
A General VFE derivation

In this section, we provide the derivations for the VFE expression given in equation 4.

The FEP formulation of PC is based on several assumptions that allow to derive a simpler expression
of the VFE. For simplicity, we provide a derivation for the case where L = 1, meaning that there is
only one layer in the generative model of x based on z. At the end of the derivation, we provide the
expression in the general case. We start from a different equivalent formulation of the VFE:

F (x) =

∫
z

E(x, z)q(z)dz +

∫
z

log
(
q(z)

)
q(z)dz (13)

where E(x, z) = − log p(x, z) is called the energy. We assume that the distribution q(z) takes a
Gaussian form q(z) = N (z; ẑ, ζI). The mean of this approximate posterior, ẑ, corresponds to the
inferred representation being optimized by the PC networks. Integrating this definition into the VFE
expression, we obtain:

F (x) = −d

2
log(2πζ)− d

2
+

∫
z

E(x, z)q(z)dz (14)

We assume that the approximate posterior is tightly shape around its mean ẑ, allowing us to use the
Taylor expansion of E(x, z) around this value:

E(x, z) ≈ E(x, ẑ) +
(
∇ẑE(x, ẑ)

)
· (z − ẑ) (15)

We can now derive an expression of the VFE that depends on ẑ and not longer involves integrals:

F (x, ẑ) ≈ E(x, ẑ) +
(
∇ẑE(x, ẑ)

)
·
∫
z

(z − ẑ)q(z)dz + C (16)

≈ E(x, ẑ) + C (17)
≈ − log p(x|ẑ)− log p(ẑ;M) + C (18)

where C is a quantity that does not depend on x and ẑ. Finally, generalizing this expression to L
layers, and assuming that each layer in the generative model takes the form of a Gaussian distribution
with mean f l

θ(
ˆhl+1) and variance I, we obtain:

F (x, ĥ1, . . . , ˆhL−1, ẑ) =

L−1∑
l=0

1

2
∥ĥl − f l

θ(
ˆhl+1)∥2

− log p(ẑ;M)

+ C ′

(19)

where C ′ includes other terms independent from {x, ĥ1, · · · , ẑ} coming from the derivation of the
logarithms of the multivariate Gaussians. More detailed derivations can be found in [5], without the
memory dependency, but this has virtually no impact on the derivations.

14



B MCHN derivations

In this section, we provide the derivations for the expression of the VFE and the update rule for
MCHNs (equations 7 and 8 in the main text). Using the assumptions listed in section 3.2, we can
derive an expression of the VFE that closely resembles the energy function proposed in the MCHN
paper [30]:

F (ẑ) = − log p(ẑ;M) + C (20)

= − log

N∑
k=1

exp{β2M
⊺
k ·Mk}∑N

k′=1 exp{
β
2M

⊺
k′ ·Mk′}

1√
2πβ−d

exp{−β

2
(ẑ −Mk)

⊺ · (ẑ −Mk)}+ C

(21)

= − log

N∑
k=1

exp{β
2
M⊺

k ·Mk} exp{−
β

2
(ẑ −Mk)

⊺ · (ẑ −Mk)}+ C ′ (22)

= − log

N∑
k=1

exp{βẑ⊺ ·Mk} exp{−
β

2
ẑ⊺ · ẑ}+ C ′ (23)

=
β

2
ẑ⊺ · ẑ − log

N∑
k=1

exp{βẑ⊺ ·Mk}+ C ′ (24)

Up to an additive constant and a factor β, this expression is equivalent to the energy function
proposed in [30]. According to the FEP formulation of PC, the neural dynamics performing iterative
optimization of ẑ can be derived from the gradient descent update with regard to the VFE. We start
by deriving this gradient:

∇ẑF (ẑ) = βẑ −
∑N

k=1 exp{βẑ⊺ ·Mk} · (βMk)∑N
k′=1 exp{βẑ⊺ ·Mk′}

(25)

= β{ẑ − softmax(βẑ⊺ ·M)M⊺} (26)

Which yields the following update rule for ẑ:

ẑ ← ẑ + αβ
{

softmax(βẑ⊺ ·M)M⊺ − ẑ
}

(27)

where α is the rate of the gradient descent. In particular, when α = 1
β we obtain the update rule of

the MCHN:

ẑ ← softmax(βẑ⊺ ·M)M⊺ (28)

Looking back at the prior distribution p(z;M), the GMM is biased towards representations of larger
Euclidean norm. This means that stored patterns Mk aligned with other patterns of larger norms
cannot attract the dynamics of the MCHN. This is represented in figure 3 where we have displayed
two energy landscapes for an AM containing four 2D patterns. The VFE computed with a balanced
GMM model (left) comprises a local minimum for each pattern, which is not the case for the VFE
computed with the MCHN prior distribution.

15



Figure 3: Illustration of the VFE landscape induced by the balanced (ours, left) and biased (MCHN,
right) GMM prior distribution, for an AM of four 2D patterns represented in white. These figures
were obtained with β = 100 and σ = 0.2.

C Derivations of the proposed models

C.1 (VAE-)PC-GMM derivations

In this section, we provide derivations for the PC-GMM (and VAE-PC-GMM when ẑ is initialized
with the VAE encoder). We start by expressing the VFE using the GMM prior distribution:

F (x, ĥ1, . . . , ˆhL−1, ẑ) =

L−1∑
l=0

1

2
∥ĥl − f l

θ(
ˆhl+1)∥2

− log

N∑
k=1

exp{− 1

2σ2
(ẑ −Mk)

⊺ · (ẑ −Mk)}

+ C ′

(29)

where the constant C’ contains other terms coming from the GMM expression that do not depend
on {x, ĥ1, . . . , ˆhL−1, ẑ}. According to the FEP formulation of PC, the neural dynamics simulate a
gradient descent on this energy function. We can thus derive the update rules for the approximate
posterior means {ĥ1, . . . , ˆhL−1, ẑ}. For all 1 ≤ l ≤ L:

ĥl ← ĥl − α∇ĥl
F (x, ĥ1, . . . , ˆhL−1, ẑ) (30)

where α is the rate of the gradient descent. For the intermediate layers1 ≤ l < L, we obtain the
following update rule:

ĥl ← ĥl − α
(
ĥl − f l

θ(
ˆhl+1)

)︸ ︷︷ ︸
Top-down

+αf l−1′

θ (ĥl) ·
(

ˆhl−1 − f l−1
θ (ĥl)

)︸ ︷︷ ︸
Bottom-up

(31)

This update rule combines top-down information pulling ĥl towards its prediction coming from the
upper layer, and bottom-up information pulling it towards a value that reduces the prediction error
on the lower layer. It is useful to introduce the notation ϵl = ĥl − f l

θ(
ˆhl+1) called the prediction

error on layer l. In the PC theory, at each layer a population of neurons encodes this quantity, while
another encodes the current estimate ĥl. For the last layer, the bottom-up signal is identical, but the
top-down signal pulls ẑ towards values that maximize the prior p(z):

16



ẑ ← ẑ +
α

σ2

(
softmax

(
− ∥ẑ −M∥22

2σ2

)
·M⊺ − ẑ

)
︸ ︷︷ ︸

Top-down

+α
(
fL−1′

θ (ẑ) · ϵL−1

)︸ ︷︷ ︸
Bottom-up

(32)

These update rules can be applied iteratively, which results in a dynamical system viewed in the PC
theory as an RNN. Figure 4 represents this RNN unfolded in time (right) along with the assumed
hierarchical probabilistic model (left). Algorithm 1 describes the forward pass through this PC
network.

Figure 4: Left: probabilistic graphical model of our system. Right: corresponding PC network.

Algorithm 1: PC-GMM Memory retrieval
Parameters: θ, α, σ,M
Input: x
Initialize

{
ẑ, ˆhL−1, . . . , ĥ1

}
for 0 ≤ t < T do

/* Compute prediction errors */
for 0 ≤ l < L do

ϵl ← ĥl − f l
θ(

ˆhl+1)
end
/* Update hidden representations */
for 1 ≤ l < L do

ĥl ← ĥl + α
(
f l−1′

θ (ĥl) · ϵl−1 − ϵl
)

end
/* Update z */

ẑ ← ẑ + α
(
fL−1′

θ (ẑ) · ϵL−1

)
+ α

σ2

(
softmax

(
− ∥ẑ−M∥2

2

2σ2

)
·M⊺ − ẑ

)
end

C.2 (VAE-)BP-GMM derivations

Here we show that the PC-GMM dynamics approximate the gradient descent updates resulting from
the application of BP on the loss function of the BP-GMM model. To obtain this result, we must

17



assume that the predictions f l
θ(

ˆhl+1) remain constant during this iterative inference process. This
hypothesis, often called "fixed prediction assumption", is required to prove this results. Note that
in our PC-GMM algorithm, we have updated the predictions at each iteration, so the result proven
here do not apply in our case. Still this result is interesting as it highlights the relationship between
PC-based inference and BP-based inference. Therefore, we assume here that the predictions f l−1

θ (ĥl)

and the derivatives f l−1′

θ (ĥl) are fixed during the inference process. Only the prediction errors ϵl
and the approximate posterior means ĥl are updated. We recall that the loss function used in the
BP-GMM model is defined as:

L(x, ẑ) = ∥fθ(ẑ)− x∥2 − γ log p(ẑ;M) (33)

Given an input x and a memory matrix M , the dynamics of the PC network will reach equilibrium
when for all l,∇ĥl

F = 0. For the intermediate layers, this is verified when:

ϵl = f l−1′

θ (ĥl) · ϵl−1 (34)

Equivalently, we can derive the expression of the gradients provided by BP on the intermediate
quantities ĥl. On the bottom layer, we have:

∇ĥ1
∥fθ(ẑ)− x∥22 = ∇ĥ1

∥f0
θ (ĥ1)− x∥22 (35)

= 2f0′

θ (ĥ1) · (f0
θ (ĥ1)− x) (36)

= −2f0′

θ (ĥ1) · ϵ0 (37)
= −2ϵ1 (38)

Using the chain rule, we can derive the gradient with regard to ĥl based on the gradient with regard to
ˆhl−1. We observe that we obtain the same recurrence relation between gradients ∇ĥl

∥fθ(ẑ)− x∥22
than the one we obtained with prediction errors ϵl at equilibrium (equation 34):

∇ĥl
∥fθ(ẑ)− x∥22 = f l−1′

θ (ĥl) · ∇ ˆhl−1
∥fθ(ẑ)− x∥22 (39)

Therefore, according to the induction principle, we can conclude that for all layers 1 ≤ l < L:

ϵl = −2∇ĥl
∥fθ(ẑ)− x∥22 (40)

Now, looking at the topmost layer, we can compare the update rule for ẑ prescribed by BP and PC.
For PC, we have seen that the update rule is:

ẑ ← ẑ +
α

σ2

(
softmax

(
− ∥ẑ −M∥22

2σ2

)
·M⊺ − ẑ

)
︸ ︷︷ ︸

Top-down

+α
(
fL−1′

θ (ẑ) · ϵL−1

)︸ ︷︷ ︸
Bottom-up

(41)

For BP, we once again use the chain rule:

∇ẑL = ∇ẑ

(
− γ log p(ẑ;M)

)
+ fL−1′

θ (ẑ) · ∇ ˆhL−1
∥fθ(ẑ)− x∥22 (42)

= − γ

σ2

(
softmax

(
− ∥ẑ −M∥22

2σ2

)
·M⊺ − ẑ

)
︸ ︷︷ ︸

Top-down

− 2fL−1′

θ (ẑ)ϵL−1︸ ︷︷ ︸
Bottom-up

(43)

Taking γ = α = 2 yields the exact same iterative inference update rule for both approaches. If we
remove the "fixed prediction assumption" this equivalence no longer stands. However, this proves
that the two approaches are closely related. In practice, we found that the two models performed

18



similarly but that the PC-GMM approach was prohibitively slow to propagate information for very
deep generative models.

The iterative algorithm is described in algorithm 2.

Algorithm 2: BP-GMM Memory retrieval
Parameters: θ, α, σ, γ,M
Input: x
Initialize ẑ
for 0 ≤ t < T do

/* Compute the prediction */
x̂← fθ(ẑ)
/* Compute the energy function */
L ← ∥x̂− x∥2 − γ log p(ẑ;M)
/* Update z using BP */
ẑ ← ẑ − α∇ẑL

end

C.3 VAE-GMM derivations

The derivation of the VAE-GMM model is straightforward. We simply remove the bottom-up
information pathway of the VAE-PC-GMM model and instead consider that the amortized inference
performed by the encoder already conveys the necessary information from x. The update rule for ẑ
becomes:

ẑ ← ẑ +
α

σ2

(
softmax

(
− ∥ẑ −M∥22

2σ2

)
·M⊺ − ẑ

)
(44)

If we choose α = σ2, we obtain the update rule of the VAE-GMM model:

ẑ ← softmax
(
− ∥ẑ −M∥22

2σ2

)
·M⊺ (45)

D Implementation details

All the presented experiments were performed on a single NVIDIA GeForce GTX 1060 GPU.

Training was performed on the training sets of the two datasets, and the results reported in this article
were obtained on the testing sets.

The training hyperparameters (learning rate, number of steps for the MemN2N model) were optimized
in order to achieve the lowest prediction error on the training set. The memory retrieval hyperparame-
ters (σ for GMM models, β for MCHN models, γ for the BP-GMM model) were optimized in order
to achieve the highest successful retrieval percentage on the training set.

The reported results were obtained using one seed for the VAE, 5 seeds for the AM models that
require training (MemN2N, NTM, VAE-GMM*), and 10 seeds for the memory retrieval scenarios
that include randomness (noise and mask).

We provide the code including the implementation of the proposed models, our implementation of
the benchmark models, the different memory retrieval scenarios and the hyperparameter values we
have experimented with: https://github.com/sino7/predictive_coding_associative_
memories.

Our implementation of the MONet model was adapted from the implementation provided in the github
repository https://github.com/baudm/MONet-pytorch, and we used the provided pretrained
weights on the CLEVR dataset.

19

https://github.com/sino7/predictive_coding_associative_memories
https://github.com/sino7/predictive_coding_associative_memories
https://github.com/baudm/MONet-pytorch


E Additional results

E.1 Ablation study

In this section, we investigate the impact of two features of our model: the initialization of ẑ using
the encoder, and the use of a balanced GMM instead of the biased GMM of the MCHN model (see
appendix B).

We have reproduced the memory retrieval experiment with noisy inputs on two new model variations:
BP-GMM (without VAE initialization) and VAE-BP-Hopfield. The VAE-BP-Hopfield is the biased
GMM version of the VAE-BP-GMM model, where the BP is used to perform iterative inference in
order to minimize the loss function:

L = ∥fθ(ẑ)− x∥2 + γ
(1
2
ẑ⊺ · ẑ − 1

β
log

N∑
k=1

exp{βẑ⊺ ·Mk}
)

(46)

(a) CIFAR10 (b) CLEVR

Figure 5: Percentage of successful memory retrieval using inputs corrupted with a noise of varying
standard deviation σ. Intervals indicate standard deviation.

We report in figure 5 the percentage of successful memory retrieval using these different models. On
the CLEVR dataset, the BP-GMM (without VAE initialization) always failed to retrieve the correct
memory pattern. On the CIFAR10 dataset, it performed exactly the same as the VAE-GMM and
VAE-BP-GMM models. This argues in favor of the simpler VAE-GMM model, that seems to convey
information from the input x properly enough. This is also observed by comparing the results using
the VAE-BP-Hopfield model and the simpler VAE-Hopfield model.

We can note that on the CIFAR10 dataset, Hopfield based retrieval is more robust to very high levels
of noise. We believe that in this case, the bias towards patterns of high L2 norm might partially
counter the indirect effect of the noise onto ẑ. On the CLEVR dataset this synergy is not observed
and all models rapidly fail to retrieve patterns in memory.

On the other hand, we can see that Hopfield-based models never reach perfect retrieval even when
the presented inputs are clean, which argues in favor of the balanced GMM alternative.

E.2 Analysis of the trained VAE-GMM* precision coefficients

In this section, we investigate the effect of precision coefficient learning in the VAE-GMM* model.
After training in two different scenarios: RGB rotation and shift, we compare the learned precision
coefficients. For a more straightforward analysis, we have restricted the precision matrix to be
diagonal. This way we can directly identify dimensions of the representation z that are deemed more
or less relevant for memory retrieval in both scenarios.

The CLEVR representation is structured into four object representations (one for the background and
the three others for possible objects in the scene). We have identified four dimensions of the object
representation where the precision coefficients in both scenarios presented the highest disagreement.
We have then sampled an image from the CLEVR dataset and made variations along these dimensions

20



to observe their effect on the decoded images. As shown in figure 6, these four dimensions can be
interpreted as encoding color, size and position.

Figure 6: Varying the representation along some dimensions. The dimensions for the first two rows
seem to encode object color. The dimension for row 3 seems to encode object size. The dimension
for row 4 seems to encode object horizontal position.

For the VAE-GMM* model trained with the RGB rotation, the precision coefficients corresponding to
the color dimension were lower, meaning that the retrieval mechanism gave less importance to these
features when comparing the inferred representation ẑ with the memory patterns Mk. Conversely,
for the VAE-GMM* model trained with shifted images, the precision coefficients corresponding to
the position and size (to a lower a extent) were lower. Consequently, the two trained models (with the
same memory content) can react differently to the same input pattern, as shown in figure 7.

Figure 7: Images decoded from the representations ẑ at different steps of the inference process, using
the VAE-GMM* models trained with the RGB rotation (first row) and with shifted images (second
row). For this experiment, we have use the VAE-GMM model with a lower update coefficient α (see
equation 44) to observe a smooth convergence.

We can observe that for an input image obtained by applying an RGB rotation on one of the stored
patterns, the model trained on the correct task properly retrieves the pattern, while the model trained
with shifted images instead converges to a stored pattern corresponding to a similar object in a

21



different position. These results confirm our intuition that adaptation of the precision coefficients
can help the proposed VAE-GMM model to give more or less importance to certain representation
features for memory retrieval.

E.3 One-shot generation

In this section, we display examples of images sampled with our memory-dependent generative
model on the CLEVR dataset. The first row of figure 8 contains the input patterns written in the
memory. The writing operation simply consists in encoding the images and building the memory
matrix with the obtained column vectors. In the bottom of this figure are images sampled from
the memory-dependent generative model. We can observe that the sampled images contain similar
objects in the same positions, with slight variations of shape, size, position or color.

Figure 8: Examples of generated images.

E.4 Capacity

We have tried measuring the retrieval success rate with a varying number of patterns in the memory.
The models based on a balanced GMM can achieve 100% of successful retrievals when no noise is
applied, for a better comparison, we thus experiment with input patterns corrupted with a noise of
standard deviation σ = 0.6. We compare the performance of the GMM models with or without the
representation component (respectively VAE-GMM and GMM) as well as the performance with the
MCHN variants (VAE-Hopfield). Since the MCHN applied on the raw pixel level scores very low in
our initial experiments (see table 2 and table 3), we only experiment here with the variant working on
the representation level. This experiment is conducted on the CIFAR10 dataset, with memory stores
of size varying from N = 5 to N = 10000.

The results are displayed in figure 9. We can observe that the performance of the VAE-Hopfield
model drops faster than the performance of the models based on the balanced GMM implementation
we proposed. Another result is that the use of a representation component does not seem to improve
the capacity of the model.

22



Figure 9: Evolution of the retrieval rate according to the number of memory patterns.

E.5 Additional figures

In this section, we provide examples of input and retrieved images. On the CIFAR10 dataset, we
provide examples using AM models working on the pixel level in figure 10 and AM models working
on the representation level in figure 11. On the CLEVR dataset, we provide examples using models
working on the representation level, with and without dedicated training in the "RGB rotation"
scenario, in figure 12.

Figure 10: Retrieved images using inputs corrupted with a noise of standard deviation σ = 0.6.

23



Figure 11: Examples of retrieved images with different models, using inputs corrupted with a noise
of standard deviation σ = 0.6.

24



Figure 12: Retrieved images with different models in the RGB rotation scenario.

25


	General VFE derivation
	MCHN derivations
	Derivations of the proposed models
	(VAE-)PC-GMM derivations
	(VAE-)BP-GMM derivations
	VAE-GMM derivations

	Implementation details
	Additional results
	Ablation study
	Analysis of the trained VAE-GMM* precision coefficients
	One-shot generation
	Capacity
	Additional figures


