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prep_n = Project(columns={'type': 'number'}) >> StandardScaler()
prep_s = Project(columns={'type': 'string'}) >> OneHotEncoder()
logistic_regression = LogisticRegression(max_iter=1000)
trainable = (prep_n & prep_s) >> ConcatFeatures >> logistic_regression
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trained = trainable.fit(train_X, train_y)
accuracy_score(test_y, trained.predict(test_X))
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AutoML: Automated Machine Learning
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AutoML: Automated Machine Learning
clf = LogisticRegression | DecisionTreeClassifier | KNeighborsClassifier
planned = (prep_n & prep_s) >> ConcatFeatures >> clf
trained = planned.auto_configure(train_X, train_y, optimizer=Hyperopt)
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Iterated AutoML
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Iterated AutoML
pipeline.visualize()
pipeline.pretty_print(ipython_display=True)
Grove = XGBClassifier.customize_schema(n_estimators=schemas.Int(min=2, max=8))



API Description

manual ML

op2 = op1(hyperparams) initialize and make trainable

op3 = op2.fit(train_X, train_y) train

y_pred = op3.predict(test_X) predict

See also LALE's online documentation for the hyperparameter schemas of
over 180 operators (from scikit-learn, imblearn, AIF360, Snap ML, …), e.g.:
from lale.lib.lale import ConcatFeatures, NoOp, Hyperopt

LALE at a Glance
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pipeline 
combinators

op3 = op1 >> op2 pipe (add dataflow edge)

op3 = (op1 & op2) >> ConcatFeatures union (separate transforms)

op3 = op1 | op2   # often with | NoOp choice (AutoML picks one)

semi-
automated 

ML

op3 = op1.auto_configure(X, y, optimizer) run AutoML

op.visualize() display graphically

op.pretty_print() display as Python code


