Supplementary Materials: Balancing Generalization and
Robustness in Adversarial Training via Steering through
Clean and Adversarial Gradient Directions

1 Additional Results of Cosine Similarity in
Baselines

In this section, we provide the distribution of cosine similarity val-
ues for the baseline adversarial training methods on CIFAR10 and
CIFAR100 datasets. We observed that there are almost no convo-
lutional layer parameters with a similarity less than 0 in AT as
shown in Figure 3, 4, which leads to almost no improvement in
AT-AGR compared to vanilla AT in the ablation experiments on
GOP. However, there are still some GOP operations in AT-AGR
(it refers to the fact that the GOP frequency is not 0 in AT-AGR),
which suggests that it occurs in the batch normalization layer.

On the other hand, as shown in Figure 5, 6, and 7, similarity
smaller than 0 is primarily seen in the more forward convolutional
layers in the experimental results of TRADE and MART. This may
indicate that the model already exhibits differences in the low-level
features extracted from the clean and adversarial examples. And the
adversarial training will dilute this difference, thereby enhancing
robustness. Therefore, there are not too many cases where the
cosine similarity is less than 0 in the backward convolutional layers
of the model. Nevertheless, using GOP operations on only a small
fraction of the gradient also improves generalization.

2 Algorithm

3 Proofs
THEOREM 3.1. LetV.L,, VL4, denote the natural and robust gra-
dients, respectively. For arbitrary cases of —1 < ‘I’(VL,(J), VL[(I:;U) <

0 and 0 < ‘I’(V.[j,(,i),V.[iil)U) < 1, AGR with gradient G for one
iteration, it holds that G induces a descent in both L,, and L ,;,.

Proor. To show that the gradient direction G leads to a decrease
in both £, and L4, we have to guarantee that G is positively cor-
related with both V., and V.L,;,. we separate the proof into two
phases: negative correlation gradient pairs and positive correlation
gradient pairs. Without loss of generality, we assume that the first

m(0 < m < c) terms of VL4, = [VLS}U VLLSZEU) VL(C)]

adv

are negatively correlated with V.L, = [VL,(ll), . V.Eflm), . V.E,(lc)].

Phase I: Negative correlation gradient pairs.
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Algorithm 1: Adversarial Training with AGR
Input: Training dataset S = x1, x2, ..., X, Initial learning
rate 5, number of iterations T, adversarially trained
model parameter 6 = (9(1), 9(2), Q(C)), step size
of attack €ssep, maximum perturbation e
Result: Optimal robust model 67
1 fort=1tTdo

2 for i=1tondo

3 ‘ x] < PGD(xi, yi, €step, €)

4 end

5 forj=1tocdo

6 Compute cosine similarity:

es =Y (Vow Ln(x), Vo) Lago(x))

7 if cs < 0 then

8 ‘ Reconstruct the gradient G use Eq. ??
9 else

10 ‘ Reconstruct the gradient G use Eq. ??
11 end

12 0) — 6 — . Clip(G)
13 end

14 end
15 return 07

Fori=0,1,....m, we have -1 < ‘I‘(VL,(li), VLEQU) < 0, then or-
thogonally project V‘Ec(zfi)v along V.Er(li) to obtain the new direction

g' as follows:
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It is obvious that g’ is orthogonal to V.[Z,(li). Next, we show that
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Phase II: Positive correlation gradient pairs.

Fori=mm+1,...c, we have 0 < ‘I’(VL,(:),VLL(IZ)U) < 1, then
apply the cosine similarity-based interpolation to obtain the new
direction g’ as follows:

gi =cs- VL,(ii) +(1—cs) - V‘L((zil)u’ 3)

where cs is the cosine similarity between VL‘(IZD and VL,(li) . Below

(i)

we show that g’ is positively correlated with both vL ., and
velh.
(VL) gy = (VL) o5 VLY +(1-c5) VLY ) "
=es (LD VL) + (1-cs) - VL) |12
by the 0 < ‘I’(VL,(li), Vﬁéi}v) < 1, we have
(VL g') =0 5)

In the similar way, we can obtain (V.E,(li), ghy = 0.

Overall, each component of the new gradient direction G =
(g1, g%, ... g°] is positively correlated or orthogonal to the corre-
sponding components of VL{EZ)U and V.L,gi), implying that both
(G,VLy4p) = 0and (G,VL,) > 0 hold. m]

THEOREM 3.2. Assume that ¥ is a function space with the range
[0,1], let DNs = {zfl}i:isl and DNa = {zﬁ}nNzl be two datasets of i.i.d
samples drawn from the standard domain D and adversarial domain
7. Then, given A € [0,1) and for any € > 0, with probability at least
1—e¢,

y In
RD(f;\GR) — Rsysr (f;AGR) < ZA‘J{S(T) +3) 2(]2\]/6)

+(1=)DHD,T) +2(1 - )R (F)

+3(1_A)\/ln(2/6) +\/ln(1/e)(£ . (1 —A)Z)

2N, 2 N; Na
d .
oy PIOER D TL M) G2/
VN; 2N
1
+ (1= )DFH(D.T) +3(1 - 1) nz(fv/;)
dl 4 Mp(j
st gy YATOEZ DI, M)
A
In(1/e) (A2 (1-2)2
R

Proor. To derive generalization error bounds using Rademacher
complexity, we will use a very useful bounded differences inequality
called McDiarmid Inequality, and here we present a two-domain
extended version of it.

LEMMA 3.3. (McDiarmid Inequality.) Given two independent
domains D and T, let D™s = {zﬁ,}nNil and DN = {z,‘:}anl be N

and N, independent random variables from the domain D and T,
respectively. If G : (D)Ns x (T)Na 5 R satisfies
) . k
sup  |G(z], ..., i,...,zg) -G(z, .., z{',...,zﬁ)l < c§ )
DNs,pNa /'
forany0 <i < Ns+ Ng, j,k € {s,a}, and e > 0, then

PrIG (2 . 28) ~E[G(Z},.n 2] = ] < ¢ 2 (DT ()]
LEMMA 3.4. Given a distribution D and any e € (0,1]. Let ¥ C

[0,1] and set S = {z1, 2, ...z} be i.i.d drawn from the D, then with
probability 1 — € at least,

In(1
Rp(f) = Rs(f) < 2R(F) + % ©
In addition, with probability 1 — € at least we also have,
s In(2
Ry (f) = Rs(f) < 2R(F) +3 n(zn/f) "

Assume a fixed function f, by the definition of the supremum
we get

Rp(f) = Rsvs (f) < 81;p|RD(g) —Rs+s:(9)] ®)

Denoting
G(S.8") = sup|Rp(9) — Rss+s'(9)]
g

)
= sup|Rp(g) — ARs(g) — (1 - MRs (9)|
g9
It is accessible to deduce that G(S,S’) satisfies
1 —
cs Aol A (10)

i = —, ci =
N Na
Next we apply the McDiarmid Inequality, we can obtain

1-22

PriG(s,8") —E[G(S,5")] = 8] < 20+ ) 11)

For any € > 0, let the above probability be less than €, which means

ifand only if § > ln(;/e) (1’}]—25 + (1;]?2 ) there is a probability of

Rp(9) — Rs+sr(9) < G(S.8") <E[G(S,S)] +

2 \N,

at least 1 — € we get the following, \/
< B[ suplRp (9) — ARs(9) - (1 - DRy (9)]]
g

< Asup|Rp(g) —Rs(g)| + (1= A) sup|Rp(g) — Rs (9]
9 g

In(1/e) (A2 (1-2)2
RTINS

< Asup|Rp(g) — Rs(g)| + (1 = A) sup|Rp (9) — R7(9)]
g g

In(1/e) (A2 (1-2)2
1-2 R — Ry Z
+ (1= D) suplRr(9) = Rs <g>|+\/ )
(12)
According to Lemma 3.4, The first term of the last inequality of
Equation 12 satisfies
In(2/€)

sup|Rp (9) — Rs(9)| < 2Rs(F) +3 N (13)
9 s

In(1/€) (ﬁ . (1-2)2
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Figure 1: Comparison of the weight loss landscape for vanilla adversarial training methods and AGR of PreAct-ResNet-18
trained on CIFAR10/100. The first row of graphs shows the visualization results of AT, TRADES, and MART on CIFAR10
respectively and the second row shows the results on CIFAR100. These curves are the change in loss when moving model
weight in the direction of a randomly sampled from a Gaussian distribution with the step size of «.

Similarly, the third term satisfies probability 1 — € at least we have

Rp(g) — Rssr(9)
- (vV2dlog2+1) 1%, Mr(j) )

. In(2/€) <
suplR7(9) ~ Rsr(9)] < 2R (F) +3,[ 2 (19 VN 2N
g a
In(2/€)
1-N)DH(D,T) +3(1 — A)y| ———
# (1= DDAD.T) +3(1 - D[ )
d .
While the second term we can denote as D#(D, 7°), which was +2¢(1- 1B (v2dlog2+1) Hj:l Mp(j)
proposed by [2] to measure the difference between two probability VN,
distributions named integral probability metric. Synthesizing the 5 5
inequalities 12, 13, and 14 we get \/ln(l/e) (A_ + a-4 )
2 N Ng
[m]
. In(2/€)
Rp(9) = Rsis(9) < 2ARs(F) + 30 [ — o — 4 Training Details
S

+ (1= HDHD,T) +2(1 - HRg (F) 4.1 Environment

All experiments are implemented with Python 3.9.16 and PyTorch
+3(1— A)\/ln(Z/e) + \/ln(l/e) (ﬁ + ﬂ) 2.0.0 on a machine with Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz

2N, 2 N N, CPU, 32GB RAM, and a Nvidia 3090 GPU.
(15)
4.2 Architecture

Most of the experiments used PreAct-ResNet-18 with a depth of
18 and 11.1M parameters. This network is widely used in image
classification tasks due to its superior performance, so we use it
as the main testing tool. As a variant of ResNet-18, it changes the
model architecture by replacing the order of Conv-BN-ReLU in
order to improve accuracy. We also used WideResNet-34 to test the
algorithm performance with a depth of 34 and 46.2M parameters.

Following Theorem 1 in [1], we assume that the activation func-
tions be 1-Lipschitz, positive-homogeneous, the Frobenius norm
for each parameter matrix W; is at most Mp(j), number of classifi-

n
cation categories ¢, and , | > ||x;||% < B(n € {Ns, Ng}), then with
\Ji:l
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Figure 2: The loss change with respect to epochs of AT-AGR,
TRADES-AGR, and MART-AGR of PreAct-ResNet-18 trained
on Tiny Imagenet.

4.3 Hyperparameter Setting

In terms of hyperparameter settings for adversarial training, we
trained PreAct-ResNet-18 and WideResNet-34 for 200 epochs by
SGD with momentum of 0.9 and weight decay of 5 x 1074, The
initial learning rate was 0.1, divided by 10 at the 100-th and 150-th
epochs.

When trained up to 155 epochs, we incorporate AGR with base-
line adversarial training methods as it has reached a very high level
of robustness. We set the clipping threshold C as 0.1, which does not
affect the generalization improvement but suppresses the robust
overfitting.

5 More Results of Generalization and
Robustness

In this section, we exhibit the additional experiments of our ap-
proach.

5.1 The Visualization of Generalization

As aremarkably effective measure of generalization, the weight loss
landscape has been widely used, where the flatter the landscape the
higher the generalization of the model. We provide visualization
results comparing the generalization of AT-AGR, TRADES-AGR,
and MART-AGR with the baseline adversarial training methods
on CIFAR10 and CIFAR100. As shown in Figure 1, we can observe
that the loss landscape of all methods combining AGR performs
much flatter, which means that our proposed method can achieve
a better generalization. Through the presentation of the results of
loss change and weight loss landscape, all the results demonstrate
the effectiveness and feasibility of our proposed method.

5.2 Evaluations on the Loss Change of AGR

We show the variation curves of loss on the more challenging

dataset Tiny Imagenet when the proposed AGR combines AT, TRADES,

and MART. As shown in Figure 2, we show that the proposed
method can make loss converge to a flat range, which implies the
effectiveness of our AGR training approach. However, it can be
noted that our method is still unable to avoid the occurrence of
overfitting in adversarial training, as can be seen in the figure,
where the robust loss in the test set shows an increase.

References

[1] Noah Golowich, Alexander Rakhlin, and Ohad Shamir. 2018. Size-independent
sample complexity of neural networks. In Conference On Learning Theory. PMLR,
297-299.

[2] Chao Zhang, Lei Zhang, and Jieping Ye. 2012. Generalization bounds for domain
adaptation. Advances in neural information processing systems 25 (2012).

Negative Positive ==+ Zero-cos Line
The 1th conv The 2th conv The 3th conv The 4th conv
' ” ﬁ ﬁ I —
0 Foy = — o —— " Rt [ R —
=1+ T 1 T 1 T 1 T
The 5th conv The 6th conv The 7th conv The 8th conv
1
0 F ...... A F ....... [ R S — [ T —
T The 9tlh conv N The lolth conv The 11th conv The 12th conv

O A o ¢ e ¢ e o ¢ 4 o o e e e o o o e & e o

Cosine Similarity

The 14th conv The 16th conv

0 4 80 4 80 4 80 4 8
#lterations (X103)

Figure 3: The cosine similarity of V.L, and VL 4, of weights
of convolutional layers of PreAct-ResNet-18 trained on CI-
FAR10 by AT.
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Figure 4: The cosine similarity of V.L, and VL ;, of weights
of convolutional layers of PreAct-ResNet-18 trained on CI-
FAR100 by AT.
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Figure 7: The cosine similarity of V.£, and VL ;, of weights
of convolutional layers of PreAct-ResNet-18 trained on CI-
FAR100 by MART.
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Figure 5: The cosine similarity of V.L, and VL, , of weights
of convolutional layers of PreAct-ResNet-18 trained on CI-
FAR10 by MART.
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Figure 6: The cosine similarity of VL, and VL _;, of weights
of convolutional layers of PreAct-ResNet-18 trained on CI-
FAR100 by TRADES.
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