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1 SUPPLEMENTARY EXPERIMENTS

Table 1: Person detection performance comparisons between
different pretraining methods.

| CUHK-SYSU |  PRW MVN

Pretrain

‘ AP Recall ‘ AP Recall ‘ AP

Recall

ImageNet-22k [2] | 81.8 88.0 90.0 95.4 73.7 83.3
ImageNet-1k [2] 61.9 69.0 65.6 73.8 59.5 80.9
SOLIDER [1] 82.1 88.3 89.3 95.5 73.9 85.3

Table 2: Continual person search performance comparisons
between different pretraining methods. We use IMG-22k as
the short for ImageNet-22k for illustration purposes.

Pretrain ‘ CUHK-SYSU PRW MVN Average
IMG-22k [2] 86.3/87.3 42.8/833 254/773 39.1/819
SOLIDER [1] 89.9/90.9 29.5/76.5 11.0/555 257/716

The effect of vision transformer pre-training. Following
previous peompt-based continual learning methods [7-10], we em-
ploy the Swin Transformer [5] pre-trained on ImageNet-22k [2]
to gaurentee the generalization capaility of the pre-trained trans-
former. To validate the impact of the pre-training, we further test
to employ Swin pre-trained with ImageNet-1K [2] in PoPS. We also
note that recent work, SOLIDER [1], also presents an effective Swin
variant pre-trained on large scale unlabeled person images [4] and
achieves superior performances when fine-tuned on downstream
tasks. For this, we also test PoPS based on the pre-trained SOLIDER
for continual person search.

As is shown in Table 1, we first compare the pre-training methods
on the person detection pre-training stage. It can be observed that
although SOLIDER [1] is trained on large scale person images,
the performance on person detection pre-training is similar to
the ImageNet-22k pre-trained Swin Transformer. In contrast, the
ImageNet-1k pre-trained model falls largely behind, suggesting
that the scale of pre-training data is significant to enable effective
prompt-based learning. We further conduct continual person search
with the SOLIDER [1] pre-trained model as in Table 2. Although
the model with SOLIDER performs more robustly on the CUHK-
SYSU dataset, the model fails to fit the more challenging PRW
and MovieNet-PS datasets. As the scene images usually contain
complex background objects in person search, we hypothesize that
the Swin trained with only person images can be less robust than
the ImageNet-22k pre-trained version, especially on challenging
person search datasets.

Comparison between prepend and prefix prompt tuning,.
To enable effective learning of visual prompts, DualPrompt [9] ex-
plores conducting prefix prompt tuning instead of directly prepend-
ing visual prompts and obtains improved model performance. CODA-
P [7] also follows the prefix prompt tuning mechanism. As we
employ a different vision transformer (Swin [5] vs ViT [3]) from
those works, we conduct comparisons between prepend and prefix
prompt tuning in the proposed PoPS. However, as in Table 3, it can
be observed that changing the prompt tuning mechanism barely
improves the model performance. For simplicity, we thus evaluate
all compared methods with the prepend prompt tuning mechanism.

Table 3: Continual person search performance comparisons
between different prompt tuning methods.

Pretrain ‘ CUHK-SYSU PRW MVN Average
prepend 86.3/87.3 42.8/833 254/773 39.1/819
prefix 85.2/86.4 43.2/83.8 24.8/759 39.2/819

Person detection performance in continual person search.
Person search is a multi-task learning problem that jointly learns
to conduct person detection and re-identification [11]. In addition
to the evaluated person search performance, the person detection
capability also has an impact to the overall person search accu-
racy and is affected during the continual learning procedure. We
thus evaluate the person detection performance of the proposed
method and the compared methods to make a more comprehensive
understanding. Different from the evaluation of person retrieval
performances, the person detection performances are tested on
approximately equal-sized test sets, we thus directly average the
results on different domains to obtain an overall performance mea-
surement.

As shown in Table 4, our proposed PoPS consistently achieves
superior overall person detection accuracy compared with previ-
ous prompt-based continual learning methods [7-10]. The anti-
forgetting performance is also outstanding on both CUHK-SYSU
[11] and PRW [12] datasets. It is also worth noting that the overall
person detection performance is less hindered by the continual
learning procedure compared with the person search performance.
This is mainly due to the person detection sub-tasks sharing more
common knowledge between different domains while the person re-
trieval sub-task requires more sophisticated domain-specific knowl-
edge. We also observe that PoPS even performs better than the
jointly trained upper-bound. This is mainly caused by the annota-
tion bias in different datasets, e.g. some of the small background
persons are not annotated in CUHK-SYSU [11] but annotated in
other datasets, which may confuse the model during training.

2 EXTENSIVE VISUALIZATION

Distribution of learned domain attributes. To qualitatively un-
derstand the correlation between learned domain attributes across
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Table 4: Continual person detection performance of our proposed PoPS. We collect both the person detection accuracy and
forgetting metrics to make a comprehensive understanding of the effectiveness of PoPS. All results are given as AP / Recall.

Method ‘ Accuracy (1) ‘ Forgetting (|)

| CUHK-SYSU  PRW  MovieNet-PS  Average | CUHK-SYSU PRW  Average
Pre-trained PoPS | 81.8/88.0  90.0/95.4 73.7/83.3 81.8/88.9 | - - -
Prompt + FT-seq | 725/787  883/924  85.6/954  82.1/888 | 135/125  50/51 9.3/88
L2P [10] 76.2/82.8  89.5/943  854/949  83.9/90.7 10.0/8.5 35/31 68/58
DualPrompt [9] 79.6/852  90.3/948  851/944  850/915 6.5/5.9 24/24 44/41
CODA-P [7] 80.2/87.2  88.7/957  85.6/952  84.8/927 7.0/ 4.8 57/20 64/34
S-Prompt [8] 83.5/87.9  89.4/944  84.8/94.1 85.9/92.1 3.0/ 4.1 21/24 26/33
PoPS 85.0/90.4  925/97.2  843/940  87.3/93.9 1.0/06 0.1/0.1 0.6/0.4
PoPS + Attention [7] 85.6/90.6 93.6/97.5  845/946  87.9/94.2 0.9/0.7 0.1/0.1 0.5/04
Prompt + upper-bound | 83.9/89.9  92.1/97.0 89.3/94.8 88.4/939 | - - --

different person search domains, we conduct t-sne visualization
of the learned domain attribute prototypes as well as the attribute
projection embeddings as in Figure 1 and figure 2. We refer to
CUHK-SYSU [11], PRW [12], and MovieNet-PS [6] as domain 0, 1,
and 2, respectively. It can be observed that the learned attribute pro-
totypes effectively capture the distinct differences between learned
domains. The attribute projection embeddings also clearly reflect

the boundary between different domains, demonstrating the effec-

tiveness of the proposed method.

20

(3]

10 15

Figure 1: T-sne visualization of learned domain attribute

prototypes in PoPS.
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