
Supplementary Materials

A FURTHER MEASUREMENT STUDY ON
VIDEO FREEZING OF LIVE STREAMING

Live streaming has a high requirement for data timeliness that can
affect and reflect client-side QoE, in which the traffic data that fails
to reach receivers in time will introduce video freezes of players,
e.g., Tiktok Live and Youtube Live. To better depict data timeliness,
both freezing frequency and duration on the client side are usually
employed by live platforms to evaluate their selected CDN per-
formance. We (as a CDN vendor) can learn video freezing occurs
once the player buffer becomes empty, i.e., no live data can be up-
loaded to the player before all cached data in the player has been
consumed. This is because (i) the player rendering speed exceeds
network goodput from senders to receivers; (ii) the lost data cannot
be recovered in time, causing longer intra-stream HOL blocking
time, especially in the common designs of TCP and QUIC protocol.
This paper mainly focuses on enhancing the timeliness of loss recov-
ery by optimizing recovery latency without introducing significant
overhead. In this paper, client-side video freezing specifically refers
to the freeze caused by HOL blocking due to untimely loss recovery.
Video rendering freezes are out of our research.

To further explore the performance of live streaming in terms
of video freeing, we have made further large-scale measurements
and collected one-year player freezes of a famous live platform
in 4 areas (e.g., East Asia, Southeast Asia, Latin America, and the
Middle East). For more convenient presentations, we aggregate
the measurement results and show every-100s freezing times and
duration for each live stream, as Figure 1 shows. The following
observations can be obtained.

Observation #1: The current player freezing of live streams
is less-than-perfect. For every 100s1, clients suffer from video
freezing of over 1.3s (worse still, ∼2.5s in Area 4), on average (as
Figure 1(a) shows), in which nearly 1-time freeze usually makes
customers intolerable. Meanwhile, video freezes of more than 2s or
2 times often appear after 20:00, as Figure 1(b) shows, which shows
the freezing changes in the "best-performed" Area 1.

Observation #2: The same transmission control incurs differ-
entiated video freezes.With differentiated network conditions,
the identically employed sending and recovery policy introduces
diverse freezing results in 4 areas, where the clients in Area 4 expe-
rience poorer QoE and more HOL blockings than the other 3 areas,
as Figure 1(a) shows. In particular, each video freeze of Area 4 lasts
over 2s, on average, significantly higher than others. Besides, the
dynamic network status over time in a day also introduces obvious
fluctuations of video freezes. For example, nearly 2× freezing in
terms of both times and duration can easily arise in the evening
(e.g., 20:00 ∼ 23:00) compared to in the morning (e.g., 3:00 ∼ 7:00),
as Figure 1(b) shows.

Therefore, the pre-configured and fixed transmission (e.g., loss
recovery) policy cannot well adapt to differentiated conditions and
the always-changed status of networks.

1Our measurements also show the average QUIC connection lifetime of each live
stream is 99.6s.

Area 1 Area 2 Area 3 Area 40.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Vi
de

o
fre

ez
in

g
tim

es

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

Vi
de

o
fre

ez
in

g
du

ra
tio

n
(s

)

Freezing times per 100s
Freezing duration per 100s

(a) Area-variant video freezes
00:00 04:00 08:00 12:00 16:00 20:00 24:000.2

0.4

0.6

0.8

1.0

1.2

1.4

Vi
de

o
fre

ez
in

g
tim

es

0.4

0.8

1.2

1.6

2.0

2.4

2.8

Vi
de

o
fre

ez
in

g
du

ra
tio

n
(s

)

Freezing times per 100s
Freezing duration per 100s

(b) Time-variant video freezes

Figure 1: The times and duration of player freezes.

0.0 0.2 0.4 0.6 0.8 1.0
On-mode transmission distribution

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Packet sent
Packet loss

(a) On-mode cumulative packets

Avg. (0.0, 0.2] (0.2, 0.6] (0.6, 1.0]
On-mode transmission distribution

0

2%

4%

6%

8%

10%

Lo
ss

 ra
te

(b) On-mode loss distribution

Figure 2: The off-mode is control-unfriendly.

Time

Tthres

Loss is detected Loss is resent
Loss is reinjected Loss is acknowledged

t1 t2 t3 t5 t6

off-mode

T
im

e
 e

la
p

s
e

d
 s

in
c

e
 l
a

s
t

s
e

n
t

Figure 3: An example of how AutoRec reinjects packets.

B FURTHER ANALYSIS OF ON-OFF MODE
B.1 On-Off Mode Switching is Challenging
The on-off mode switching is unfriendly to transmission control. In
this experiment, we conduct large-scale measurements in a famous
live-streaming application. Figure 2(a) describes the cumulative
distribution of lost (or sent) packets in different on-mode stages.
We can learn more aggressive actions are performed at the early
stage of on-mode, which results in more detected packet losses.
For example, in the first 20% of each on-mode duration, 30% of
packets are sent out, incurring 40% of all detected losses. Besides,
this early stage also introduces more deteriorated loss_rate (i.e.,
7.8%) compared to the average values (i.e., 5.8%, 5.0% and 4.8%,
respectively) of the entire and other stages in each on-mode, as
shown in Figure 2(b). This is because the existing transmission
controls were originally designed for bulk traffic, which cannot be
well matched with the ubiquitous on-off mode of live streams.

ACM MM, 2024, Melbourne, Australia

Avg 50th- 80th- 90th- 95th-0

30

60

90

120

150

180
Of

f-M
od

e
du

ra
tio

n
(s

) Baseline
AutoRec

Figure 4: The average cumulative duration of off-mode for
each stream.

B.2 Off-Mode Can be Used for Reinjection
Figure 3 illustrates an example of AutoRec-based loss reinjection
with several critical events related to packet loss handling. In this
figure, a lost packet is detected and resent out at t1. At time t2,
the time elapsed since the last transmission of this packet has
exceeded threshold Tthres. Therefore, we will reinject a replica of
this packet even if the sender is currently not in off-mode. From t3
to t5, the AutoRec sender enters off-mode, which enables another
loss duplicate to be reinjected. At t6, one of the reinjected replicas is
acknowledged and the lost data will be deleted from the reinjection
queue.

B.3 AutoRec Reduces Off-Mode Duration
The proposed AutoRec aims to leverage ubiquitous off-mode to
reduce the unsatisfied recovery latency of live streaming, in which
this on-off mode switching has already been demonstrated un-
friendly to the existing transmission controls in [1, 2]. During our
real-network evaluations, we also found the control-unfriendly off-
mode can be lowered in terms of its duration, as Figure 4 shows.
The average cumulative duration can be decreased by 8.47% with
the value of 4.1s, whose 80th-, 90th- and 95th-percentile values are
reduced by 1.2s (3.0%), 4.7s (5.9%) and 16.0s (9.2%), respectively.

C FURTHER IMPLEMENTATION DETAILS OF
QUIC-BASED AUTOREC

To achieve the required function of reinjection queue, we have
added the following attributes for each data in the existing un-
acknowledged packet queue (unack_pkt_queue) in LSQUIC: (i)
data_resent_unacked that is used to mark the lost data that has
been resent but unacknowledged by its receiver.; (ii) rein_times
that records the performed reinjection times; (iii) last_resent_time
that shows the last retransmission timestamp. The first data (with
data_resent_unacked = 1) in the head of unack_pkt_queue will
be fetched and then be resent out when the off-mode is entered
or time elapsed since it last sent exceeds threshold Tthres. If the
rein_times exceeds the threshold Athres, data_resent_unacked will
be marked as 0. The overview of the AutoRec implementation can
be depicted as Figure 5 shows, in which the orange and blue areas
represent newly added and upgraded functions, respectively. The
send_ctl_can_rein function can decide whether to perform loss
reinjection. Besides, we can leverage send_ctl_unacked_remove
and send_ctl_unacked_append to maintain the reinjection queue
by inserting and deleting lost data. In particular, the presented Re-
dundancy Adapter is implemented and achieves the reinjection

lsquic_send_ctl_got_ack

send_ctl_handle_lost_packet

send_ctl_can_rein

sent_packets_out

process_connections

YES

lsquic_send_ctl_

reschedule_packets

full_

conn_ci_is_tickable

NO
send_ctl_unacked_

remove

send_ctl_unacked_

append

rein_queue

delete

insert

R
e

d
u

n
d

a
n

c
y
 A

d
a

p
te

r

WAITING

 (if not tickable)

Reinjection Controller

Figure 5: The AutoRec implementation.

Bitrate Loss rate RTT Bandwidth Buffer-50%

-25%

0

10%

20%

30%

40%

50%

Ch
an

ge
 (r

at
e)

Utility (max)
Utility (min)

Retran_ratio (max)
Retran_ratio (min)

Goodput(max)
Goodput(min)

Figure 6: Utility and overhead in testbed experiments.

policy (controlled by Athres) by adjusting the conditions of insert,
delete and move operations for rein_queue.

D FURTHER EVALUATION
In this section, we continue to use the following twometrics defined
in the main body of this article to evaluate the performance of
AutoRec.

Recovery latency is defined as the duration from when any data
is detected lost to when resending a recovery packet that will be
successfully received. Tunit is defined as the sum of the delayed time
of ACK packets, RTT, and loss detection time, representing the
time elapsed for a data packet from being sent to being retransmit-
ted. recovery latency consists of zero or more Tunit, reflecting the
additional time for loss recovery besides first Tunit.

Recovery deterioration rate is defined as the ratio between the
amount of lost data (Dk) that takes two or more Tunit (i.e., recovery
latency ≥ Tunit) to be recovered, to the amount of all lost data.

D.1 Further Testbed Evaluation
The designed utility function U(Athres) is employed to evaluate
the tradeoff of recovery latency and reinjection overhead. Figure
6 shows the utility value can be optimized by the ratio of 21.3% ∼
39.9% under different network environments (except for loss_rate
= 15%). In these conditions, retran_ratio is additionally introduced
by 3.5% ∼ 5.1% while goodput is reduced by 3.8% ∼ 11.2%. Besides,
we can also find higher loss_rate (e.g., 15%) makes AutoRec hard to
achieve a better balance between recovery latency and reinjection
cost. For example, when loss_rate ≤ 10%, AutoRec can optimize the
utility by 11.1% ∼ 35.9% while loss_rate = 15% results in the serious
deterioration of utility, goodput and retran_ratio by 39.9%, 48.5%
and 8.8%, respectively.

Supplementary Materials ACM MM, 2024, Melbourne, Australia

Avg. 80th- 90th- 95th-0

30

60

90

120

150

180

210

De
te

rio
ra

te
d

pa
ck

et
 a

m
ou

nt

Baseline (Recovery latency Tunit)
AutoRec (Recovery latency Tunit)
Baseline (Recovery latency Tunit and Retran_times 2)
AutoRec (Recovery latency Tunit and Retran_times 2)

(a) Deteriorated packet amount

[20th-,30th-] [50th-,60th-] [70th-,80th-] [90th-,95th-]
SRTT

0

15%

30%

45%

60%

75%

90%

Op
tim

iza
tio

n
ra

tio

0

150

300

450

600

750

900

M
ax

im
um

 re
co

ve
ry

 la
te

nc
y

(m
s)Recovery latency (change ratio)

Recovery deterioration rate (change ratio)
Maximum recovery latency (baseline)
Maximum recovery latency (AutoRec)

(b) recovery latency vs. SRTT ranges

Avg. 50th- 80th- 90th- 95th-0

0.5

1.0

1.5

2

2.5

3.0

Go
od

pu
t (

M
bp

s)

Goodput (baseline)
Goodput (AutoRec)
Retran_ratio (AutoRec)
Retran_ratio (baseline)

0

10%

20%

30%

40%

50%

60%

Re
tr

an
_r

at
io

(c) Reinjection overhead

[20th-,30th-] [50th-,60th-] [70th-,80th-] [90th-,95th-]
SRTT

0

5%

10%

15%

20%

25%
Ut

ili
ty

 o
pt

im
iz

at
io

n
Retran_ratio
Goodput
Utility Optimization

0

5%

10%

15%

20%

25%

In
cu

rre
d

ov
er

he
ad

(d) Utility & cost vs. SRTT ranges.

Figure 7: AutoRec benefits and overhead in real networks.

D.2 Further Real-Network Evaluation
To further demonstrate the recovery deterioration rate benefits, we
evaluate the amount of deteriorated packets for each live stream,
as Figure 7(a) shows. We can learn 34.7 lost packets, on average,
become deteriorated (i.e., recovery latency > Tunit) in the baseline
scheme , which is optimized to 11.8 (by AutoRec) with a ratio of
66.0%. Besides, 5% and 10% live streams suffer from 85 and 36 de-
teriorated packets less, respectively. This figure also depicts the
amount of deteriorated losses that actually require two or more
retransmissions (i.e., retran_times ≥ 2) for their recoveries. We
can learn the average packet amount with recovery latency > Tunit
and retran_times ≥ 2 is optimized by 54.3%, whose 90th- and 95th-
percentile is lowered by 15 and 34, respectively. As RTT have sig-
nificant effects on client-side waiting time for loss recovery, we
evaluate the recovery latency benefits under the different ranges of
SRTT. As Figure 7(b) shows, as SRTT increases, the optimization
effect of AutoRec on recovery latency also improves. For streams
with a larger SRTT (i.e., SRTT in the last 20%), AutoRec can reduce
the recovery deterioration rate and recovery latency by 50% and 35%
respectively. Therefore, AutoRec can achieve targeted optimization
for recovery latency of high-RTT live streams.

As for the incurred cost, Figure 7(c) shows AutoRec makes the
average goodput to deteriorate only with a ratio of 3.1% (from
983.5Kbps to 952.9Kbps). In particular, the incurred goodput dete-
rioration keeps controllable within a stable range from 2.89% to
3.41%, which is based on the observed 50th-, 80th-, 90th- and 95th-
percentile values. Besides, only 2.5% retran_ratio is additionally
introduced, on average, inwhich only 10% live streams require an ex-
tra 7.1% retran_ratio for their loss recoveries. As Figure 7(d) shows,
For streams where SRTT is in the top 80%, AutoRec demonstrates
a substantial optimization effect on utility (up to 17%), causing at
most a 5.1% deterioration in goodput and a 3.6% increase in the
additional retran_ratio. However, for streams with a larger SRTT
(i.e., SRTT in the last 20%), AutoRec’s optimization effect on utility
is not significant and the goodput is seriously affected by loss rein-
jection. Therefore, we can see that AutoRec is capable of effectively
keeping the introduced overhead within our acceptable range in
most case.

REFERENCES
[1] Tao Zhang, Jianxin Wang, Jiawei Huang, Jianer Chen, Yi Pan, and Geyong Min.

Tuning the aggressive TCP behavior for highly concurrent HTTP connections in
intra-datacenter. IEEE/ACM Transactions on Networking, 25(6):3808–3822, 2017.

[2] Yuchung Cheng, Neal Cardwell, Soheil Hassas Yeganeh, and Van Jacobson. Deliv-
ery rate estimation. IETF. Internet-Draft draft-cheng-iccrg-delivery-rate-estimation-
02, 2022.

	A Further Measurement Study on Video Freezing of Live Streaming
	B Further Analysis of On-Off Mode
	B.1 On-Off Mode Switching is Challenging
	B.2 Off-Mode Can be Used for Reinjection
	B.3 AutoRec Reduces Off-Mode Duration

	C Further Implementation Details of QUIC-based AutoRec
	D Further Evaluation
	D.1 Further Testbed Evaluation
	D.2 Further Real-Network Evaluation

	References

