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Regularization”

A DETAILED THEORETICAL ANALYSIS

A.1 MOTIVATION

The results of this section are motivated by the following question.
Question A.1. Suppose that a function F : Rn → [0,∞) has many global minima and thatQ ⊂ Rn
is closed. How do we isolate the global minima of F that are closest toQwithout actually computing
the full set of global minima of F?

Intuitively, we would like to show that if ε > 0 is very small, then the global minima of the function

F (x) + εd(x,Q)

are very close to the global minima of F closest to Q. To achieve this we will have to introduce first
the concept of convergence of sets and then we will show that our intuition is correct by proving that
the set of global minima to the above relaxed function converges to a subset of global minima of F
closest to Q.

A.2 RELEVANT DEFINITIONS

Definition A.2. If F : Rn → [0,∞) satisfies lim|x|→∞ F (x) = +∞, we will say that F is coercive.

Definition A.3. For a coercive function F : Rn → [0,∞) we let SF = {x ∈ Rn : F (x) =
miny∈Rn F (y)} be coercive.
Lemma A.4. Assume that F : Rn → [0,∞) is continuous and coercive. Then F has at least one
global minimum. That is, SF is non-empty. Furthermore, SF is a compact set.
Definition A.5. Let F,G : Rn → [0,∞) are continuous and assume that F is coercive. Define

SF,G = {x ∈ SF : G(x) = inf
y∈SF

G(y)},

the minima of F which minimize G among the minima of F .
Definition A.6. Let Q ⊂ Rn be a closed set and assume that x ∈ Rn. Define the distance from x to
the set Q to be

d(x,Q) = inf
y∈Q
‖x− y‖.

Observe that since Q is a closed set we have that x ∈ Q if and only if d(x,Q) = 0 and otherwise
d(x,Q) > 0.
Definition A.7. Let A,B ⊂ Rn be compact sets. We define the Hausdorff distance between A and
B by

dH(A,B) = max{sup
x∈B

d(x,A), sup
y∈A

d(y,B)}.

Observe that dH(A,B) = 0 if and only if A = B.
Definition A.8. Let {Sδ}δ>0 be a family of compact subsets of Rn. We say that limδ→0 Sδ = S∗ if

lim
δ→0

dH(Sδ, S∗) = 0.

Lemma A.9. Let Sδ be a family of compact subsets of Rn, then limδ→0 Sδ = S∗ if and only if the
following two conditions hold.

1. If xδ ∈ Sδ converges to x, then x ∈ S∗

2. For every x ∈ S∗, there exists a family xδ ∈ Sδ with xδ → x.

The lemma is just an exercise in the definition.
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A.3 STATEMENT OF THE THEOREM

Theorem 2. Let F,G : Rn → [0,∞) are continuous and assume that F is coercive. Consider the
sets SF+δG, the set of points at which F + δG is globally minimum. The following are true:

1. If δn → 0 and SF+δnG → S∗, then

S∗ ⊂ SF,G

2. If δn → 0 then there is a subsequence δnk → 0 and a non-empty set S∗ ⊂ SF,G so that
SF+δnkG

→ S∗.

Proof. The second statement follows from the standard theory of Hausdorff distance on compact
metric spaces and the first statement. For the first statement, assume that SF+δnG → S∗. We wish
to show that S∗ ⊂ SF,G. Assume that xn is a sequence of global minima of F + δnG converging to
x∗. It suffices to show that x∗ ∈ SF,G. First let us observe that x∗ ∈ SF . Indeed, let

λ = inf
x∈Rn

F (x)

and assume that x ∈ SF . Then,

λ ≤ F (xn) ≤ (F + δnG)(xn) ≤ (F + δnG)(x) = λ+ δnG(x)→ λ.

Thus, since F is continuous and xn → x∗ we have that F (x∗) = λ which implies x∗ ∈ SF . Next,
define

µ = inf
x∈SF

G(x).

Let x̂ ∈ SF,G so that G(x̂) = µ. Now observe that, by the minimality of xn we have that

λ+ δnµ = (F + δnG)(x̂) ≥ (F + δnG)(xn) ≥ λ+ δnG(xn)

Thus,
G(xn) ≤ µ

for all n. Since G is continuous and xn → x∗ we have that G(x∗) ≤ µ which implies that G(x∗) =
µ since x∗ ∈ SF . Thus, x∗ ∈ SF,G.

B QUANTIZER

Here, we give an overview about the used quantization method. Consider a floating-point vari-
able wf to be mapped into a quantized domain using (b + 1) bits. Let Q be a set of (2k + 1)
quantized values, where k = 2b − 1. Considering linear quantization, Q can be represented as{
−1,−k−1k , ...,− 1

k , 0,
1
k , ...,

k−1
k , 1

}
, where 1

k is the size of the quantization bin. Now, wf can be
mapped to the b-bit quantization (Zhou et al., 2016) space as follows:

(B.1)wqo = 2× quantizeb

(
tanh(wf )

2max(|tanh(Wf )|)
+

1

2

)
− 1

where quantizeb(x) =
1

2b−1 round((2
b − 1)x), wf is a scalar, Wf is a vector, and wqo is a scalar in

the range [−1, 1]. Then, a scaling factor c is determined per layer to map the final quantized weight
wq into the range [−c,+c]. As such, wq takes the form cwqo, where c > 0, and wqo ∈ Q.

These learned parameters (b, α), as explained in Section 2.2, can be mapped to the quantizer pa-
rameters explained in Equation equation B.1. For (b + 1) bits quantization (the extra bit is the sign
bit):

k = 2b − 1, and c = α = 2b/2β (B.2)
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Table 4: Hyperparameters settings.

C CONVERGENCE ANALYSIS

Figure 7 (a), (b) show the convergence behavior of WaveQ by visualizing both accuracy and regu-
larization loss over finetuning epochs for two networks: CIFAR10 and SVHN. As can be seen, the
regularization loss (WaveQ Loss) is minimized across the finetuning epochs while the accuracy is
maximized. This demonstrates a validity for the proposed regularization being able to optimize the
two objectives simultaneously. Figure 7 (c), (d) contrasts the convergence behavior with and without
WaveQ for the case of training from scratch for VGG-11. As can be seen, at the onset of training,
the accuracy in the presence of WaveQ is behind that without WaveQ. This can be explained as a
result of optimizing for an extra objective in case of with WaveQ as compared to without. Shortly
thereafter, the regularization effect kicks in and eventually achieves ∼ 6% accuracy improvement.

The convergence behavior, however, is primarily controlled by the regularization strengths (λw, λβ).
As briefly mentioned in Section 2.2, (λw, λβ) ∈ [0,∞) is a hyperparameter that weights the relative
contribution of the proposed regularization objective to the standard accuracy objective.

We reckon that careful setting of λw, λβ across the layers and during the training epochs is essential
for optimum results (Choi et al., 2018b).
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Figure 7: Convergence behavior: accuracy and WaveQ regularization loss over fine-tuning epochs
for (a) CIFAR10, (b) SVHN. Comparing convergence behavior with and without WaveQ during
training from scratch (c) accuracy, (d) training loss. Network: VGG-11, 2-bit DoReFa quantization
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Figure 8: Math formula for setting λw and λβ during training iterations.
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Table 5: Performance of WaveQ on BERT.

MODEL: CamemBERT
BITWIDTH: W4,5/A8

SPOKEN PARTUT

UPOS LAS UPOS LAS

Baseline (FP) 96.99 81.37 97.65 93.43

Quantized w/ 
Unregularized Finetuning 89.91 72.32 90.89 84.25

Quantized w/ WaveQ 
Regularized Finetuning 

93.41 79.34 95.76 91.55

Table 6: Validation top-1 accuracy for training from scratch w/ WaveQ vs w/o WaveQ.
CIFAR10 (FP Accuracy = 74.53 %) SVHN (FP Accuracy = 96.4 %)

3 bits 4 bits 5 bits 3 bits 4 bits 5 bits

Training w/o WaveQ 9.6 31.8 70.3 61.7 79.1 90.6

Training w/ WaveQ 44.8 66.6 73.2 79.3 85.1 94.8

Improvement (%) (+35.2) (+34.8) (+2.9) (+17.6) (+6.0) (+4.2)

D WAVEQ PERFORMANCE ON BERT

Additionally, Table 5 provides layer-wise quantization with a heterogeneous mix of 4 and 5 bits for
the BERT model. In all cases, WaveQ improves UPOS and LAS metrics for two French treebanks
(SPOKEN, PARTUT).

E TRAINING FROM SCRATCH

Table 6 shows a comparison between training from scratch with WaveQ vs without. It can be seen
that incorporating WaveQ into the training process achieves strictly better accuracy than the baseline
training without WaveQ across all cases. Moreover, higher improvements are obtained at lower
bitwidths reaching to 35%

F REGULARIZATION STRENGTHS

Having a regularization strength is a normal setting associated with any regularization method. The
criterion for choosing λw and λβ is to balance the magnitude of regularization loss to be smaller
than the magnitude of accuracy loss. We then perform a grid search over a few points and chose the
ones with the best convergence.

From the theoretical perspective, while the theorem is stated in terms of a limit as the regularization
parameter vanishes, the proof in fact gives a corresponding stability result. Namely, if the regular-
ization parameter is sufficiently small relative to the main loss then the minimizers will be “almost”
quantized.
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