Hence,

P

(
sup
β∈C

∥∥∥∥∥ 1n
n∑
i=1

zij

∥∥∥∥∥
∞

⩾ t , sup
β∈C

∣∣∣∣∣⟨ 1n
n∑
i=1

zi, β⟩
∣∣∣∣∣ ⩾ t

)
⩽ 4ecs ln(d)e−nt

2/2 .

Thus, with probability 1 − Ce−nε
2

and under the assumptions of Lemma 8, we have∥∥X⊤Xβ − µ⟨µ, β⟩ − σ2β
∥∥
∞ ⩽ ε

Proof of Lemma 10. To ease notations, we assume that σ = 1. We remind (O’Donnell [46], Chapter 9
and Tao [54]) that for i.i.d. real random variables a1, . . . , an that satisfy a tail inequality of the form

P
(
|a1 − Ea1| ⩾ t

)
⩽ Ce−ct

p

, (27)

for p < 1, then for all ε > 0 there exists C ′, c′ such that for all t,

P
(
| 1
n

n∑
i=1

ai − Ea1| ⩾ t
)
⩽ C ′e−c

′ntp−ε

.

38



We now expand 1
n

∑n
i=1 x

2
i ⟨xi, β⟩2:

1

n

n∑
i=1

x2i ⟨xi, β⟩2 =
1

n

∑
i∈[n],k,ℓ∈[d]

x2ixikxiℓβkβℓ

=
1

n

∑
i∈[n],k∈[d]

x2ix
2
ikβ

2
k +

1

n

∑
i∈[n],k ̸=ℓ∈[d]

x2ixikxiℓβkβℓ .

Thus, for j ∈ [d],(
1

n

n∑
i=1

x2i ⟨xi, β⟩2
)
j

=
∑
k∈[d]

β2
k

n

∑
i∈[n]

x2ijx
2
ik +

∑
k ̸=ℓ∈[d]

βkβℓ
n

∑
i∈[n]

x2ijxikxiℓ .

We notice that for all indices, all x2ijxikxiℓ and x2ijx
2
ik satisfy the tail inequality Eq. (27) for C = 8,

c = 1/2 and p = 1/2, so that for ε = 1/4:

P
(
| 1
n

n∑
i=1

x2ijxikxiℓ| ⩾ t
)
⩽ C ′e−c

′nt1/4 , P
(
| 1
n

n∑
i=1

x2ijx
2
ik−E

[
x2ijx

2
ik

]
| ⩾ t

)
⩽ C ′e−c

′nt1/4 .

For j ̸= k, we have E
[
x2ijx

2
ik

]
= 1 while for j = k, we have E

[
x2ijx

2
ik

]
= E

[
x4ij
]
= 3. Hence,

P

(
∃j, k ̸= ℓ , | 1

n

n∑
i=1

x2ijxikxiℓ| ⩾ t , | 1
n

n∑
i=1

x2ijx
2
ik − E

[
x2ijx

2
ik

]
| ⩾ t

)
⩽ C ′d2e−c

′nt1/4 .

Thus, with probability 1− C ′d2e−c
′nt1/4 , for all j ∈ [d],∣∣∣∣∣∣

(
1

n

n∑
i=1

x2i ⟨xi, β⟩2
)
j

− 2β2
j − ∥β∥22

∣∣∣∣∣∣ ⩽ t
∑
k,ℓ

|βk||βℓ| = t∥β∥21 .

Using the classical technique of Baraniuk et al. [4], to make a union bound on all s-sparse vectors, we
consider an ε-net of the set of s-sparse vectors of ℓ2-norm smaller than 1. This ε-net is of cardinality
less than (C0/ε)

sds, and we only need to take ε of order 1 to obtain the result for all s-sparse vectors.
This leads to:

P

∃β ∈ Rd s-sparse and ∥β∥2 ⩽ 1 , ∃j ∈ Rd ,

∣∣∣∣∣∣
(
1

n

n∑
i=1

x2i ⟨xi, β⟩2
)
j

− 2β2
j − ∥β∥22

∣∣∣∣∣∣ ⩾ t∥β∥21


⩽ C ′d2ec1s+s ln(d)e−c

′nt1/4 .

This probability is equal to C ′/d2 for t =
(

(s+4) ln(d)+c1s
c′n

)4
. We conclude that with probability

1− C ′/d2, all s-sparse vectors β satisfy:∣∣∣∣∣∣
(
1

n

n∑
i=1

x2i ⟨xi, β⟩2
)
j

− 2β2
j − ∥β∥22

∣∣∣∣∣∣ ⩽
(
(s+ 4) ln(d) + c1s

c′n

)4

∥β∥21 ⩽

(
(s+ 4) ln(d) + c1s

c′n

)4

s∥β∥22 ,

and the RHS is smaller than ∥β∥22/2 for n ⩾ Ω(s5/4 ln(d)).

Proof of Lemma 11. We write xi = µ+ σzi where xi ∼ N (0, 1). We have:

P
(
∀i ∈ [n],∀j ∈ [d], |zij | ⩾ t

)
⩽ eln(nd)−t

2/2 =
1

nd
,

for t = 2
√

ln(nd). Thus, if µ ⩾ 4σ
√
ln(nd) we have µ

2 ⩽ xi ⩽ 2µ, so that

µ2

2n

∑
i

⟨xi, β⟩2 ⩽
1

n

∑
i

x2i ⟨xi, β⟩2 ⩽
4µ2

n

∑
i

⟨xi, β⟩2 .
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Then, ⟨xi, β⟩ ∼ N (⟨µ, β⟩, σ2∥β∥22). For now, we assume that ∥β∥2 = 1. We have P(|⟨xi, β⟩2 −
⟨µ, β⟩2 − σ2∥β∥22| ⩾ t) ⩽ Ce−ct/σ

2

, and for t ⩽ 1, using concentration of subexponential random
variables [58]:

P

(∣∣∣∣∣ 1n∑
i

⟨xi, β⟩2 − ⟨µ, β⟩2 − σ2∥β∥22

∣∣∣∣∣ ⩾ t

)
⩽ C ′e−nc

′t2/σ4

,

and using the ε-net trick of Baraniuk et al. [4],

P

(
sup
β∈C

∣∣∣∣∣ 1n∑
i

⟨xi, β⟩2 − ⟨µ, β⟩2 − σ2∥β∥22

∣∣∣∣∣ ⩾ t

)
⩽ C ′es ln(d)−nc

′t2/σ4

=
C ′

d2
,

for t = σ2∥β∥22
√

2(cs+2) ln(d)
n . Consequently, we have, with probability 1− C′

d2 − 1
nd :

µ2

2

(
⟨µ, β⟩2 + 1

2
σ2∥β∥22

)
⩽

1

n

∑
i

x2i ⟨xi, β⟩2 ⩽ 4µ2
(
⟨µ, β⟩2 + 2σ2∥β∥22

)
.

Proof of Lemma 12. First, we write xi = µ1+ σzi, where zi ∼ N (0, I), leading to:
1

n

∑
i∈[n]

∥xi∥22xix⊤i =
1

n

∑
i∈[n]

(
σ2∥zi∥22 + dµ2 + 2σµ⟨1, zi⟩

)
xix

⊤
i

We use concentration of χ2
d random variables around d:

P(χ2
d > d+ 2t+ 2

√
dt) ⩾ t) ⩽ e−t and P(χ2

d > d− 2
√
dt) ⩽ t) ⩽ e−t ,

so that for all i ∈ [n],

P(∥zi∥22 /∈ [d− 2
√
dt, d+ 2t+ 2

√
dt]) ⩽ 2e−t .

Thus,
P(∀i ∈ [n], ∥zi∥22 ∈ [d− 2

√
dt, d+ 2t+ 2

√
dt]) ⩾ 1− 2ne−t .

Taking t = d/16,

P(∀i ∈ [n], ∥zi∥22 ∈ [
d

2
, 13d/8]) ⩾ 1− 2ne−d/16 .

Then, for all i, ⟨1, zi⟩ is of law N (0, d), so that P(|⟨1, zi⟩| ⩾ t) ⩽ 2e−t
2/(2d) and

P
(
∀i ∈ [n], |⟨1, zi⟩| ⩾ t

)
⩽ 2ne−

t2

2d .

Taking t =
√
2d3/4,

P
(
∀i ∈ [n], |⟨1, zi⟩| ⩾ d3/4

)
⩽ 2ne−d

1/2

.

Thus, with probability 1 − 2n(e−d/16 + e−
√
d, we have ∀i ∈ [n], |⟨1, zi⟩| ⩾ d3/4 and ∥zi∥22 ∈

[d2 , 13d/8], so that(d
2
σ2 + dµ2 − 2µσd3/4

)
H ⪯ H̃ ⪯

(13d
8
σ2 + dµ2 + 2µσd3/4

)
H ,

leading to the desired result.

Proof of Lemma 13. We have:

H̃b = E

 1

b2

∑
i,j∈B

⟨xi, xj⟩xix⊤j


= E

 1

b2

∑
i∈B

∥xi∥22xix⊤i +
1

b2

∑
i,j∈B, i ̸=j

⟨xi, xj⟩xix⊤j


=

1

b2

∑
i∈[n]

P(i ∈ B)∥xi∥22xix⊤i +
1

b2

∑
i ̸=j

P(i, j ∈ B)⟨xi, xj⟩xix⊤j .
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Then, since P(i ∈ B) = b
n and P(i, j ∈ B) = b(b−1)

n(n−1) for i ̸= j, we get that:

H̃b =
1

bn

∑
i∈[n]

∥xi∥22xix⊤i +
(b− 1)

bn(n− 1)

∑
i ̸=j

⟨xi, xj⟩xix⊤j .

Using Lemma 12, the first term satisfies:

P
(d(µ2 + σ2)

b
C2H ⪯ 1

bn

∑
i∈[n]

∥xi∥22xix⊤i ⪯ d(µ2 + σ2)

b
C3H

)
⩾ 1− 2ne−d/16 .

We now show that the second term is of smaller order. Writing xi = µ1+ σzi where zi ∼ N (0, Id),
we have:

(b− 1)

bn(n− 1)

∑
i ̸=j

⟨xi, xj⟩xix⊤j =
(b− 1)

bn(n− 1)

∑
i ̸=j

⟨xi, xj⟩xix⊤j

For i ̸= j, ⟨xi, xj⟩ =
∑d
k=1 xikxjk =

∑d
k=1 ak where ak = xikxjk satisfies Eak = 0, Ea2k = 1

and P(ak ⩾ t) ⩽ 2P(|xik| ⩾
√
t) ⩽ 4e−t/2. Hence, ak is a centered subexponential random

variables. Using concentration of subexponential random variables [58], for t ⩽ 1,

P
(
1

d
|⟨xi, xj⟩| ⩾ t

)
⩽ 2e−cdt

2

.

Thus,

P
(
∀i ̸= j,

1

d
|⟨xi, xj⟩| ⩽ t

)
⩾ 1− n(n− 1)e−cdt

2

.

Then, taking t = d−1/24 ln(n)/c, we have:

P
(
∀i ̸= j,

1

d
|⟨xi, xj⟩| ⩽

4 ln(n)

c
√
d

)
⩾ 1− 1

n2
.

Going back to our second term,

(b− 1)

bn(n− 1)

∑
i̸=j

⟨xi, xj⟩xix⊤j =
(b− 1)

bn(n− 1)

∑
i<j

⟨xi, xj⟩
(
xix

⊤
j + xjx

⊤
i

)
⪯ (b− 1)

bn(n− 1)

∑
i<j

∣∣⟨xi, xj⟩∣∣(xix⊤i + xjx
⊤
j

)
,

where we used xix⊤j + xjx
⊤
i ⪯ xix

⊤
i + xjx

⊤
j . Thus,

(b− 1)

bn(n− 1)

∑
i ̸=j

⟨xi, xj⟩xix⊤j ⪯ sup
i̸=j

|⟨xi, xj⟩| ×
(b− 1)

bn(n− 1)

∑
i<j

(
xix

⊤
i + xjx

⊤
j

)
= sup

i ̸=j
|⟨xi, xj⟩| ×

b− 1

b

1

n− 1

n∑
i=1

xix
⊤
i

= sup
i ̸=j

|⟨xi, xj⟩| ×
b− 1

b

n

n− 1
H .

Similarly, we have

(b− 1)

bn(n− 1)

∑
i ̸=j

⟨xi, xj⟩xix⊤j ⪰ − sup
i ̸=j

|⟨xi, xj⟩| ×
b− 1

b

n

n− 1
H .

Hence, with probability 1− 1/n2,

−4 ln(n)

c
√
d

× b− 1

b

n

n− 1
H ⪯ (b− 1)

bn(n− 1)

∑
i̸=j

⟨xi, xj⟩xix⊤j ⪯ 4 ln(n)

c
√
d

× b− 1

b

n

n− 1
H .
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Wrapping things up, with probability 1− 1/n2 − 2ne−d/16,(
−4 ln(n)

c
√
d

b− 1

b

n

n− 1
+ C2

d

b

)
×H ⪯ H̃b ⪯

(
4 ln(n)

c
√
d

b− 1

b

n

n− 1
+ C3

d

b

)
×H .

Thus, provided that 4 ln(n)

c
√
d

⩽ C2d
2b and d ⩾ 48 ln(n), we have with probability 1− 3/n2:

C ′
2

d

b
×H ⪯ H̃b ⪯ C ′

3

d

b
×H .

Proof of Lemma 13. We have:

H̃b = E

 1

b2

∑
i,j∈B

⟨xi, xj⟩xix⊤j


= E

 1

b2

∑
i∈B

∥xi∥22xix⊤i +
1

b2

∑
i,j∈B, i ̸=j

⟨xi, xj⟩xix⊤j


=

1

b2

∑
i∈[n]

P(i ∈ B)∥xi∥22xix⊤i +
1

b2

∑
i ̸=j

P(i, j ∈ B)⟨xi, xj⟩xix⊤j .

Then, since P(i ∈ B) = b
n and P(i, j ∈ B) = b(b−1)

n(n−1) for i ̸= j, we get that:

H̃b =
1

bn

∑
i∈[n]

∥xi∥22xix⊤i +
(b− 1)

bn(n− 1)

∑
i ̸=j

⟨xi, xj⟩xix⊤j .

Using Lemma 12, the first term satisfies:

P
(d(µ2 + σ2)

b
C2H ⪯ 1

bn

∑
i∈[n]

∥xi∥22xix⊤i ⪯ d(µ2 + σ2)

b
C3H

)
⩾ 1− 2ne−d/16 .

We now show that the second term is of smaller order. Writing xi = µ1+ σzi where zi ∼ N (0, Id),
we have:
(b− 1)

bn(n− 1)

∑
i̸=j

⟨xi, xj⟩xix⊤j =
(b− 1)

bn(n− 1)

∑
i ̸=j

(
σ2⟨zi, zj⟩+ σµ⟨1, zi + zj⟩+ µ2d

)
xix

⊤
j

=
(b− 1)

bn(n− 1)

∑
i ̸=j

(
σ2⟨zi, zj⟩+ σµ⟨1, zi + zj⟩

)
xix

⊤
j +

(b− 1)

bn(n− 1)
µ2d

∑
i ̸=j

xix
⊤
j

For i ̸= j, ⟨zi, zj⟩ =
∑d
k=1 zikzjk =

∑d
k=1 ak where ak = zikzjk satisfies Eak = 0, Ea2k = 1 and

P(ak ⩾ t) ⩽ 2P(|zik| ⩾
√
t) ⩽ 4e−t/2. Hence, ak is a centered subexponential random variables.

Using concentration of subexponential random variables [58], for t ⩽ 1,

P
(
1

d
|⟨xi, xj⟩| ⩾ t

)
⩽ 2e−cdt

2

.

Thus,

P
(
∀i ̸= j,

1

d
|⟨xi, xj⟩| ⩽ t

)
⩾ 1− n(n− 1)e−cdt

2

.

Then, taking t = d−1/24 ln(n)/c, we have:

P
(
∀i ̸= j,

1

d
|⟨xi, xj⟩| ⩽

4 ln(n)

c
√
d

)
⩾ 1− 1

n2
.

For i ∈ [n], ⟨1, zi⟩ ∼ N (0, d) so that P(|⟨1, zi⟩| ⩾ t) ⩽ 2e−t
2/(2d), and

P(∀i ∈ [n], |⟨1, zi⟩| ⩽ t) ⩾ 1− 2ne−t
2/(2d) = 1− 2

n2
,
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for t = 3
√
d ln(n). Hence, with probability 1− 3/n2, for all i ̸= j we have |σ2⟨zi, zj⟩+ σµ⟨1, zi +

zj⟩| ⩽ (σ2 + σµ)C ln(n)/
√
d.

Now,

(b− 1)

bn(n− 1)

∑
i̸=j

(
σ2⟨zi, zj⟩+ σµ⟨1, zi + zj⟩

)
xix

⊤
j =

(b− 1)

bn(n− 1)

∑
i<j

(
σ2⟨zi, zj⟩+ σµ⟨1, zi + zj⟩

)
(xix

⊤
j + xjx

⊤
i )

⪯ (b− 1)

bn(n− 1)

∑
i<j

∣∣σ2⟨zi, zj⟩+ σµ⟨1, zi + zj⟩
)
|
(
xix

⊤
i + xjx

⊤
j

)
,

where we used xix⊤j + xjx
⊤
i ⪯ xix

⊤
i + xjx

⊤
j . Thus,

(b− 1)

bn(n− 1)

∑
i̸=j

(
σ2⟨zi, zj⟩+ σµ⟨1, zi + zj⟩

)
xix

⊤
j ⪯ sup

i ̸=j

∣∣σ2⟨zi, zj⟩+ σµ⟨1, zi + zj⟩
)
| × (b− 1)

bn(n− 1)

∑
i<j

(
xix

⊤
i + xjx

⊤
j

)
= sup

i ̸=j

∣∣σ2⟨zi, zj⟩+ σµ⟨1, zi + zj⟩
∣∣× b− 1

b

1

n− 1

n∑
i=1

xix
⊤
i

= sup
i ̸=j

∣∣σ2⟨zi, zj⟩+ σµ⟨1, zi + zj⟩
∣∣× b− 1

b

n

n− 1
H .

Similarly, we have

(b− 1)

bn(n− 1)

∑
i̸=j

(
σ2⟨zi, zj⟩+σµ⟨1, zi+zj⟩

)
xix

⊤
j ⪰ − sup

i ̸=j

∣∣σ2⟨zi, zj⟩+σµ⟨1, zi+zj⟩
)
|×b− 1

b

n

n− 1
H .

Hence, with probability 1− 3/n2,

− (σ2 + σµ)C ln(n)√
d

× b− 1

b

n

n− 1
H ⪯ (b− 1)

bn(n− 1)

∑
i ̸=j

(
σ2⟨zi, zj⟩+ σµ⟨1, zi + zj⟩

)
xix

⊤
j

⪯ (σ2 + σµ)C ln(n)√
d

× b− 1

b

n

n− 1
H .

We thus have shown that this term (the one in the middle of the above inequality) is of smaller order.

We are hence left with (b−1)
bn(n−1)µ

2d
∑
i ̸=j xix

⊤
j . Denoting x̄ = 1

n

∑
i xi, we have 1

n2

∑
i ̸=j xix

⊤
j =

1
n2

∑
i,j xix

⊤
j − 1

n2

∑
i xix

⊤
i , so that:

(b− 1)

bn(n− 1)
µ2d

∑
i ̸=j

xix
⊤
j =

(b− 1)n

b(n− 1)
µ2d

(
x̄x̄⊤ − 1

n
H

)
.

We note that we have H = 1
n

∑
i xix

⊤
i = 1

n2

∑
i<j xix

⊤
i +xjx

⊤
j ⪰ 1

n2

∑
i<j xix

⊤
j +xjx

⊤
i = x̄x̄⊤

using xix⊤i + xjx
⊤
j ⪰ xix

⊤
j + xjx

⊤
i . Thus, H ⪰ x̄x̄⊤ ⪰ 0, and:

− (b− 1)n

b(n− 1)
µ2d

1

n
H ⪯ (b− 1)

bn(n− 1)
µ2d

∑
i ̸=j

xix
⊤
j ⪯ (b− 1)n

b(n− 1)
µ2d(1− 1/n)H .

We are now able to wrap everything together. With probability 1− 2ne−d/16 − 3/n2, we have, for
some numerical constants c1, c2, c3, C > 0:(
c1
d(µ2 + σ2)

b
− c2

(σ2 + µ2) ln(n)√
d

− c3
µ2d

n

)
H ⪯ H̃b ⪯ C

(
d(µ2 + σ2)

b
+

(σ2 + µ2) ln(n)√
d

+ µ2d

)
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