
Supplementary Materials: Balancing Generalization and
Robustness in Adversarial Training via Steering through

Clean and Adversarial Gradient Directions

1 Additional Results of Cosine Similarity in
Baselines

In this section, we provide the distribution of cosine similarity val-
ues for the baseline adversarial training methods on CIFAR10 and
CIFAR100 datasets. We observed that there are almost no convo-
lutional layer parameters with a similarity less than 0 in AT as
shown in Figure 3, 4, which leads to almost no improvement in
AT-AGR compared to vanilla AT in the ablation experiments on
GOP. However, there are still some GOP operations in AT-AGR
(it refers to the fact that the GOP frequency is not 0 in AT-AGR),
which suggests that it occurs in the batch normalization layer.

On the other hand, as shown in Figure 5, 6, and 7, similarity
smaller than 0 is primarily seen in the more forward convolutional
layers in the experimental results of TRADE and MART. This may
indicate that the model already exhibits differences in the low-level
features extracted from the clean and adversarial examples. And the
adversarial training will dilute this difference, thereby enhancing
robustness. Therefore, there are not too many cases where the
cosine similarity is less than 0 in the backward convolutional layers
of the model. Nevertheless, using GOP operations on only a small
fraction of the gradient also improves generalization.

2 Algorithm
3 Proofs

Theorem 3.1. Let ∇L𝑛,∇L𝑎𝑑𝑣 denote the natural and robust gra-
dients, respectively. For arbitrary cases of −1 ≤ Ψ(∇L (𝑖 )𝑛 ,∇L (𝑖 )

𝑎𝑑𝑣
) <

0 and 0 ≤ Ψ(∇L (𝑖 )𝑛 ,∇L (𝑖 )
𝑎𝑑𝑣
) ≤ 1, AGR with gradient 𝑮 for one

iteration, it holds that 𝑮 induces a descent in both L𝑛 and L𝑎𝑑𝑣 .

Proof. To show that the gradient direction 𝑮 leads to a decrease
in both L𝑛 and L𝑎𝑑𝑣 , we have to guarantee that 𝑮 is positively cor-
related with both ∇L𝑛 and ∇L𝑎𝑑𝑣 . we separate the proof into two
phases: negative correlation gradient pairs and positive correlation
gradient pairs. Without loss of generality, we assume that the first
𝑚(0 < 𝑚 ≤ 𝑐) terms of ∇L𝑎𝑑𝑣 = [∇L (1)

𝑎𝑑𝑣
, ...,∇L (𝑚)

𝑎𝑑𝑣
, ...,∇L (𝑐 )

𝑎𝑑𝑣
]

are negatively correlatedwith∇L𝑛 = [∇L (1)𝑛 , ...,∇L (𝑚)𝑛 , ...,∇L (𝑐 )𝑛 ].
Phase I: Negative correlation gradient pairs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Algorithm 1: Adversarial Training with AGR
Input: Training dataset 𝑆 = 𝑥1, 𝑥2, ..., 𝑥𝑛 , Initial learning

rate 𝜂, number of iterations 𝑇 , adversarially trained
model parameter 𝜽 = (𝜃 (1) , 𝜃 (2) , ..., 𝜃 (𝑐 ) ), step size
of attack 𝜖𝑠𝑡𝑒𝑝 , maximum perturbation 𝜖

Result: Optimal robust model 𝜃𝑇
1 for 𝑡 = 1 to 𝑇 do
2 for i=1 to n do
3 𝑥 ′

𝑖
← PGD(𝑥𝑖 , 𝑦𝑖 , 𝜖𝑠𝑡𝑒𝑝 , 𝜖)

4 end
5 for j = 1 to c do
6 Compute cosine similarity:

𝑐𝑠 = Ψ(∇𝜃 (𝑖 )L𝑛 (𝑥),∇𝜃 (𝑖 )L𝑎𝑑𝑣 (𝑥 ′))
7 if 𝑐𝑠 < 0 then
8 Reconstruct the gradient 𝑮 use Eq. ??
9 else
10 Reconstruct the gradient 𝑮 use Eq. ??
11 end
12 𝜽 ( 𝑗 )

𝑡+1 ← 𝜽 ( 𝑗 )𝑡 − 𝜂 · Clip(𝑮)
13 end
14 end
15 return 𝜃𝑇

For 𝑖 = 0, 1, ...,𝑚, we have −1 ≤ Ψ(∇L (𝑖 )𝑛 ,∇L (𝑖 )
𝑎𝑑𝑣
) < 0, then or-

thogonally project ∇L (𝑖 )
𝑎𝑑𝑣

along ∇L (𝑖 )𝑛 to obtain the new direction
𝒈𝑖 as follows:

𝒈𝑖 = ∇L (𝑖 )
𝑎𝑑𝑣
−
⟨∇L (𝑖 )

𝑎𝑑𝑣
,∇L (𝑖 )𝑛 ⟩

⟨∇L (𝑖 )𝑛 ,∇L (𝑖 )𝑛 ⟩
∇L (𝑖 )𝑛 . (1)

It is obvious that 𝒈𝑖 is orthogonal to ∇L (𝑖 )𝑛 . Next, we show that
𝒈𝑖 is positively correlated with ∇L (𝑖 )

𝑎𝑑𝑣
.

⟨∇L (𝑖 )
𝑎𝑑𝑣

,𝒈𝑖 ⟩ = ⟨∇L (𝑖 )
𝑎𝑑𝑣

,∇L (𝑖 )
𝑎𝑑𝑣
−
⟨∇L (𝑖 )

𝑎𝑑𝑣
,∇L (𝑖 )𝑛 ⟩

⟨∇L (𝑖 )𝑛 ,∇L (𝑖 )𝑛 ⟩
∇L (𝑖 )𝑛 ⟩

= ⟨∇L (𝑖 )
𝑎𝑑𝑣

,∇L (𝑖 )
𝑎𝑑𝑣
⟩ − ⟨∇L (𝑖 )

𝑎𝑑𝑣
,
⟨∇L (𝑖 )

𝑎𝑑𝑣
,∇L (𝑖 )𝑛 ⟩

⟨∇L (𝑖 )𝑛 ,∇L (𝑖 )𝑛 ⟩
∇L (𝑖 )𝑛 ⟩

= ∥∇L (𝑖 )
𝑎𝑑𝑣
∥22 −

⟨∇L (𝑖 )
𝑎𝑑𝑣

,∇L (𝑖 )𝑛 ⟩

⟨∇L (𝑖 )𝑛 ,∇L (𝑖 )𝑛 ⟩
· ⟨∇L (𝑖 )

𝑎𝑑𝑣
,∇L (𝑖 )𝑛 ⟩

(2)

= ∥∇L (𝑖 )
𝑎𝑑𝑣
∥22 −

∥∇L (𝑖 )
𝑎𝑑𝑣
∥22 · ∥∇L

(𝑖 )
𝑛 ∥22 · Ψ

2 (∇L (𝑖 )𝑛 ,∇L (𝑖 )
𝑎𝑑𝑣
)

∥∇L (𝑖 )𝑛 ∥22
·

= ∥∇L (𝑖 )
𝑎𝑑𝑣
∥22 − ∥∇L

(𝑖 )
𝑎𝑑𝑣
∥22 · Ψ

2 (∇L (𝑖 )𝑛 ,∇L (𝑖 )
𝑎𝑑𝑣
) ≥ 0
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Phase II: Positive correlation gradient pairs.
For 𝑖 =𝑚,𝑚 + 1, ..., 𝑐 , we have 0 ≤ Ψ(∇L (𝑖 )𝑛 ,∇L (𝑖 )

𝑎𝑑𝑣
) ≤ 1, then

apply the cosine similarity-based interpolation to obtain the new
direction 𝒈𝑖 as follows:

𝒈𝑖 = 𝑐𝑠 · ∇L (𝑖 )𝑛 + (1 − 𝑐𝑠) · ∇L
(𝑖 )
𝑎𝑑𝑣

, (3)

where 𝑐𝑠 is the cosine similarity between ∇L (𝑖 )
𝑎𝑑𝑣

and ∇L (𝑖 )𝑛 . Below
we show that 𝒈𝑖 is positively correlated with both ∇L (𝑖 )

𝑎𝑑𝑣
and

∇L (𝑖 )𝑛 .

⟨∇L (𝑖 )
𝑎𝑑𝑣

,𝒈𝑖 ⟩ = ⟨∇L (𝑖 )
𝑎𝑑𝑣

, 𝑐𝑠 · ∇L (𝑖 )𝑛 + (1 − 𝑐𝑠) · ∇L
(𝑖 )
𝑎𝑑𝑣
⟩

= 𝑐𝑠 · ⟨L (𝑖 )
𝑎𝑑𝑣

,∇L (𝑖 )𝑛 ⟩ + (1 − 𝑐𝑠) · ∥∇L
(𝑖 )
𝑎𝑑𝑣
∥22

(4)

by the 0 ≤ Ψ(∇L (𝑖 )𝑛 ,∇L (𝑖 )
𝑎𝑑𝑣
) ≤ 1, we have

⟨∇L (𝑖 )
𝑎𝑑𝑣

,𝒈𝑖 ⟩ ≥ 0 (5)

In the similar way, we can obtain ⟨∇L (𝑖 )𝑛 ,𝒈𝑖 ⟩ ≥ 0.
Overall, each component of the new gradient direction 𝑮 =

[𝒈1,𝒈2, ...,𝒈𝑐 ] is positively correlated or orthogonal to the corre-
sponding components of ∇L (𝑖 )

𝑎𝑑𝑣
and ∇L (𝑖 )𝑛 , implying that both

⟨𝑮,∇L𝑎𝑑𝑣⟩ ≥ 0 and ⟨𝑮,∇L𝑛⟩ ≥ 0 hold. □

Theorem 3.2. Assume that F is a function space with the range
[0,1], let 𝑫𝑁𝑠 =

{
𝒛𝑠𝑛

}𝑁𝑠

𝑛=1 and 𝑫
𝑁𝑎 =

{
𝒛𝑎𝑛

}𝑁𝑎

𝑛=1 be two datasets of i.i.d
samples drawn from the standard domain D and adversarial domain
T . Then, given 𝜆 ∈ [0, 1) and for any 𝜖 > 0, with probability at least
1 − 𝜖 ,

𝑅D (𝑓𝐴𝐺𝑅) − 𝑅𝑆+𝑆 ′ (𝑓𝐴𝐺𝑅) ≤ 2𝜆ℜ̂𝑆 (F ) + 3𝜆

√︄
ln(2/𝜖)
2𝑁𝑠

+ (1 − 𝜆)𝐷F (D,T) + 2(1 − 𝜆)ℜ̂𝑆 ′ (F )

+ 3(1 − 𝜆)

√︄
ln(2/𝜖)
2𝑁𝑎

+

√︄
ln(1/𝜖)

2

( 𝜆2
𝑁𝑠
+ (1 − 𝜆)

2

𝑁𝑎

)
≤ 2𝑐𝜆𝐵

(
√︁
2𝑑 log 2 + 1)∏𝑑

𝑗=1𝑀𝐹 ( 𝑗)
√
𝑁𝑠

+ 3𝜆

√︄
ln(2/𝜖)
2𝑁𝑠

+ (1 − 𝜆)𝐷F (D,T) + 3(1 − 𝜆)

√︄
ln(2/𝜖)
2𝑁𝑎

+ 2𝑐 (1 − 𝜆)𝐵
(
√︁
2𝑑 log 2 + 1)∏𝑑

𝑗=1𝑀𝐹 ( 𝑗)
√
𝑁𝑎

+

√︄
ln(1/𝜖)

2

( 𝜆2
𝑁𝑠
+ (1 − 𝜆)

2

𝑁𝑎

)
Proof. To derive generalization error bounds using Rademacher

complexity, we will use a very useful bounded differences inequality
called McDiarmid Inequality, and here we present a two-domain
extended version of it.

Lemma 3.3. (McDiarmid Inequality.) Given two independent
domains D and T , let 𝑫𝑁𝑠 =

{
𝒛𝑠𝑛

}𝑁𝑠

𝑛=1 and 𝑫𝑁𝑎 =
{
𝒛𝑎𝑛

}𝑁𝑎

𝑛=1 be 𝑁𝑠

and 𝑁𝑎 independent random variables from the domain D and T ,
respectively. If G : (D)𝑁𝑠 × (T )𝑁𝑎 → R satisfies

sup
𝑫𝑁𝑠 ,𝑫𝑁𝑎 ,𝑧

𝑗 ′
𝑖

|G(𝑧𝑠1, ..., 𝑧
𝑗
𝑖
, ..., 𝑧𝑎𝑛) − G(𝑧𝑠1, ..., 𝑧

𝑗′
𝑖
, ..., 𝑧𝑎𝑛) | ≤ 𝑐

(𝑘 )
𝑖

for any 0 ≤ 𝑖 ≤ 𝑁𝑠 + 𝑁𝑎 , 𝑗, 𝑘 ∈ {𝑠, 𝑎}, and 𝜀 > 0, then

𝑃𝑟 [G(𝑧𝑠1, ..., 𝑧
𝑎
𝑛) −E[G(𝑧𝑠1, ..., 𝑧

𝑎
𝑛)] ≥ 𝜀] ≤ 𝑒−2𝜀

2/∑𝑁𝑠
𝑖=1 (𝑐𝑠𝑖 )2+

∑𝑁𝑎
𝑖=1 (𝑐𝑎𝑖 )2

Lemma 3.4. Given a distribution D and any 𝜖 ∈ (0, 1]. Let F ⊆
[0, 1] and set 𝑆 = {𝑧1, 𝑧2, ...𝑧𝑛} be i.i.d drawn from the D, then with
probability 1 − 𝜖 at least,

𝑅D (𝑓 ) − 𝑅𝑆 (𝑓 ) ≤ 2ℜ(F ) +
√︂

ln(1/𝜖)
2𝑛 (6)

In addition, with probability 1 − 𝜖 at least we also have,

𝑅D (𝑓 ) − 𝑅𝑆 (𝑓 ) ≤ 2ℜ̂(F ) + 3
√︂

ln(2/𝜖)
2𝑛 (7)

Assume a fixed function 𝑓 , by the definition of the supremum
we get

𝑅D (𝑓 ) − 𝑅𝑆+𝑆 ′ (𝑓 ) ≤ sup
𝑔
|𝑅D (𝑔) − 𝑅𝑆+𝑆 ′ (𝑔) | (8)

Denoting
G(𝑆, 𝑆 ′) = sup

𝑔
|𝑅D (𝑔) − 𝑅𝑆+𝑆 ′ (𝑔) |

= sup
𝑔
|𝑅D (𝑔) − 𝜆𝑅𝑆 (𝑔) − (1 − 𝜆)𝑅𝑆 ′ (𝑔) |

(9)

It is accessible to deduce that G(𝑆, 𝑆 ′) satisfies

𝑐𝑠𝑖 =
𝜆

𝑁𝑠
, 𝑐𝑎𝑖 =

1 − 𝜆
𝑁𝑎

(10)

Next we apply the McDiarmid Inequality, we can obtain

𝑃𝑟 [G(𝑆, 𝑆 ′) − E[G(𝑆, 𝑆 ′)] ≥ 𝛿] ≤ 𝑒
−2𝛿2/( 𝜆2

𝑁𝑠
+ 1−𝜆2

𝑁𝑎
) (11)

For any 𝜖 > 0, let the above probability be less than 𝜖 , which means

if and only if 𝛿 ≥
√︂

ln(1/𝜖 )
2

(
𝜆2
𝑁𝑠
+ (1−𝜆)

2

𝑁𝑎

)
there is a probability of

at least 1 − 𝜖 we get the following,
𝑅D (𝑔) − 𝑅𝑆+𝑆 ′ (𝑔) ≤ G(𝑆, 𝑆 ′) ≤ E[G(𝑆, 𝑆 ′)] +

√︄
ln(1/𝜖)

2

( 𝜆2
𝑁𝑠
+ (1 − 𝜆)

2

𝑁𝑎

)
≤ E

[
sup
𝑔
|𝑅D (𝑔) − 𝜆𝑅𝑆 (𝑔) − (1 − 𝜆)𝑅𝑆 ′ (𝑔) |

]
≤ 𝜆 sup

𝑔
|𝑅D (𝑔) − 𝑅𝑆 (𝑔) | + (1 − 𝜆) sup

𝑔
|𝑅D (𝑔) − 𝑅𝑆 ′ (𝑔) |

+

√︄
ln(1/𝜖)

2

( 𝜆2
𝑁𝑠
+ (1 − 𝜆)

2

𝑁𝑎

)
≤ 𝜆 sup

𝑔
|𝑅D (𝑔) − 𝑅𝑆 (𝑔) | + (1 − 𝜆) sup

𝑔
|𝑅D (𝑔) − 𝑅T (𝑔) |

+ (1 − 𝜆) sup
𝑔
|𝑅T (𝑔) − 𝑅𝑆 ′ (𝑔) | +

√︄
ln(1/𝜖)

2

( 𝜆2
𝑁𝑠
+ (1 − 𝜆)

2

𝑁𝑎

)
(12)

According to Lemma 3.4, The first term of the last inequality of
Equation 12 satisfies

sup
𝑔
|𝑅D (𝑔) − 𝑅𝑆 (𝑔) | ≤ 2ℜ̂𝑆 (F ) + 3

√︄
ln(2/𝜖)
2𝑁𝑠

(13)
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Figure 1: Comparison of the weight loss landscape for vanilla adversarial training methods and AGR of PreAct-ResNet-18
trained on CIFAR10/100. The first row of graphs shows the visualization results of AT, TRADES, and MART on CIFAR10
respectively and the second row shows the results on CIFAR100. These curves are the change in loss when moving model
weight in the direction of a randomly sampled from a Gaussian distribution with the step size of 𝛼 .

Similarly, the third term satisfies

sup
𝑔
|𝑅T (𝑔) − 𝑅𝑆 ′ (𝑔) | ≤ 2ℜ̂𝑆 ′ (F ) + 3

√︄
ln(2/𝜖)
2𝑁𝑎

(14)

While the second term we can denote as 𝐷F (D,T), which was
proposed by [2] to measure the difference between two probability
distributions named integral probability metric. Synthesizing the
inequalities 12, 13, and 14 we get

𝑅D (𝑔) − 𝑅𝑆+𝑆 ′ (𝑔) ≤ 2𝜆ℜ̂𝑆 (F ) + 3𝜆

√︄
ln(2/𝜖)
2𝑁𝑠

+ (1 − 𝜆)𝐷F (D,T) + 2(1 − 𝜆)ℜ̂𝑆 ′ (F )

+ 3(1 − 𝜆)

√︄
ln(2/𝜖)
2𝑁𝑎

+

√︄
ln(1/𝜖)

2

( 𝜆2
𝑁𝑠
+ (1 − 𝜆)

2

𝑁𝑎

)
(15)

Following Theorem 1 in [1], we assume that the activation func-
tions be 1-Lipschitz, positive-homogeneous, the Frobenius norm
for each parameter matrix𝑊𝑗 is at most𝑀𝐹 ( 𝑗), number of classifi-

cation categories 𝑐 , and
√︄

𝑛∑
𝑖=1
∥𝑥𝑖 ∥2 ≤ 𝐵(𝑛 ∈ {𝑁𝑠 , 𝑁𝑎}), then with

probability 1 − 𝜖 at least we have

𝑅D (𝑔) − 𝑅𝑆+𝑆 ′ (𝑔)

≤ 2𝑐𝜆𝐵
(
√︁
2𝑑 log 2 + 1)∏𝑑

𝑗=1𝑀𝐹 ( 𝑗)
√
𝑁𝑠

+ 3𝜆

√︄
ln(2/𝜖)
2𝑁𝑠

+ (1 − 𝜆)𝐷F (D,T) + 3(1 − 𝜆)

√︄
ln(2/𝜖)
2𝑁𝑎

+ 2𝑐 (1 − 𝜆)𝐵
(
√︁
2𝑑 log 2 + 1)∏𝑑

𝑗=1𝑀𝐹 ( 𝑗)
√
𝑁𝑎

+

√︄
ln(1/𝜖)

2

( 𝜆2
𝑁𝑠
+ (1 − 𝜆)

2

𝑁𝑎

)
(16)

□

4 Training Details
4.1 Environment
All experiments are implemented with Python 3.9.16 and PyTorch
2.0.0 on a machine with Intel(R) Xeon(R) Gold 6148 CPU@ 2.40GHz
CPU, 32GB RAM, and a Nvidia 3090 GPU.

4.2 Architecture
Most of the experiments used PreAct-ResNet-18 with a depth of
18 and 11.1M parameters. This network is widely used in image
classification tasks due to its superior performance, so we use it
as the main testing tool. As a variant of ResNet-18, it changes the
model architecture by replacing the order of Conv-BN-ReLU in
order to improve accuracy. We also used WideResNet-34 to test the
algorithm performance with a depth of 34 and 46.2M parameters.
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Figure 2: The loss change with respect to epochs of AT-AGR,
TRADES-AGR, and MART-AGR of PreAct-ResNet-18 trained
on Tiny Imagenet.

4.3 Hyperparameter Setting
In terms of hyperparameter settings for adversarial training, we
trained PreAct-ResNet-18 and WideResNet-34 for 200 epochs by
SGD with momentum of 0.9 and weight decay of 5 × 10−4. The
initial learning rate was 0.1, divided by 10 at the 100-th and 150-th
epochs.

When trained up to 155 epochs, we incorporate AGR with base-
line adversarial training methods as it has reached a very high level
of robustness. We set the clipping threshold𝐶 as 0.1, which does not
affect the generalization improvement but suppresses the robust
overfitting.

5 More Results of Generalization and
Robustness

In this section, we exhibit the additional experiments of our ap-
proach.

5.1 The Visualization of Generalization
As a remarkably effective measure of generalization, the weight loss
landscape has been widely used, where the flatter the landscape the
higher the generalization of the model. We provide visualization
results comparing the generalization of AT-AGR, TRADES-AGR,
and MART-AGR with the baseline adversarial training methods
on CIFAR10 and CIFAR100. As shown in Figure 1, we can observe
that the loss landscape of all methods combining AGR performs
much flatter, which means that our proposed method can achieve
a better generalization. Through the presentation of the results of
loss change and weight loss landscape, all the results demonstrate
the effectiveness and feasibility of our proposed method.

5.2 Evaluations on the Loss Change of AGR
We show the variation curves of loss on the more challenging
dataset Tiny Imagenetwhen the proposedAGR combines AT, TRADES,
and MART. As shown in Figure 2, we show that the proposed
method can make loss converge to a flat range, which implies the
effectiveness of our AGR training approach. However, it can be
noted that our method is still unable to avoid the occurrence of
overfitting in adversarial training, as can be seen in the figure,
where the robust loss in the test set shows an increase.
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Figure 3: The cosine similarity of ∇L𝑛 and ∇L𝑎𝑑𝑣 of weights
of convolutional layers of PreAct-ResNet-18 trained on CI-
FAR10 by AT.

Figure 4: The cosine similarity of ∇L𝑛 and ∇L𝑎𝑑𝑣 of weights
of convolutional layers of PreAct-ResNet-18 trained on CI-
FAR100 by AT.
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Figure 7: The cosine similarity of ∇L𝑛 and ∇L𝑎𝑑𝑣 of weights
of convolutional layers of PreAct-ResNet-18 trained on CI-
FAR100 by MART.

Figure 5: The cosine similarity of ∇L𝑛 and ∇L𝑎𝑑𝑣 of weights
of convolutional layers of PreAct-ResNet-18 trained on CI-
FAR10 by MART.

Figure 6: The cosine similarity of ∇L𝑛 and ∇L𝑎𝑑𝑣 of weights
of convolutional layers of PreAct-ResNet-18 trained on CI-
FAR100 by TRADES.
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