
Under review as a conference paper at ICLR 2021

A EXTENSION TO ARBITRARY DISTRIBUTIONS

Overall notations. Let X ∈ R(Rd) denote a random vector on Rd with αX ∈ P(Rd) its law (a
positive Radon measure with unit mass). By definition, its expectation denoted E(X) reads E(X) =�
Rd xdαX(x) ∈ Rd, and for any continuous function f : Rd → Rr, E(f(X)) =

�
Rd f(x)dαX(x).

In the following, two random vectors X and X � with same law αX are considered indistinguishable,
noted X � ∼ X . Letting f : Rd �→ Rr denote a function on Rd, the push-forward operator by f ,
noted f� : P(Rd) �→ P(Rr) is defined as follows, for any g continuous function from Rd to Rr (g
in C(Rd;Rr)):

∀g ∈ C(Rd;Rr)

�

Rr

gd(f�α)
def.
=

�

Rd

g(f(x))dα(x)

Letting {xi} be a set of points in Rd with wi � 0 such that
�

i wi = 1, the discrete measure
αX =

�
i wiδxi is the sum of the Dirac measures δxi weighted by wi.

Invariances. In this paper, we consider functions on probability measures that are invariant with
respect to permutations of coordinates. Therefore, denoting Sd the d-sized permutation group, we
consider measures over a symmetrized compact Ω ⊂ Rd equipped with the following equivalence
relation: for α, β ∈ P(Ω),α ∼ β ⇐⇒ ∃σ ∈ Sd,β = σ�α, such that a measure and its permuted
counterpart are indistinguishable in the corresponding quotient space, denoted alternatively P(Ω)/∼
or R(Ω)/∼. A function ϕ : Ωn → R is said to be invariant (by permutations of coordinates) iff
∀σ ∈ Sd,ϕ(x1, . . . , xn) = ϕ(σ(x1), . . . ,σ(xn)) (Definition 1).

Tensorization. Letting X and Y respectively denote two random vectors on R(Rd) and R(Rp),
the tensor product vector X⊗Y is defined as: X⊗Y

def.
= (X

�
, Y

�
) ∈ R(Rd×Rp), where X

�
and Y

�

are independent and have the same law as X and Y , i.e. d(αX⊗Y)(x, y) = dαX(x)dαY (y). In the
finite case, for αX = 1

n

�
i δxi and αY = 1

m

�
j δyj , then αX⊗Y = 1

nm

�
i,j δxi,yj , weighted sum

of Dirac measures on all pairs (xi, yj). The k−fold tensorization of a random vector X ∼ αX , with
law α⊗k

X , generalizes the above construction to the case of k independent random variables with
law αX . Tensorization will be used to define the law of datasets, and design universal architectures
(Appendix C).

Invariant layers. In the general case, a G-invariant layer fϕ with invariant map ϕ : Rd×Rd → Rr

such that ϕ satisfies

∀(x1, x2) ∈ (Rd)2, ∀σ ∈ G,ϕ(σ(x1),σ(x2)) = ϕ(x1, x2)

is defined as

fϕ : X ∈ R(Rd)/∼ �→ EX�∼X [ϕ(X,X �)] ∈ R(Rr)/∼

where the expectation is taken over X � ∼ X . Note that considering the couple (X,X �) of indepen-
dent random vectors X � ∼ X amounts to consider the tensorized law αX ⊗ αX .
Remark 9. Taking as input a discrete distribution αX =

�n
i=1 wiδxi , the invariant layer outputs

another discrete distribution αY =
�n

i=1 wiδyi
with yi =

�n
j=1 wjϕ(xi, xj); each input point xi

is mapped onto yi summarizing the pairwise interactions with xi after ϕ.
Remark 10. (Generalization to arbitrary invariance groups) The definition of invariant ϕ can be gen-
eralized to arbitrary invariance groups operating on Rd, in particular sub-groups of the permutation
group Sd. After (Maron et al., 2020) (Thm 5), a simple and only way to design an invariant linear
function is to consider ϕ(z, z�) = ψ(z + z�) with ψ being G-invariant. How to design invariant
functions in the general non-linear case is left for further work.
Remark 11. Invariant layers can also be generalized to handle higher order interactions functionals,
namely fϕ(X)

def.
= EX2,...,XN∼X [ϕ(X,X2, . . . , XN)], which amounts to consider, in the discrete

case, N -uple of inputs points (xj1 , . . . , xjN).

13

Under review as a conference paper at ICLR 2021

B PROOFS ON REGULARITY

Wasserstein distance. The regularity of the involved functionals is measured w.r.t. the 1-
Wasserstein distance between two probability distributions (α,β) ∈ P(Rd)

W1(α,β)
def.
= min

π1=α,π2=β

�

Rd×Rd

||x− y||dπ(x, y) def.
= min

X∼α,Y∼β
E(||X − Y ||)

where the minimum is taken over measures on Rd×Rd with marginals α,β ∈ P(Rd). W1 is known
to be a norm (Santambrogio, 2015), that can be conveniently computed using

W1(α,β) = W1(α− β) = max
Lip(g)�1

�

Rd

gd(α− β),

where Lip(g) is the Lipschitz constant of g : Rd → R with respect to the Euclidean norm (unless
otherwise stated). For simplicity and by abuse of notations, W1(X,Y) is used instead of W1(α,β)
when X ∼ α and Y ∼ β. The convergence in law denoted � is equivalent to the convergence in
Wasserstein distance in the sense that Xk � X is equivalent to W1(Xk, X) → 0.

Permutation-invariant Wasserstein distance. The Wasserstein distance is quotiented according
to the permutation-invariance equivalence classes: for α,β ∈ P(Rd)

W1(α,β)
def.
= min

σ∈Sd

W1(σ�α,β) = min
σ∈Sd

max
Lip(g)�1

�

Rd

g ◦ σdα−
�

Rd

gdβ

such that W1(α,β) = 0 ⇐⇒ α ∼ β. W1 defines a norm on P(Rd)/∼.

Lipschitz property. A map f : R(Rd) → R(Rr) is continuous for the convergence in law (aka
the weak∗ of measures) if for any sequence Xk � X , then f(Xk) � f(X). Such a map is
furthermore said to be C-Lipschitz for the permutation invariant 1-Wasserstein distance if

∀ (X,Y) ∈ (R(Rd)/∼)
2, W1(f(X), f(Y)) � CW1(X,Y). (7)

Lipschitz properties enable us to analyze robustness to input perturbations, since it ensures that if
the input distributions of random vectors are close in the permutation invariant Wasserstein sense,
the corresponding output laws are close, too.

Proofs of section 3.2.

Proof. (Proposition 1). For α,β ∈ P(Rd), Proposition 1 from (De Bie et al., 2019) yields
W1(fϕ(α), fϕ(β)) � 2r Lip(ϕ)W1(α,β), hence, for σ ∈ G,

W1(σ�fϕ(α), fϕ(β)) � W1(σ�fϕ(α), fϕ(α)) +W1(fϕ(α), fϕ(β))

� W1(σ�fϕ(α), fϕ(α)) + 2r Lip(ϕ)W1(α,β)

hence, taking the infimum over σ yields

W1(fϕ(α), fϕ(β)) � W1(fϕ(α), fϕ(α)) + 2r Lip(ϕ)W1(α,β)

� 2r Lip(ϕ)W1(α,β)

Since fϕ is invariant, for σ ∈ G, fϕ(z) = fϕ(σ�z),

W1(fϕ(α), fϕ(β)) � 2r Lip(ϕ)W1(σ�α,β)

Taking the infimum over σ yields the result.

Proof. (Proposition 2). To upper bound W1(ξ�fϕ(τ�α), fϕ(α)) for α ∈ P(Rd), we proceed as
follows, using proposition 3 from (De Bie et al., 2019) and proposition 1:

W1(ξ�fϕ(τ�αϕ(α)), fϕ(α)) � W1(ξ�fϕ(τ�α), fϕ(τ�α)) +W1(fϕ(τ�α), fϕ(α))

� ||ξ − id||L1(fϕ(τ�α)) + Lip(fϕ)W1(τ�α,α)

� sup
y∈fϕ(τ(Ω))

||ξ(y)− y||2 + 2r Lip(ϕ) sup
x∈Ω

||τ(x)− x||2

14

Under review as a conference paper at ICLR 2021

For σ ∈ G, we get

W1(σ�ξ�fϕ(τ�α), fϕ(α)) � W1(σ�ξ�fϕ(τ�α), ξ�fϕ(τ�α)) +W1(ξ�fϕ(τ�α), fϕ(α))

Taking the infimum over σ yields

W1(ξ�fϕ(τ�α), fϕ(α)) � W1(ξ�fϕ(τ�α), fϕ(α))

� sup
y∈fϕ(τ(Ω))

||ξ(y)− y||2 + 2rC(ϕ) sup
x∈Ω

||τ(x)− x||2

Similarly, for α,β ∈ (P(Rd))2,

W1(ξ�fϕ(τ�α), ξ�fϕ(τ�β)) � Lip(ξ)W1(fϕ(τ�α), fϕ(τ�β))

� Lip(ξ) Lip(fϕ)W1(τ�α, τ�β)

� 2r Lip(ϕ) Lip(ξ) Lip(τ)W1(α,β)

hence, for σ ∈ G,

W1(σ�ξ�fϕ(τ�α), ξ�fϕ(τ�β)) � W1(σ�ξ�fϕ(τ�α), ξ�fϕ(τ�α))

+W1(ξ�fϕ(τ�α), ξ�fϕ(τ�β))

and taking the infimum over σ yields

W1(ξ�fϕ(τ�α), ξ�fϕ(τ�β)) � W1(ξ�fϕ(τ�α), ξ�fϕ(τ�β))

� 2r Lip(ϕ) Lip(ξ) Lip(τ)W1(α,β)

Since τ is equivariant: namely, for α ∈ P(Rd), σ ∈ G, τ�(σ�α) = σ�(τ�α), hence, since fϕ is
invariant, fϕ(τ�(σ�α)) = fϕ(σ�(τ�α)) = fϕ(τ�α), hence for σ ∈ G,

W1(ξ�fϕ(τ�α), ξ�fϕ(τ�β)) � 2r Lip(ϕ) Lip(ξ) Lip(τ)W1(σ�α,β)

Taking the infimum over σ yields the result.

C PROOFS ON UNIVERSALITY

Detailed proof of Theorem 1. This paragraph details the result in the case of Sd−invariance,
while the next one focuses on invariances w.r.t. products of permutations. Before providing a proof
of Theorem 1 we first state two useful lemmas. Lemma 1 is mentioned for completeness, referring
the reader to De Bie et al. (2019), Lemma 1 for a proof.

Lemma 1. Let (Sj)
N
j=1 be a partition of a domain including Ω (Sj ⊂ Rd) and let xj ∈ Sj .

Let (ϕj)
N
j=1 a set of bounded functions ϕj : Ω → R supported on Sj , such that

�
j ϕj = 1

on Ω. For α ∈ P(Ω), we denote α̂N
def.
=

�N
j=1 αjδxj with αj

def.
=

�
Sj

ϕjdα. One has, denoting

Δj
def.
= maxx∈Sj ||xj − x||,

W1(α̂N ,α) � max
1�j�N

Δj .

Lemma 2. Let f : Rd → Rq a 1/p-Hölder continuous function (p � 1), then there exists a constant
C > 0 such that for all α,β ∈ P(Rd), W1(f�α, f�β) � CW1(α,β)

1/p.

Proof. For any transport map π with marginals α and β, 1/p-Hölderness of f with constant C yields�
||f(x)−f(y)||2dπ(x, y) � C

�
||x−y||1/p2 dπ(x, y) � C

��
||x− y||2dπ(x, y)

�1/p
using Jensen’s

inequality (p � 1). Taking the infimum over π yields W1(f�α, f�β) � CW1(α,β)
1/p.

Now we are ready to dive into the proof. Let α ∈ P(Rd). We consider:

• h : x = (x1, . . . , xd) ∈ Rd �→
��

1�j1<...<ji�d xj1 · . . . · xji

�
i=1...d

∈ Rd the collection
of d elementary symmetric polynomials; h does not lead to a loss in information, in the
sense that it generates the ring of Sd-invariant polynomials (see for instance Cox et al.
(2007), chapter 7, theorem 3) while preserving the classes (see the proof of Lemma 2,
appendix D from Maron et al. (2020));

15

Under review as a conference paper at ICLR 2021

• h is obviously not injective, so we consider π : Rd → Rd/Sd the projection onto Rd/Sd:
h = h̃ ◦π such that h̃ is bijective from π(Ω) to its image Ω

�
, compact of Rd; h̃ and h̃−1 are

continuous;
• Let (ϕi)i=1...N the piecewise affine P1 finite element basis, which are hat functions on a

discretization (Si)i=1...N of Ω
� ⊂ Rd, with centers of cells (yi)i=1...N . We then define

g : x ∈ Rd �→ (ϕ1(x), . . . ,ϕN (x)) ∈ RN ;

• f : (α1, . . . ,αN) ∈ RN �→ F
��N

i=1 αiδh̃−1(yi)

�
∈ R.

We approximate F using the following steps:

• Lemma 1 (see Lemma 1 from De Bie et al. (2019)) yields that h�α and �h�α =
�N

i=1 αiδyi

are close: W1(h�α,�h�α) �
√
d/N1/d;

• The map h̃−1 is regular enough (1/d-Hölder) such that according to Lemma 2, there exists
a constant C > 0 such that

W1(h̃
−1
� (h�α), h̃

−1
�

�h�α) � CW1(h�α,�h�α)
1/d � Cd1/2d/N1/d2

Hence W1(α, h̃
−1
�

�h�α) := infσ∈Sd
W1(σ�α, h̃

−1
�

�h�α) � Cd1/2d/N1/d2

.

Note that h maps the roots of polynomial
�d

i=1(X − x(i)) to its coefficients (up to signs).
Theorem 1.3.1 from Rahman & Schmeisser (2002) yields continuity and 1/d-Hölderness
of the reverse map. Hence h̃−1 is 1/d-Hölder.

• Since Ω is compact, by Banach-Alaoglu theorem, we obtain that P(Ω) is weakly-* com-
pact, hence P(Ω)/∼ also is. Since F is continuous, it is thus uniformly weak-* con-
tinuous: for any ε > 0, there exists δ > 0 such that W1(α, h̃

−1
�

�h�α) � δ implies

|F(α) − F(h̃−1
�

�h�α)| < ε. Choosing N large enough such that Cd1/2d/N1/d2 � δ

therefore ensures that |F(α)− F(h̃−1
�

�h�α)| < ε.

Extension of Theorem 1 to products of permutation groups.
Corollary 1. Let F : P(Ω)/∼ → R a continuous Sd1

× . . . × Sdn
-invariant map (

�
i di = d),

where Ω is a symmetrized compact over Rd. Then ∀ε > 0, there exists three continuous maps f, g, h
such that

∀α ∈ M1
+(Ω)/∼, |F(α)− f ◦ E ◦ g(h�α)| < ε

where h is invariant; g, h are independent of F .

Proof. We provide a proof in the case G = Sd × Sp, which naturally extends to any product
group G = Sd1

× . . . × Sdn
. We trade h for the collection of elementary symmetric polynomi-

als in the first d variables; and in the last p variables: h : (x1, . . . , xd, y1, . . . , yp) ∈ Rd+p �→
([
�

1�j1<...<ji�d xj1 . . . xji]
d
i=1; [

�
1�j1<...<ji�p yj1 . . . yji]

p
i=1) ∈ Rd+p up to normalizing con-

stants (see Lemma 4). Step 1 (in Lemma 3) consists in showing that h does not lead to a loss of
information, in the sense that it generates the ring of Sd × Sp−invariant polynomials. In step 2 (in
Lemma 4), we show that h̃−1 is 1/max(d, p)−Hölder. Combined with the proof of Theorem 1,
this amounts to showing that the concatenation of Hölder functions (up to normalizing constants) is
Hölder. With these ingredients, the sketch of the previous proof yields the result.

Lemma 3. Let the collection of symmetric invariant polynomials [Pi(X1, . . . , Xd)]
d
i=1

def.
=

[
�

1�j1<...<ji�d Xj1 . . . Xji]
d
i=1 and [Qi(Y1, . . . , Yp)]

p
i=1 = [

�
1�j1<...<ji�p Yj1 . . . Yji]

p
i=1. The

d+p−sized family (P1, . . . , Pd, Q1, . . . , Qp) generates the ring of Sd×Sp−invariant polynomials.

Proof. The result comes from the fact the fundamental theorem of symmetric polynomials (see Cox
et al. (2007) chapter 7, theorem 3) does not depend on the base field. Every Sd×Sp−invariant poly-
nomial P (X1, . . . , Xd, Y1, . . . , Yp) is also Sd × Ip−invariant with coefficients in R[Y1, . . . , Yp],
hence it can be written P = R(Y1, . . . , Yp)(P1, . . . , Pd). It is then also Sp−invariant with
coefficients in R[P1, . . . , Pd], hence it can be written P = S(Q1, . . . , Qp)(P1, . . . , Pd) ∈
R[P1, . . . , Pd, Q1, . . . , Qp].

16

Under review as a conference paper at ICLR 2021

Lemma 4. Let h : (x, y) ∈ Ω ⊂ Rd+p �→ (f(x)/C1, g(y)/C2) ∈ Rd+p where Ω is compact,
f : Rd → Rd is 1/d−Hölder with constant C1 and g : Rp → Rp is 1/p−Hölder with constant C2.
Then h is 1/max(d, p)−Hölder.

Proof. Without loss of generality, we consider d > p so that max(d, p) = d, and f, g normalized (f.i.
∀x, x0 ∈ (Rd)2, ||f(x)−f(x0)||1 � ||x−x0||1/d1). For (x, y), (x0, y0) ∈ Ω2, ||h(x, y)−h(x0, y0)||1 �
||f(x) − f(x0)||1 + ||g(y) − g(y0)||1 � ||x − x0||1/d1 + ||y − y0||1/p1 since both f, g are Hölder. We
denote D the diameter of Ω, such that both ||x−x0||1/D � 1 and ||y− y0||1/D � 1 hold. Therefore

||h(x, y) − h(x0, y0)||1 � D1/d
�

||x−x0||1
D

�1/d

+D1/p
�

||y−y0||1
D

�1/p

� 21−1/dD1/p−1/d||(x, y) −
(x0, y0)||1/d1 using Jensen’s inequality, hence the result.

In the next two paragraphs, we focus the case of Sd−invariant functions for the sake of clarity,
without loss of generality. Indeed, the same technique applies to G−invariant functions as h in that
case has the same structure: its first dX components are SdX

−invariant functions of the first dX
variables and its last dY components are SdY

−invariant functions of the last variables.

Extension of Theorem 1 to distributions on spaces of varying dimension.
Corollary 2. Let I = [0; 1] and, for k ∈ [1; dm],Fk : P(Ik) → R continuous and Sk−invariant.
Suppose (Fk)k=1...dm−1 are restrictions of Fdm

, namely, ∀αk ∈ P(Ik),Fk(αk) = Fdm
(αk ⊗

δ⊗dm−k
0). Then functions f and g from Theorem 1 are uniform: there exists f, g continuous,
h1, . . . , hdm continuous invariant such that

∀k = 1 . . . dm, ∀αk ∈ P(Ik), |Fk(αk)− f ◦ E ◦ g(hk�αk)| < ε.

Proof. Theorem 1 yields continuous f, g and a continuous invariant hdm
such that ∀α ∈

P(Idm), |Fdm
−f ◦E◦g(hdm �α)| < ε. For k = 1 . . . dm−1, we denote hk : (x1, . . . , xk) ∈ Rk �→

((
�

1�j1<...<ji�k x
(j1)·. . .·x(ji))i=1...k, 0 . . . , 0) ∈ Rdm . With the hypothesis, for k = 1 . . . dm−1,

αk ∈ P(Ik), the fact that hk�(αk) = hdm �(αk ⊗ δ⊗dm−k
0) yields the result.

Approximation by invariant neural networks. Based on theorem 1, F is uniformly close to
f ◦ E ◦ g ◦ h:

• We approximate f by a neural network fθ : x ∈ RN �→ C1λ(A1x + b1) ∈ R, where
p1 is an integer, A1 ∈ Rp1×N , C1 ∈ R1×p1 are weights, b1 ∈ Rp1 is a bias and λ is a
non-linearity.

• Since each component ϕj of ϕ = g ◦ h is permutation-invariant, it has the representation

ϕj : x = (x1, . . . , xd) ∈ Rd �→ ρj

��d
i=1 u(xi)

�
Zaheer et al. (2017) (which is a special

case of our layers with a base function only depending on its first argument, see section
2.2), ρj : Rd+1 → R, and u : R → Rd+1 independent of j (see Zaheer et al. (2017),
theorem 7).

• We can approximate ρj and u by neural networks ρj,θ : x ∈ Rd+1 �→ C2,jλ(A2,jx +
b2,j) ∈ R and uθ : x ∈ Rd �→ C3λ(A3x + b3) ∈ Rd+1, where p2,j , p3 are integers,
A2,j ∈ Rp2,j×(d+1), C2,j ∈ R1×p2,j , A3 ∈ Rp3×1, C3 ∈ R(d+1)×p3 are weights and b2,j ∈
Rp2,j , b3 ∈ Rp3 are biases, and denote ϕθ(x) = (ϕj,θ(x))j

def.
= (ρj,θ(

�d
i=1 uθ(xi)))j .

Indeed, we upper-bound the difference of interest |F(α) − fθ (EX∼α (ϕθ(X)))| by triangular in-
equality by the sum of three terms:

• |F(α)− f (EX∼α (ϕ(X)))|
• |f (EX∼α (ϕ(X)))− fθ (EX∼α (ϕ(X)))|
• |fθ (EX∼α (ϕ(X)))− fθ (EX∼α (ϕθ(X)))|

17

Under review as a conference paper at ICLR 2021

and bound each term by ε
3 , which yields the result. The bound on the first term directly comes

from theorem 1 and yields a constant N which depends on ε. The bound on the second term is
a direct application of the universal approximation theorem (UAT) Cybenko (1989); Leshno et al.
(1993). Indeed, since α is a probability measure, input values of f lie in a compact subset of RN :
||
�
Ω
g ◦ h(x)dα||∞ � maxx∈Ω maxi |gi ◦ h(x)|, hence the theorem is applicable as long as λ is a

nonconstant, bounded and continuous activation function. Let us focus on the third term. Uniform
continuity of fθ yields the existence of δ > 0 s.t. ||u− v||1 < δ implies |fθ(u)− fθ(v)| < ε

3 . Let us
apply the UAT: each component ϕj of h can be approximated by a neural network ϕj,θ. Therefore:

||EX∼α (ϕ(X)− ϕθ(X)) ||1 � EX∼α||ϕ(X)− ϕθ(X)||1 �
N�

j=1

�

Ω

|ϕj(x)− ϕj,θ(x)|dα(x)

�
N�

j=1

�

Ω

|ϕj(x)− ρj,θ(
d�

i=1

u(xi))|dα(x)

+
N�

j=1

�

Ω

|ρj,θ(
d�

i=1

u(xi))− ρj,θ(
d�

i=1

uθ(xi))|dα(x)

� N
δ

2N
+N

δ

2N
= δ

using the triangular inequality and the fact that α is a probability measure. The first term is small
by UAT on ρj while the second also is, by UAT on u and uniform continuity of ρj,θ. Therefore, by
uniform continuity of fθ, we can conclude.

Universality of tensorization. This complementary theorem provides insight into the benefits
of tensorization for approximating invariant regression functionals, as long as the test function is
invariant.
Theorem 2. The algebra

AΩ
def.
=

�
F : P(Ω)/∼ → R, ∃n ∈ N, ∃ϕ : Ωn → R invariant, ∀α,F(α) =

�

Ωn

ϕdα⊗n

�

where ⊗n denotes the n-fold tensor product, is dense in C(M1
+(Ω)/∼).

Proof. This result follows from the Stone-Weierstrass theorem. Since Ω is compact, by Banach-
Alaoglu theorem, we obtain that P(Ω) is weakly-* compact, hence P(Ω)/∼ also is. In order to
apply Stone-Weierstrass, we show that AΩ contains a non-zero constant function and is an alge-
bra that separates points. A (non-zero, constant) 1-valued function is obtained with n = 1 and
ϕ = 1. Stability by scalar is straightforward. For stability by sum: given (F1,F2) ∈ A2

Ω (with
associated functions (ϕ1,ϕ2) of tensorization degrees (n2, n2)), we denote n

def.
= max(n1, n2) and

ϕ(x1, . . . , xn)
def.
= ϕ1(x1, . . . , xn1

) + ϕ2(x1, . . . , xn2
) which is indeed invariant, hence F1 + F2 =�

Ωn ϕdα⊗n ∈ AΩ. Similarly, for stability by product: denoting this time n = n1 + n2, we in-
troduce the invariant ϕ(x1, . . . , xn) = ϕ1(x1, . . . , xn1) × ϕ2(xn1+1, . . . , xn), which shows that
F = F1 × F2 ∈ AΩ using Fubini’s theorem. Finally, AΩ separates points: if α �= ν, then there
exists a symmetrized domain S such that α(S) �= ν(S): indeed, if for all symmetrized domains S,
α(S) = ν(S), then α(Ω) = ν(Ω) which is absurd. Taking n = 1 and ϕ = 1S (invariant since S is
symmetrized) yields an F such that F(α) �= F(ν).

D EXPERIMENTAL VALIDATION, SUPPLEMENTARY MATERIAL

Both DIDA and baselines source code are provided in the last file of the supplementary material.

D.1 BENCHMARK DETAILS

Three benchmarks are used (Table 3): TOY and UCI, taken from (Jomaa et al., 2019), and OpenML
CC-18. TOY includes 10,000 datasets, where instances are distributed along mixtures of Gaussian,

18

Under review as a conference paper at ICLR 2021

intertwinning moons and rings in R2, with 2 to 7 classes. UCI includes 121 datasets from the
UCI Irvine repository (Dua & Graff, 2017). Datasets UCI and OpenML are normalized as follows:
categorical features are one-hot encoded; numerical features are normalized; missing values are
imputed with the feature mean (continuous features) or median (for categorical features). Patches
are defined as follows. Given an initial dataset, a number dX of features and a number n of examples
are uniformly selected in the considered ranges (depending on the benchmark) described in Table
4. A patch is defined by (i) retaining n examples uniformly selected with replacement in this initial
dataset; (ii) retaining dX features uniformly selected with replacement among the initial features.

datasets # samples # features # labels test ratio
Toy Dataset 10000 [2048, 8192] 2 [2, 7] 0.3
UCI 121 [10, 130064] [3, 262] [2, 100] 0.3
OpenML CC-18 71 [500, 100000] [5, 3073] [2, 46] 0.5

Table 3: Benchmarks characteristics

Patch Identification Performance Modeling
Dataset TOY UCI OpenML
Features 2 [2, 15] [3, 11]
Examples 200 [200, 500] [700, 900]

Table 4: Patch Size

D.2 DETAILED EXPERIMENTAL PROCEDURE: PATCH IDENTIFICATION

The following Algorithm 2 details the learning procedure used to train DIDA, DSS or
DATASET2VEC on the patch identification task (Section 4.1, Table 1). Note that function
generate patches() is extracted from the DATASET2VEC source code.

Algorithm 2 Batch Identification

1: Fζ ← meta-feature extractor (DIDA Deep Sets, DSS, or Hand-crafted)
2: for iteration=1, 2, . . . do
3: z1, z2, y ← generate patches() � y ← 1 if z1 and z2 are from the same dataset else 0
4: mf1 ← Fζ(z1)
5: mf2 ← Fζ(z2)
6: Backpropagate logloss(exp (−||mf1 −mf2||2), y)
7: end for

D.3 BASELINE DETAILS

DATASET2VEC details. The publicly available implementation of DATASET2VEC3 does not al-
low for a random uniform subsampling of all features, hence we have included as baselines: (i) the
reported accuracy from (Jomaa et al., 2019); (ii) the computed accuracy from our own implementa-
tion of DATASET2VEC, based on a uniform sampling of the features. As said, this implementation
only aims at solely making up for the feature sampling procedure. The architecture is the same as
reported in (Jomaa et al., 2019), Eq. 4, namely

D : z ∈ Zn(Rd) �→ h

�
1

dXdY

dX�

m=1

dY�

t=1

g

�
1

n

n�

i=1

f(xi[m], yi[t])

��
(8)

where functions f, g, h characterizing the architecture are chosen as depicted in the publicly avail-
able file config.py4. More precisely, f, g are FC(128)-ReLU-ResFC(128, 128, 128)-FC(128) and

3See https://github.com/hadijomaa/dataset2vec
4See https://github.com/hadijomaa/dataset2vec/blob/master/config.py

19

Under review as a conference paper at ICLR 2021

h is FC(128)-ReLU-FC(128)-ReLU where ResFC is a sequence of fully connected layer with skip
connection. We provide our implementation of DATASET2VEC in the supplementary material.

DSS layer details. We built our own implementation of invariant DSS layers, as follows. Linear
invariant DSS layers (see (Maron et al., 2020), Theorem 5, 3.) are of the form

Linv : X ∈ Rn×d �→ LH(

n�

j=1

xj) ∈ RK (9)

where LH : Rd → RK is a linear H-invariant function. Our applicative setting requires that the
implementation accommodates to varying input dimensions d as well as permutation invariance,
hence we consider the Deep Sets representation (see (Zaheer et al., 2017), Theorem 7)

LH : x = (x1, . . . , xd) ∈ Rd �→ ρ

�
d�

i=1

ϕ(xi)

�
∈ RK (10)

where ϕ : R → Rd+1 and ρ : Rd+1 → RK are modelled as (i) purely linear functions; (ii) FC net-
works, which extends the initial linear setting (9). In our case, H = SdX

×SdY
, hence, two invariant

layers of the form (9-10) are combined to suit both feature- and label-invariance requirements. Both
outputs are concatenated and followed by an FC network to form the DSS meta-features. The last
experiments use DSS equivariant layers (see (Maron et al., 2020), Theorem 1), which take the form

Leq : X ∈ Rn×d �→


L1

eq(xi) + L2
eq(

�

j �=i

xj)




i∈[n]

∈ Rn×d (11)

where L1
eq and L2

eq are linear H-equivariant layers. Similarly, both feature- and label-equivariance
requirements are handled via the Deep Sets representation of equivariant functions (see (Zaheer
et al., 2017), Lemma 3) and concatenated to be followed by an invariant layer, forming the DSS
meta-features. All methods are allocated the same number of parameters to ensure fair comparison.
We provide our implementation of the DSS layers in the supplementary material.

NO-FINV-DSS baseline (no invariance in feature permutation). This baseline aims at showcas-
ing the empirical relevance of the invariance requirement in feature and label permutations, while
retaining invariance in permutation with respect to the datasets. To this end, aggregation with respect
to the examples is performed as exemplified in (Zaheer et al., 2017), Theorem 2, namely

L : z = (z1, . . . , zn) ∈ Z(Rd) �→ 1

n

n�

i=1

g(zi) ∈ RK (12)

where g : Rd → RK is an MLP with FC(128)-ReLU-FC(64)-ReLU-FC(32)-ReLU layers. To ensure
label information is captured, the output is concatenated to the mean of labels ȳ def.

= 1
n

�n
i=1 yi and

followed by and MLP with FC(1024)-ReLU-FC(700)-ReLU-FC(512) layers. The so-called NO-
FINV-DSS baseline defined as such, can be summed up as follows

z ∈ Z(Rd) �→ MLP([L(z); ȳ]) (13)

Hand-crafted meta-features. For the sake of reproducibility, the list of meta-features used in
Section 4 is given in Table 5. Note that meta-features related to missing values and categorical
features are omitted, as being irrelevant for the considered benchmarks. Hand-crafted meta-features
are extracted using BYU metalearn library. In total, we extracted 43 meta-features.

D.4 PERFORMANCE PREDICTION

Experimental setting. Table 6 details all hyper-parameter configurations Θ considered in Section
4.2. As said, the learnt meta-features Fζ(z) can be used in a regression setting, predicting the perfor-
mance of various ML algorithms on a dataset z. Several performance models have been considered

20

Under review as a conference paper at ICLR 2021

Meta-features Mean Min Max
Quartile2ClassProbability 0.500 0.75 0.25
MinorityClassSize 487.423 426.000 500.000
Quartile3CardinalityOfNumericFeatures 224.354 0.000 976.000
RatioOfCategoricalFeatures 0.347 0.000 1.000
MeanCardinalityOfCategoricalFeatures 0.907 0.000 2.000
SkewCardinalityOfNumericFeatures 0.148 -2.475 3.684
RatioOfMissingValues 0.001 0.000 0.250
MaxCardinalityOfNumericFeatures 282.461 0.000 977.000
Quartile2CardinalityOfNumericFeatures 185.555 0.000 976.000
KurtosisClassProbability -2.025 -3.000 -2.000
NumberOfNumericFeatures 3.330 0.000 30.000
NumberOfInstancesWithMissingValues 2.800 0.000 1000.000
MaxCardinalityOfCategoricalFeatures 0.917 0.000 2.000
Quartile1CardinalityOfCategoricalFeatures 0.907 0.000 2.000
MajorityClassSize 512.577 500.000 574.000
MinCardinalityOfCategoricalFeatures 0.879 0.000 2.000
Quartile2CardinalityOfCategoricalFeatures 0.915 0.000 2.000
NumberOfCategoricalFeatures 1.854 0.000 27.000
NumberOfFeatures 5.184 4.000 30.000
Dimensionality 0.005 0.004 0.030
SkewCardinalityOfCategoricalFeatures -0.050 -4.800 0.707
KurtosisCardinalityOfCategoricalFeatures -1.244 -3.000 21.040
StdevCardinalityOfNumericFeatures 68.127 0.000 678.823
StdevClassProbability 0.018 0.000 0.105
KurtosisCardinalityOfNumericFeatures -1.060 -3.000 12.988
NumberOfInstances 1000.000 1000.000 1000.000
Quartile3CardinalityOfCategoricalFeatures 0.916 0.000 2.000
NumberOfMissingValues 2.800 0.000 1000.000
Quartile1ClassProbability 0.494 0.463 0.500
StdevCardinalityOfCategoricalFeatures 0.018 0.000 0.707
MeanClassProbability 0.500 0.500 0.500
NumberOfFeaturesWithMissingValues 0.003 0.000 1.000
MaxClassProbability 0.513 0.500 0.574
NumberOfClasses 2.000 2.000 2.000
MeanCardinalityOfNumericFeatures 197.845 0.000 976.000
SkewClassProbability 0.000 -0.000 0.000
Quartile3ClassProbability 0.506 0.500 0.537
MinCardinalityOfNumericFeatures 138.520 0.000 976.000
MinClassProbability 0.487 0.426 0.500
RatioOfInstancesWithMissingValues 0.003 0.000 1.000
Quartile1CardinalityOfNumericFeatures 160.748 0.000 976.000
RatioOfNumericFeatures 0.653 0.000 1.000
RatioOfFeaturesWithMissingValues 0.001 0.000 0.250

Table 5: Hand-crafted meta-features

on top of the meta-features learnt in Section 4.2, for instance (i) a BOHAMIANN network (Sprin-
genberg et al., 2016); (ii) Random Forest models, trained under a Mean Squared Error loss between
predicted and true performances.

Results. Table 7 reports the Mean Squared Error on the test set with performance model BO-
HAMIANN (Springenberg et al., 2016), comparatively to DSS and hand-crafted ones. Replacing
the surrogate model with Random Forest concludes to the same ranking as in Table 7. Figure 3
complements Table 7 in assessing the learnt DIDA meta-features for performance model learning.

21

Under review as a conference paper at ICLR 2021

Parameter Parameter values Scale

LR

warm start True, Fase
fit intercept True, Fase
tol [0.00001, 0.0001]
C [1e-4, 1e4] log
solver newton-cg, lbfgs, liblinear, sag, saga
max iter [5, 1000]

SVM

kernel linear, rbf, poly, sigmoid
C [0.0001, 10000] log
shrinking True, False
degree [1, 5]
coef0 [0, 10]
gamma [0.0001, 8]
max iter [5, 1000]

KNN
n neighbors [1, 100] log
p [1, 2]
weights uniform, distance

SGD

alpha [0.1, 0.0001] log
average True, False
fit intercept True, False
learning rate optimal, invscaling, constant
loss hinge, log, modified huber, squared hinge, perceptron
penalty l1, l2, elasticnet
tol [1e-05, 0.1] log
eta0 [1e-7, 0.1] log
power t [1e-05, 0.1] log
epsilon [1e-05, 0.1] log
l1 ratio [1e-05, 0.1] log

Table 6: Hyper-parameter configurations considered in Section 4.2.

Method SGD SVM LR KNN

Hand-crafted 0.016 ± 0.001 0.021 ± 0.001 0.018 ± 0.002 0.034 ± 0.001

DSS (Linear aggregation) 0.015 ± 0.007 0.020 ± 0.002 0.019 ± 0.001 0.025 ± 0.010
DSS (Equivariant+Invariant) 0.014 ± 0.002 0.017 ± 0.003 0.015 ± 0.003 0.028 ± 0.003

DSS (Non-linear aggregation) 0.015 ± 0.009 0.016 ± 0.003 0.014 ± 0.001 0.020 ± 0.005

DIDA 0.012 ± 0.001 0.015 ± 0.001 0.010 ± 0.001 0.009 ± 0.000

Table 7: Performance modelling, comparative results of DIDA, DSS and Hand-crafted (HC) meta-
features: Mean Squared Error (average over 5 runs) on test set, between the true performance and
the performance predicted by the trained BOHAMIANN surrogate model, for ML algorithms SVM,
LR, kNN, SGD (see text).

It shows DIDA’s ability to capture more expressive meta-features than both DSS and hand-crafted
ones, for all ML algorithms considered.

22

Under review as a conference paper at ICLR 2021

((a)) KNN

((b)) Logistic Regression

((c)) SVM

((d)) SGD

Figure 3: Comparison between the true performance and the performance predicted by the trained
surrogate model on DIDA, DSS or Hand-crafted meta-features, for various ML algorithms.

23

Under review as a conference paper at ICLR 2021

D.5 STABILITY OF META-FEATURES WITH RESPECT TO SAMPLE AND FEATURE SAMPLING

The robustness of the learned meta-features is investigated along three settings (below). The ro-
bustness performance indicators are the average and standard deviation of the distance between the
meta-feature vectors and a reference vector. The comparative performances of DIDA and the base-
line NO-FINV-DSS (Section D.3) are reported in Fig. 4. Both DIDA and NO-FINV-DSS are trained
on Task 1.

Specifically, the three settings aim to measure the robustness w.r.t. (A) the uniform selection of
the samples only; (B) the uniform selection of the samples and the permutation of features; (C) the
uniform selection of the samples and the features:

A Considering a fixed set of features, 128 patches are extracted from a dataset u. For each
patch z, DIDA computes a meta-feature vector Fζ(z) in R64. The reference vector is the
average of these meta-feature vectors. Fig. 4.A reports the mean and standard deviation of
the distance between the meta-feature vectors and their mean (Fig. 4.A).

B Same as in A, except that for each patch, the features are permuted. The reference vector
is the same as in [A]. The mean and standard deviation of the distances between these
meta-feature vectors and the reference vector thus reflect the impact of the permutation of
features (Fig. 4.B);

C 128 Patches are uniformly selected (subset of samples, subset of features drawn with re-
placement), and a meta-feature vector is computed for each patch. The reference vector
here is the average of these meta-feature vectors. The mean and standard deviation of
the distances between these meta-feature vectors and the reference vector thus reflect the
impact of sampling both examples and features (Fig. 4.C).

Fig. 4 shows that for DIDA, similar results are obtained for settings [A] and [B] (the distributions
of the meta-feature vectors around the reference vector are similar), while a slightly higher mean
and standard deviations are observed for [C]. Quite the contrary, for the baseline NO-FINV-DSS,
similar results are obtained for [B] and [C], suggesting that the baseline makes no difference between
permuting features and sampling new features.

Figure 4: Robustness of meta-features: average and standard deviation of the distance between the
meta-feature vectors and their reference vector along the A, B, and C settings (please see text). Left:
Breast Cancer dataset. Right: Page Blocks dataset.

24

