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Abstract

Motivated by applications such as machine repair, project monitoring, and anti-1

poaching patrol scheduling, we study intervention planning of stochastic processes2

under resource constraints. This planning problem has previously been modeled as3

restless multi-armed bandits (RMAB), where each arm is an intervention-dependent4

Markov Decision Process. However, the existing literature assumes all intervention5

resources belong to a single uniform pool, limiting their applicability to real-world6

settings where interventions are carried out by a set of workers, each with their own7

costs, budgets, and intervention effects. In this work, we consider a novel RMAB8

setting, called multi-worker restless bandits (MWRMAB) with heterogeneous9

workers. The goal is to plan an intervention schedule that maximizes the expected10

reward while satisfying budget constraints on each worker as well as fairness in11

terms of the load assigned to each worker. Our contributions are two-fold: (1) we12

provide a multi-worker extension of the Whittle index to tackle heterogeneous13

costs and per-worker budget and (2) we develop an index-based scheduling policy14

to achieve fairness. Further, we evaluate our method on various cost structures and15

show that our method significantly outperforms other baselines in terms of fairness16

without sacrificing much in reward accumulated.17

1 Introduction18

Restless multi-armed bandits (RMABs) Whittle [1988] have been used for sequential planning, where19

a planner allocates a limited set of M intervention resources across N independent heterogeneous20

arms (Markov Decision processes) at each time step in order to maximize the long-term expected21

reward. The term restless denotes that the arms undergo state-transitions even when they are not22

acted upon (with a different probability than when they are acted upon). RMABs have been receiving23

increasing attention across a wide range of applications such as maintenance [Abbou and Makis,24

2019], recommendation systems Meshram et al. [2015], anti-poaching patrolling [Qian et al., 2016b],25

and adherence monitoring [Akbarzadeh and Mahajan, 2019; Mate et al., 2020]. Although, rangers26

in anti-poaching, healthcare workers in health intervention planning, and supervisors in machine27

maintenance are all commonly cited examples of human workforce used as intervention resources, the28

literature has so far ignored one key reality that the human workforce is heterogeneous—each worker29

has their own workload constraints and needs to commit a dedicated time duration for intervening on30

an arm. Thus, it is critical to restrict intervention workload for each worker and balance the workload31

across them, while also ensuring high effectiveness (reward) of the planning policy.32

RMAB literature does not consider this heterogeneity and mostly focuses on selecting best arms33

assuming that all intervention resources (workers) are interchangeable, i.e., as from a single pool34

(homogeneous). However, planning with human workforce requires more expressiveness in the35

model, including heterogeneity in costs and intervention effects, worker-specific load constraints, and36
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balanced work allocation. One concrete example is anti-poaching intervention planning Qian et al.37

[2016a] with N areas in a national park where timely interventions (patrols) are required to detect as38

many snares as possible across all the areas. These interventions are carried out by a small set of M39

ranger. The problem of selecting a subset of areas at each time step (say, daily) has been modeled as40

an RMAB problem. However, each ranger may incur heterogeneous cost (e.g., distance travelled,41

when assigned to intervene on a particular area) and the total cost incurred by any ranger (e.g., total42

distance traveled) must not exceed a given budget. Additionally, it is important to ensure that tasks43

are allocated fairly across rangers so that, for e.g., some rangers are not required to walk far greater44

distances than others. Adding this level of expressiveness to existing RMAB models is non-trivial.45

To address this, we introduce the multi-worker restless multi-armed bandits (MWRMAB) problem.46

Since MWRMABs are more general than the classical RMABs, they are at least PSPACE hard to47

solve optimally [Papadimitriou and Tsitsiklis, 1994]. RMABs with k-state arms require solving a48

combined MDP with kN states and |M + 1|N actions constrained by a budget, and thus suffers from49

the curse of dimensionality. A typical approach is to compute Whittle indices [Whittle, 1988] for50

each arm and choose M arms with highest index values—an asymptotically optimal solution under51

the technical condition indexability [Weber and Weiss, 1990]. However, this approach is limited to52

instances a single type of intervention resource incurring one unit cost upon intervention. A few papers53

on RMABs [Glazebrook et al., 2011; Meshram and Kaza, 2020] study multiple interventions and54

non-unitary costs but assumes one global budget (instead of per-worker budget). Existing solutions55

aim at maximizing reward by selecting arms with highest index values that may not guarantee fairness56

towards the workers who are in charge of providing interventions.57

To the best of our knowledge, we are the first to introduce and formalize the multi-worker restless58

multi-armed bandit (MWRMAB) problem and a related worker-centric fairness constraint. We59

develop a novel framework for solving the MWRMAB problem. Further, we empirically evaluate our60

algorithm to show that it is fair and scalable across a range of experimental settings.61

2 Related Work62

Multi-Action RMABs and Weakly Coupled MDPs Glazebrook et al. [2011] develop closed-form63

solutions for multi-action RMABs using Lagrangian relaxation. Meshram and Kaza [2020] build64

simulation-based policies that rely on monte-carlo estimation of state-action values. However,65

critically, these approaches rely on actions being constrained by a single budget, failing to capture the66

heterogeneity of workforce. On the other hand, weakly coupled MDPs (WCMDPs) Hawkins [2003]67

allow for such multiple budget constraints; this is the baseline we compare against. Other theoretical68

works Adelman and Mersereau [2008]; Gocgun and Ghate [2012] have developed solutions in terms69

of the reward accumulated, but may not scale well with increasing problem size. These papers do not70

consider fairness, a crucial component of MWRMABs, which our algorithm addresses.71

Fairness in stochastic and contextual multi-armed bandits (MABs) [Patil et al., 2020; Joseph et al.,72

2016; Chen et al., 2020] has been receiving significant attention. However, fairness in RMABs has73

been less explored. Recent work by Herlihy et al. [2021] considered quota-based fairness of RMAB74

arms assuming that arms correspond to human beneficiaries (for example, patients). However, in our75

work, we consider an orthogonal problem of satisfying the fairness among intervention resources76

(workers) instead of arms (tasks).77

Fair allocation of discrete items among a set of agents has been a well studied topic [Brandt et al.,78

2016]. Fairness notions such as envy-freeness up to one item [Budish, 2011] and their budgeted79

settings [Wu et al., 2021; Biswas and Barman, 2018] align with the fairness notion we consider.80

However, these papers do not consider non-stationary (MDP) items. Moreover, these papers assume81

that each agent has a value for every item; both fairness and efficiency are defined with respect to this82

valuation. In contrast, in MWRMAB, efficiency is defined based on reward accumulated and fairness83

and budget feasibility are defined based on the cost incurred.84

3 The Model85

There areM workers for providing interventions onN independent arms that follow Markov Decision86

Processes (MDPs). Each MDP i ∈ [N ] is a tuple 〈Si, Ai, Ci, Pi, Ri〉, where Si is a finite set of states.87

We represent each worker as an action, along with an additional action called no-intervention. Thus,88
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action set is Ai ⊆ [M ] ∪ {0}. Ci is a vector of costs cij incurred when an action j ∈ [Ai] is taken on89

an arm i ∈ [N ], and cij = 0 when j = 0. P ss
′

ij is the probability of transitioning from state s to state90

s′ when arm i is allocated to worker j. Ri(s) is the reward obtained in state s ∈ Si.91

The goal (Eq. 1) is to allocate a subset of arms to each worker such that the expected reward is92

maximized while ensuring that each worker incurs a cost of at most a fixed value B. Additionally,93

the disparity in the costs incurred between any pair of workers does not exceed a fairness threshold ε94

at a given time step. Let us denote a policy π : ×iSi 7→ ×iAi that maps the current state profile of95

arms to an action profile. xπij(s) ∈ {0, 1} indicates whether worker j intervenes on arm i at state s96

under policy π. The total cost incurred by j at a time step t is given by C
π

j (t) :=
∑
i∈N cijx

π
ij(si(t)),97

where si(t) is the current state. ε ≥ cm := maxij cij ensures feasibility of the fairness constraints.98

max
π

lim sup
T→∞

1

T

∑
i∈[N ]

E

[
T∑
t=1

Ri(si(t)) x
π
ij(si(t))

]

s.t.
∑
i∈N

xπij(si(t)) cij ≤ B, ∀ j ∈ [M ], ∀ t ∈ {1, 2, . . .}∑
j∈Ai

xπij(si(t)) = 1, ∀ i ∈ [N ], ∀ t ∈ {1, 2, . . .}

max
j
C
π

j (t)−min
j
C
π

j (t) ≤ ε, ∀ t ∈ {1, 2, . . .}

xπij(si(t)) ∈ {0, 1}, ∀i, ∀j, ∀t.

(1)

When M = 1 and ci1 = 1, Problem (1) becomes classical RMAB problem (with two actions,99

active and passive) that can be solved via Whittle Index method [Whittle, 1988] by considering a100

time-averaged relaxed version of the budget constraint and then decomposing the problem into N101

subproblems—each subproblem finds a charge λi(s) on active action that makes passive action as102

valuable as the active action at state s. It then selects top B arms according to λi values at their103

current states. However, the challenges involved in solving a general MWRMAB (Eq. 1) are (i) index104

computation becomes non-trivial with M > 1 workers and (ii) selecting top arms based on indices105

may not satisfy fairness. To tackle these challenges, we propose a framework in the next section.106

4 Methodology107

Step 1: Decompose the combinatorial MWRMAB problem to N ×M subproblems, and compute108

Whittle indices λ?ij for each subproblem. We tackle this in Sec. 4.1.This step assumes that, for each109

arm i, MDPs corresponding to any pair of workers are mutually independent. However, the expected110

value of each arm may depend on interventions taken by multiple workers at different timesteps.111

Step 2: Adjust the decoupled indices λ∗ij to create λadj,∗ij , detailed in Sec. 4.2.112

Step 3: The adjusted indices are used for allocating the arms to workers while ensuring fairness and113

per-timestep budget feasibility among workers, detailed in Sec. 4.3.114

4.1 Identifying subproblem structure115

To arrive at a solution strategy, we relax the per-timestep budget constraints of Eq. 1 to time-116

averaged constraints, as follows: 1
T

∑
i∈[N ] E

∑T
t=1 x

π
ij(si(t)) cij ≤ B, ∀j ∈ [M ]. The optimization117

problem (1) can be rewritten as:118

min
{λj≥0}

max
π

lim sup
T→∞

1

T

∑
i∈[N ]

E

 T∑
t=1

(
Ri(si(t))x

π
ij(si(t)) +

∑
j∈[M ]

λj(B − cijxπij(si(t))
) 

s.t.
∑
j∈Ai

xπij(si(t)) = 1, ∀ i ∈ [N ], t ∈ {1, 2, . . .}

max
j
C
π

j (t)−min
j
C
π

j (t) ≤ ε, ∀ t ∈ {1, 2, . . .}

xπij(si(t)) ∈ {0, 1}, ∀i, ∀j, ∀t (2)
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Here, λjs are Lagrangian multipliers corresponding to each relaxed budget constraint j ∈ [M ].119

Furthermore, as mentioned in Glazebrook et al. [2011], if an arm i is indexable, then the optimization120

objective (2) can be decomposed into N independent subproblems, and separate index functions can121

be defined for each arm i. Leveraging this, we decompose our problem to N ×M subproblems, each122

finding the minimum λij that maximizes the following:123

lim sup
T→∞

1

T
E

[
T∑
t=1

(Ri(si(t))− λijcij)xπij(si(t))

]
(3)

Note that, the maximization subproblem (3) does not have the term λijB since the term does not124

depend on the decision xπij(si(t)). Considering a 2-action MDP with action space Aij = {0, j} for125

an arm-worker pair, the maximization problem (3) can be solved by dynamic programming methods126

using Bellman’s equations for each state to decide whether to take an active action (xij(s) = 1) when127

the arm is currently at state s:128

V ti,j(s, λij , xij(t)) =


Ri(s)− λijcij +

∑
s′∈Si

P ijss′V
t+1
i,j (s′, λij), if xij(t) = 1

Ri(s)+
∑
s′∈Si

P i0ss′V
t+1
i,j (s′, λij), if xij(t) = 0

(4)

129

λ?ij(s) = arg min{λ : V ti,j(s, λ, j) == V ti,j(s, λ, 0)} (5)

We compute the Whittle indices λ?ij (Eq. 5) [Qian et al., 2016b] (the algorithm is in Appendix A).130

Additionally, we establish that the Whittle indices of multiple workers are related when the costs131

and transition probabilities possess certain characteristics, enabling simplification of Whittle Index132

computation for multiple workers when there are certain structures in the MWRMAB problem.133

Theorem 1. For an arm i, and a pair of workers j and j′ such that cij 6= cij′ and P ijss′ = P ij
′

ss′ for134

every s, s′ ∈ Si, then their Whittle Indices are inversely proportional to their costs.135

λ?ij(s)

λ?ij′(s)
=
cij′

cij
for each state s ∈ Si

Proof. Let us consider an arm i and a pair of workers j and j′ such that P ijss′ = P ij
′

ss′ . By definition136

of Whittle Index λj(s) for a worker j, it is the minimum value at a state s such that,137

Vij(s, λj(s), j)− Vij(s, λj(s), 0) = 0 (6)
Eq. 6 can be rewritten by expanding the value functions as:138

Ri(s)− λj(s)cij +
∑
s′∈Si

P ijss′Vi(s
′, λj(s))−Ri(s) +

∑
s′∈Si

P i0ss′Vi(s
′, λj(s)) = 0

=⇒ −λj(s)cij +
∑
s′∈Si

P ijss′Vi(s
′, λj(s))−

∑
s′∈Si

P i0ss′Vi(s
′, λj(s)) = 0 (7)

where, Vi(s′, λj(s′)) = max
a={0,j}

Ri(s)− aλj(s)cij + Es′′ [Vi(s′′, λ(s))].139

Next, we substitute all λj(s) terms by x
cij

. After substitution, Eq. 7 is a function of x only, i.e., no140

λ(s) or cij terms remain after substitution. We can rewrite Eq. 7 as:141

−x+
∑
s′∈Si

P ijss′Vi(s
′, x)−

∑
s′∈Si

P i0ss′Vi(s
′, x) = 0 (8)

Note that x∗ that minimizes Eq. 8 corresponds to λj(s)cij for any j, where λj(s) is the Whittle index142

for worker j. Therefore, for any two workers j and j′ with corresponding Whittle Indices as λj(s)143

and λj′(s), we obtain λj(s)cij = λj′(s)cij′ whenever P ijss′ = P ij
′

ss′ . This completes the proof.144

Theorem 1 also implies that, when the costs and effectiveness of two workers are equal, then their145

Whittle indices are also equal, stated formally in Corollary 1.146

Corollary 1. For an arm i, and a pair of workers j and j′ such that cij = cij′ and P ijss′ = P ij
′

ss′ for147

every s, s′ ∈ Si, then their Whittle Indices are the same.148

λ?ij(s) = λ?ij′(s) for each state s ∈ Si.
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4.2 Adjusting for interaction effects149

The indices obtained using Alg. 3 are not indicative of the true long-term value of taking that action150

in the MWRMAB problem. This is because, for a given arm, the value of an intervention by worker j151

in general depends on interventions by other workers j′ at different timesteps.152

Consider a 2-worker MWRMAB corresponding to an anti-poaching patrol planning problem, where153

each worker is a type of “specialist” with different equipment (detailed in Fig. 1).154

0 1 2

[0.05, 0.95, 0.10] [0.00, 0.00, 0.95]
[0.75, 0.76, 0.75]

[0.75, 0.75, 0.00]

[a0, a1,     a2]

R=0 R=0 R=1

[a0, a1,     a2]

Figure 1: Specialist domain: where specific actions
are required in each state to advance to the reward-
giving state. Decoupled indices lead to sub-optimal
policies, whereas adjusted indices perform well.

The first ranger (worker), a1, has special equip-155

ment for clearing overgrown brush, and the sec-156

ond ranger, a2, has specialized equipment for157

detecting snares, e.g., a metal detector. Assume158

3 states for each patrol area i as “overgrown and159

snared” (s = 0), “clear and snared” (s = 1),160

and “clear and not snared” (s = 2). Assume161

that reward is received only for arms in state162

s = 2, and that snares cannot be cleared from163

areas with overgrown brush, i.e., P 02
ij = 0 ∀j ∈164

[M ]. If we assume that each worker is a “true”165

specialist— so, ranger 1’s equipment is inef-166

fective at detecting snares, i.e., P 12
i1 = 0, and167

ranger 2’s equipment is ineffective at clearing168

overgrown brush, i.e., P 01
i2 = 0 — then the opti-169

mal policy is for ranger 1 to act on the arm in state “overgrown and snared” and ranger 2 to act on the170

arm in state “clear and snared”. However, the fully decoupled index computation for each ranger j171

would reason about restricted MDPs that only have passive action and ranger type j available. So172

when computing, e.g., the index for ranger 1 in s = 0, the restricted MDP would have 0 probability173

of reaching state “clear and not snared”, since it does not include ranger 2 in its restricted MDP. This174

would correspond to an MDP that always gives 0 reward, and thus would artificially force the index175

for ranger 1 to be 0, despite ranger 1 being the optimal action for s = 0.176

To address this, we define a new index notion that accounts for such inter-action effects. The key idea177

is that, when computing the index for a given worker, we will consider actions of all other workers178

in future time steps. So in our poaching example, the new index value for ranger 1 in s = 0 will179

increase compared to its decoupled index value, because the new index will take into account the180

value of ranger 2’s actions when the system progresses to s = 1 in the future. Note that the methods181

we build generalize to any number of workers M . However, the manner in which we incorporate the182

actions of other workers must be done carefully, We propose an approach and provide theoretical183

results explaining why. Finally, we give the full algorithm for computing the new indices.184

New index notion: For a given arm, to account for the inter-worker action effects, we define the185

new index for an action j as the minimum charge that makes an intervention by j on that arm186

as valuable as any other worker j′ in the combined MDP, with M + 1 actions. That is, we seek187

the minimum charge for action j that makes us indifferent between taking action j and not taking188

action j, a multi-worker extension Whittle’s index notion. To capture this, we define an augmented189

reward function R†λ(s, j) = R(s)− λjcj . Let λ is the vector of {λj}j∈[M ] charges. We define this190

expanded MDP asM†λ and the corresponding value function as V †λ . We now find adjusted index191

λadj,∗j,λ−j
using the following expression:192

min
j′∈[M ]\{j}

arg min
λj
{λj: V †λ−j (s, λj , j) = V †λ−j (s, λj , j

′)} (9)

where λ−j is a vector of fixed charges for all j′ 6= j, and the outer min over j′ simply captures the193

specific action j′ that the optimal planner is indifferent to taking over action j at the new index value.194

Note, this is the natural extension of the decoupled two-action index definition, Eq. (5), which defines195

the index as the charge on j that makes the planner indifferent between acting and, the only other196

option, being passive. Our new adjusted index algorithm is given in Alg. 1.197

We use a binary search procedure to compute the adjusted indices since V †λ−j (s, λj , j) is convex in198

λj . The most important consideration of the adjusted index computation is how to set the charges199

λj′ of the other action types j′ when computing the index for action j. We show that a reasonable200
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Algorithm 1 Adjusted Index Computation
Input: An arm: MDPM†, costs cj , state s, and indices λ∗j (s).
1: for j = 1 to M do
2: λj = λ∗j (s) {init λ}
3: for j = 1 to M do
4: Compute λadj,∗j,λ−j

(s) {via binary search on Eq. 9}

5: return λadj,∗j,λ−j
(s) for all workers j ∈ [M ]

choice for λj′ is the Whittle Indices λ∗j′(s) which were pre-computed using Alg. 3. The intuition201

is that λ∗j′(s) provides a lower bound on how valuable the given action j′ is, since it was computed202

against no-action in the restricted two-action MDP. In Observation 1 and Theorem 2, we describe the203

problem’s structure to motivate these choices.204

The following observation explicitly connects decoupled indices and adjusted indices.205

Observation 1. For each worker j, when λ−j → ∞, i.e., λj′ → ∞ ∀j′ 6= j, then the following206

holds: λadj,∗j,λ−j
→ λ∗j .207

This can be seen by considering the rewards R†λ(s, j′) = R(s)− λj′cj′ for taking action j′ in any208

state s. As the charge λj′ →∞, R†λ(s, j′)→ −∞, making it undesirable to take action j′ in the209

optimal policy. Thus, the optimal policy would only consider actions {0, j}, which reduces to the210

restricted MDP of the decoupled index computation.211

Next we analyze a potential naive choice for λ−j when computing the indices for each j, namely,212

λ−j = 0. Though it may seem a natural heuristic, this corresponds to planning without considering213

the costs of other actions, which we show below can lead to arbitrarily low values of the indices,214

which subsequently can lead to poorly performing policies.215

Theorem 2. As λj′ → 0 ∀j′ 6= j, λadj,∗j will monotonically decrease, if (1) V †λj′ (s, λj , j
′) ≥216

V †λj′ (s, λj , 0) for 0 ≤ λj′ ≤ ε and (2) if the average cost of worker j′ under the optimal policy217

starting with action j′ is greater than the average cost of worker j′ under the optimal policy starting218

with action j.219

Thm. 2 (proof in Appendix B) confirms that, although setting λj′ = 0 for all j′ may seem like a220

natural option, in many cases it will artificially reduce the index value for action j. This is because221

λj′ = 0 corresponds to planning as if action j′ comes with no charge. Naturally then, as we try to222

determine the non-zero charge λj we are willing to pay for action j, i.e., the index of action j, we will223

be less willing to pay higher charges, since there are free actions j′. Note that conditions (1) and (2)224

of the above proof are not restrictive. The first is a common epsilon-neighborhood condition, which225

requires that value functions do not change in arbitrarily non-smooth ways with λ values near 0. The226

second requires that a policy’s accumulated costs of action j′ are greater when starting with action j′,227

than starting from any other action— this is same as assuming that the MDPs do not have arbitrarily228

long mixing times. That is to say that Thm. 2 applies to a wide range of problems that we care about.229

The key question then is: what are reasonable values of charges for other actions λ−j , when230

computing the index for action j? We propose that a good choice is to set each λj′ ∈ λ−j to its231

corresponding decoupled index value for the current state, i.e., λ∗j′(s). The reason relies on the232

following key idea: we know that at charge λ∗j′(s), the optimal policy is indifferent between choosing233

that action j′ and the passive action, at least when j′ is the only action available. Now, assume we are234

computing the new adjusted index for action j, when combined in planning with the aforementioned235

action j′ at charge λ∗j′(s). Since the charge for j′ is already set at a level that makes the planner236

indifferent between j′ and being passive, if adding j′ to the planning space with j does not provide237

any additional benefit over the passive action, then the new adjusted index for j will be the same238

as the decoupled index for j, which only planned with j and the passive action. This avoids the239

undesirable effect of getting artificially reduced indices due to under-charging for other actions j′, i.e.,240

Thm. 2. The ideas follow similarly for whether the adjusted index for j should increase or decrease241

relative to its decoupled index value. I.e., if higher reward can be achieved when planning with j and242

j′ together compared to planning with either action alone, as in the specialist anti-poaching example243
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then we will become more willing to pay a charge λj now to help reach states where the action j′ will244

let us achieve that higher reward. On the other hand, if j′ dominates j in terms of intervention effect,245

then even at a reasonable charge for j′, we will be less willing to pay for action j when both options246

are available, and so the adjusted index will decrease. We give our new adjusted index algorithm in247

Alg. 1, and provide experimental results demonstrating its effectiveness.248

4.3 Allocation Algorithm249

We provide a method called Balanced Allocation (Alg. 2) to tackle the problem of allocating250

intervention tasks to each worker in a balanced way. At each time step, given the current states of all251

the arms {sti}i∈[N ], Alg. 2 creates an ordered list σ among workers based on their highest Whittle252

Indices max
i
λij(s

t
i). It then allocates the best possible (in terms of Whittle Indices) available arm to253

each worker according to the order σ in a round-robin way (allocate one arm to a worker and move254

on to the next worker until the stopping criterion is met). Note that this satisfies the constraint that the255

same arm cannot be allocated to more than one worker. In situations where the best possible available256

arm leads to the budget violation B, an attempt is made to allocate the next best. This process is257

repeated until there are no more arms left to be allocated. If no available arms could be allocated258

to a worker j because of budget violation, then worker j is removed from the future round-robin259

allocations and are allocated all the arms in their bundle Dj . Thus, the budget constraints are always260

satisfied. Moreover, in the simple setting, when costs and transition probabilities of all workers are261

equal, this heuristic obtain optimal reward and perfect fairness.262

Algorithm 2 Balanced Allocation
Input: Current states of each arm {si}i∈[N ], index values for each arm-worker (i, j) pair λij(si), costs {cij},
budget B, fairness threshold ε = cmax.
Output: balanced allocation {Dj}j∈[M ] where Dj ⊆ [N ], Dj ∩Dj′ = ∅ ∀j, j′ ∈ [M ].
1: Initiate allocation Dj ← ∅ for all j ∈ [M ]
2: Let L← {1, . . . , N} be the set of all unallocated arms
3: while true do
4: Let τj be the ordering over λij values from highest to lowest: λ[τj [1]][j] ≥ . . . ≥ λ[τj [N ]][j] ≥ 0
5: Let σ be the ordering over workers based on their highest indices: λ[τ1[1]][1] ≥ λ[τ2[1])][2] and so on
6: for j = 1 to M do
7: if τσj ∩ L 6= ∅ then
8: x← top(τj) ∩ L
9: while cxσj +

∑
h∈Dσj

chσj > B do
10: τσj ← τσj \ {x}
11: if τσj ∩ L = ∅ then
12: break
13: else
14: x← top(τσj ) ∩ L
15: if τσj ∩ L 6= ∅ then
16: Dσj ← Dσj ∪ {x}; L← L \ {x}; τσj ← τσj \ {x}
17: return {Dj}j∈[M ]

Theorem 3. When all workers are homogeneous (same costs and transition probabilities on arms263

after intervention) and satisfy indexability, then our framework outputs the optimal policy while being264

exactly fair to the workers.265

Proof sketch. The proof consists of two components: (1) optimality, which can be proved using266

Corollary 1 (Whittle Indices for homogeneous workers are the same), and the fact that the same costs267

lead to considering all workers from the same pool of actions, and (2) perfect fairness, using the fact268

that, when costs are equal, Step 3 of our algorithm divides the arms among workers in a way such269

that the difference between the number of allocations between two workers differs by at most 1 (see270

complete proof in Appendix D).271

5 Empirical Evaluation272

We evaluate our framework on three domains, namely constant unitary costs, ordered workers,273

and specialist domain, each highlighting various challenging dimensions of the MWRMAB problem274
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(detailed in Appendix C). In the first domain, the cost associated with all worker-arm pairs is the275

same, but transition probabilities differ; the main challenge is in finding optimal assignments, though276

fairness is still considered. In the second domain, there exists an ordering among the workers such277

that the highest (or lowest) ranked worker has the highest (or lowest) probability of transitioning any278

arm to “good” state; which makes balancing optimal assignments with fair assignments challenging.279

The final domain highlights the need to consider inter-action effects via Step 2.280

We run experiments by varying the number of arms for each domain. For the first and third domains281

that consider unit costs, we use B = 4 budget per worker, and for the second domain where costs are282

in the range [1, 10], we use budget B = 18. We ran all the experiments on Apple M1 with 3.2 GHz283

Processor and 16 GB RAM. We evaluate the average reward per arm over a fixed time horizon of284

100 steps and averaged over 50 epochs with random or fixed transition probabilities that follow the285

characteristics of each domain.286

Baselines We compare our approach, CWI+BA (Combined Whittle Index with Balanced Alloca-287

tion), against:288

• PWI+BA (Per arm-worker Whittle Index with Balanced Allocation) that combines Steps 1 and 3289

of our approach, skipping Step 2 (adjusted index algorithm)290

• CWI+GA (Combined arm-worker Whittle Index with Greedy Allocation) that combines Steps291

1 and 2 and, instead of Step 3 (balanced allocation), the highest values of indices are used for292

allocating arms to workers while ensuring budget constraint per timestep293

• Hawkins [2003] solves a discounted version of Eq. 2 without the fairness constraint, to compute294

values of λj , then solves a knapsack over λj-adjusted Q-values295

• OPT computes optimal solutions by running value iteration over the combinatorially-sized exact296

problem (1) without The fairness constraint.297

• OPT-fair follows OPT, but adds the fairness constraints. These optimal algorithms are exponential298

in the number of arms, states, and workers, and thus, could only be executed on small instances.299

• Random takes random actions j ∈ [M ] ∪ {0} on every arm while maintaining budget feasibility300

for every worker at each timestep301

Results Figure 2 shows that reward obtained using our framework (CWI+BA) is comparable to that302

of the reward maximizing baselines (Hawkins and OPT) across all the domains. We observe at most303

18.95% reduction in reward compared to OPT, where the highest reduction occurs for ordered workers304

in Fig. 2(b). In terms of fairness, Figs. 2(a) and (c) show that CWI+BA achieves fair allocation among305

workers at all timesteps. In Figure 2(b) CWI+BA achieves fair allocation in almost all timesteps. The306

fraction of timesteps where fairness is attained by CWI+BA is significantly higher than Hawkins and307

OPT. In fact, Fig 2(b) also shows that Hawkins obtains unfair solutions at every timesteps (0 fairness)308

when N=5 and B=18, and, when N=10 and N=15, Hawkins is fair only 0.41 and 0.67 fractions of309

the time, respectively. Thus, compared to reward maximizing baselines (Hawkins and OPT),310

CWI+BA achieves the highest fairness. We also compare against two versions of our solution311

approach, namely, PWI+BA and CWI+GA. We observe that PWI+BA accumulates marginally lower312

reward while CWI+GA performs poorly in terms of fairness, hence asserting the importance of using313

CWI+BA for the MWRAMB problem.314

Fig 3 shows that CWI+BA is significantly faster than OPT-fair (the optimal MWRMAB solution),315

with an execution time improvement of 33%, 78% and 83% for the three domains, respectively,316

when N=5. Moreover, for instances with N=10 onwards, both OPT and OPT-fair ran out of memory317

because the execution of the optimal algorithms required exponentially larger memory. However, we318

observe that CWI+BA scales well even for N = 10 and N = 15 and runs within a few seconds, on319

an average.320

Fig. 4 further demonstrates that our CWI+BA scales well and consistently outputs fair solution for321

higher values of N and B. On larger instances, with N ∈ {50, 100, 150}, our approach achieves up322

to 374.92% improvement in fairness with only 6.06% reduction in reward, when compared against323

the reward-maximizing solution Hawkins [2003].324

In summary, CWI+BA is fairer than reward-maximizing algorithms (Hawkins and OPT) and325

much faster and scalable compared to the optimal fair solution (OPT fair), while accumulating326
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Figure 2: Mean reward (top row) and fraction of time steps with fair allocation (bottom row) for
N = 5, 10, 15 arms. CWI+BA (blue) achieves highest fraction of fair allocations than Hawkins
(white) algorithm while attaining almost similar reward as the reward-maximizing baselines.

Figure 3: Execution time averaged over 50 epochs for N = 5, 10, 15. For a fixed time horizon of
100 steps, CWI+BA run faster than Hawkins (white), OPT (dark gray), and OPT fair (light gray) for
all instances in each of the three domains evaluated.

Figure 4: The plot shows mean reward (left), fairness (middle), and run time (right) for N =
50, 100, 150 arms on constant unitary costs domain. CWI+GA scales well for larger instances, and
even for N=150 arms, the average runtime is 10 seconds.

reward comparable to Hawkins and OPT across all domains. Therefore, CWI+BA is shown to327

be a fair and efficient solution for the MWRMAB problem.328

6 Conclusion329

We are the first to introduce multi-worker restless multi-armed bandit (MWRMAB) problem with330

worker-centric fairness. Our approach provides a scalable solution for the computationally hard331

MWRMAB problem. On comparing our approach against the (non-scalable) optimal fair policy on332

smaller instances, we find almost similar reward and fairness.333

Our problem formulation provides a more general model for the intervention planning problem334

capturing heterogeneity of intervention resources, and thus it is useful to appropriately model real-335

world domains such as anti-poaching patrolling and machine maintenance, where the interventions336

are provided by a human workforce.337
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A Whittle Index computation429

Algorithm 3 Whittle Index Computation Qian et al. [2016b]
Input: Two-action MDPij and cost cij
Output: Decoupled Whittle index λ?ij(s) for each s ∈ Si.
1: ub, lb = INITBSBOUNDS(MDPij) {Return upper and lower bounds on λ?ij(s) given MDPij}
2: while ub− lb > ε do
3: λij =

ub+lb
2

4: a = VALUEITERATION(MDPij , s, λij) {with updated reward R(s, a, λj) = R(s)− cijλij}
5: if a 6= j then
6: ub = λij {Charging too much, decrease}
7: else if a = j then
8: lb = λij {Can charge more, increase}
9: λ?ij(s) =

ub+lb
2

10: return λ?ij(s)

B Proof of Theorem 2430

Theorem 2. As λj′ → 0 ∀j′ 6= j, λadj,∗j will monotonically decrease, if (1) V †λj′ (s, λj , j
′) ≥431

V †λj′ (s, λj , 0) for 0 ≤ λj′ ≤ ε and (2) if the average cost of worker j′ under the optimal policy432

starting with action j′ is greater than the average cost of worker j′ under the optimal policy starting433

with action j.434

Proof. Let j′ be the action such that435

V †λj′=ε(s, λ
adj,∗
j,λj′=ε

, a = j′) = V †λj′=ε(s, λ
adj,∗
j,λj′=ε

, a = j)

when λj′ = ε and λj′′ = 0 ∀j′′ ∈ [M ] \ {j, j′}. Then at λj′ = 0, both V †λj′ (s, λj , a = j′) and436

V †λj′ (s, λj , a = j) will increase since the charge for taking action j′ decreases. Moreover, given (1),437

j′ will still be the “next-best” action to take, when computing the new λadj,∗j,λj′=0. Given (2), we have438

the following:439

dV †λj′ (s, λj , j
′)

dλj′
≥
dV †λj′ (s, λj , j)

dλj′
(10)

Which implies that, when λj′ changes from ε to 0, the curve (in λj-space) V †λj′=0(s, λj , a = j′)440

increases (shifts up) by an amount equal to or larger than the curve V †λj′=0(s, λj , a = j). Since both441

curves are convex and monotone decreasing in λj , and since V †λj′ (s, λj , a = j) > V †λj′ (s, λj , a = j′)442

at points λj < λadj,∗j,λj′
by definition of the index in Eq. 9 and convexity, this implies that the point of443

intersection of those two curves in λj-space has decreased (shifted left), i.e., λadj,∗j,λj′=0 ≤ λ
adj,∗
j,λj′=ε

.444

C Experimental Domains445

Constant Costs: In this setting, all arm-worker assignment costs are the same, i.e., every ci,j = c446

for all i ∈ [N ] and j ∈ [M ] but the transition probabilities differ. The transition probabilities are447

generated in a way that ensures intervening on is better than no-intervention, i.e., P ss
′

ij ≥ P ss
′

i0 for448

any pair of states s and s′ and any j ∈ [M ]. For the simulation, we assume 2 states and 2 workers,449

and vary the number of arms and budget. This domain captures real-world settings such as project450

management—one of the original inspirations of Whittle [1988], that we extend to multiple workers—451

where the goal is to find optimal assignments over a sequence of rounds, while ensuring equitable452

assignments among workers each round.453

Ordered Workers: In this setting, there is an ordering on the effectiveness among the workers—454

worker 1 produces better intervention effects than worker 2 on all arms, worker 2 produces better455
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intervention effects than worker 3, and so on. For the simulation, we generate transition probabilities456

in a way that ensures this ordering. This problem structure makes reward-maximizing (fairness-457

unaware) algorithms produce unfair solutions, since they prefer to over-assign to certain workers.458

Additionally, we assign the costs cijs by drawing values uniformly at random in the range [1− 10],459

making it challenging to find well-performing solutions that also satisfy the budget. We consider460

2 states and 3 workers, while varying the number of arms and budget. This domain is relevant to461

settings where workers have different levels of proficiency, i.e., deliver interventions that are more462

likely to boost arms to a good state, and where a measure of effort is considered during planning,463

causing different costs cij , e.g., due to differing travel times from workers to arms.464

Specialist Domain: In this domain, the MDPs for each arm have transition probabilities as given in465

Fig. 1. These MDPs have a structure such that certain states require “specialist” worker actions to466

move to a new state. This is the same as the anti-poaching example given in section 4.2. Specifically,467

the optimal policy should assign arms in state 0 to worker 1 and arms in state 1 to worker 2. However,468

the decoupled index computation (Step 1) produces indices that lead to suboptimal policies, since it469

considers restricted MDPs with only 2-actions at a time. Alternatively, our adjusted index computation470

(Step 1+2) reasons about inter-action effects properly and so should perform near-optimally. For the471

simulation, we consider 3 states and 2 workers.472

D Proof of Theorem 3473

First we, define the technical condition, called indexability, under which choosing top arms according474

to Whittle indices results in an optimal RMAB solution.475

Definition 1. Let Φ(λ) be the set of all states for which it is optimal to take a passive action over an476

active action that with per-unit λ charge. An arm is called indexable if Φ(λ) monotonically increases477

from ∅ to Si when λ increases from −∞ to +∞. An RMAB problem is indexable if all the arms are478

indexable.479

Theorem 3. When all workers are homogeneous (same costs and transition probabilities on arms480

after intervention) and satisfy indexability, then our framework outputs the optimal policy while being481

exactly fair to the workers.482

Proof. Consider an MWRMAB problem instance with N arms, M homogeneous workers with483

costs c, and per-worker per-round budget B. Upon relaxing the per-worker budget constraint, this484

MWRMAB problem reduces to an RMAB instance with N arms, 2 actions (intervention action485

with cost 1 or no-intervention action with cost o), and a total per-round budget of MbB/cc. Under486

indexability assumption, this problem can be solved using Whittle index policy Whittle [1988],487

wh—selectingMbB/cc arms with highest Whittle indices λi(s). Allocating the selected arms among488

all the workers, using our algorithm, ensures two properties:489

• The per-worker budget B is met: The total cost incurred to intervene MbB/cc selected arms of the490

RMAB solution is cMbB/cc. However,491

cMbB/cc ≤ cMB/c = MB.

Allocating these indivisible arms equally among all the workers would ensure that each worker492

incurs at most a cost of B.493

• Perfect fairness is achieved: When N ≥ MbB/cc, our algorithm distributes MbB/cc arms494

among M workers, such that each worker receives exactly bB/cc interventions. In the case when495

N < MbB/cc, then, our algorithm allocates bN/Mc+1 arms to each of the first (N−bN/McM)496

workers, and bN/Mc arms to the rest of the workers. Thus, the difference between the allocations497

between any two workers in any round is at most 1, implying that the difference between the costs498

incurred is at most c. This satisfies our fairness criteria.499

This completes the proof.500

E Limitations and Ethical Concerns501

In this work, we focus on scenarios where the costs of interventions are computed by the planner. In502

scenarios, such as allocating tasks on crowdsourcing platforms (for e.g., MTurk), where costs for503
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performing tasks are declared by strategic crowdworkers themselves in the form of bids, the workers504

may not report the true costs if doing so helps them gain higher benefit from the system. To avoid505

such strategic behavior, strategy-proof mechanisms are required. This leads to an interesting research506

direction, which is outside the scope of this paper.507

We also note that our algorithm is more apt for larger scale problems where OPT-fair is unable to run.508

For small scale problems, such as N = 5, it might be possible to execute OPT-fair algorithm and509

obtain a fair and efficient solution. However, as shown in Figures 4 and 5, our algorithm performs well510

even for N as large as 150. So, we expect our method to be applicable for obtaining fair allocations in511

larger scale problems.512

Ethical Concerns In practice, the workers may have other cultural and family constraints that are513

hard to capture and formalize in mathematical terms. Therefore, it is important to have human-AI514

collaboration to assess the output of our algorithm. Moreover, although our proposed framework515

enables intervention resources to be human workforce (who pull the arms) and considers fairness516

among workers, it is better suited for domains where the arms themselves are non-human entities,517

such as, areas in anti-poaching patrolling or machines in machine maintenance problem. In domains518

where arms correspond to human beings, it is also important to be mindful of fairness across the arms.519

F More Results520

See Fig. 5 for additional results on larger problem settings.521
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Figure 5: More results for the specialist domain with larger N and B.

We observe that the reward obtained by our proposed algorithm (CWI+BA) is almost similar to522

the reward-maximizing algorithm (Hawkins). Moreover, CWI+BA achieves maximum fairness.523

In contrast, Hawkins algorithm attains almost 0 fairness in all the runs. Note that, the OPT and524

OPT-fair algorithms could not be executed on larger instances because of larger memory requirements.525

Therefore, we could not compare against optimal algorithms for larger instances.526
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