
LALE: Library for
Semi-Automated
Data Science
-
April 2021 user study

1

Data
Scientist

Trainable pipeline
(all choices of operators and
hyperparameters are bound)

MetricsTrained pipeline
(learnable coefficients are bound)

train

evaluate

2

Manual Machine Learning

Inspiration

edit

Data
Scientist

Trainable pipeline
(all choices of operators and
hyperparameters are bound)

MetricsTrained pipeline
(learnable coefficients are bound)

train

evaluate

3

Manual Machine Learning

Inspiration

edit

prep_n = Project(columns={'type': 'number'}) >> StandardScaler()
prep_s = Project(columns={'type': 'string'}) >> OneHotEncoder()
logistic_regression = LogisticRegression(max_iter=1000)
trainable = (prep_n & prep_s) >> ConcatFeatures >> logistic_regression

Data
Scientist

Trainable pipeline
(all choices of operators and
hyperparameters are bound)

MetricsTrained pipeline
(learnable coefficients are bound)

train

evaluate

loop

4

Iterated Manual Machine Learning

• Inspiration
• Patience
• Rigor

edit

display

Data
Scientist

Trainable pipeline
(all choices of operators and
hyperparameters are bound)

MetricsTrained pipeline
(learnable coefficients are bound)

train

evaluate

loop

5

Iterated Manual Machine Learning

• Inspiration
• Patience
• Rigor

edit

display

trained = trainable.fit(train_X, train_y)
accuracy_score(test_y, trained.predict(test_X))

Data
Scientist

Planned pipeline
(some choices of operators and
hyperparameters are still free)

Search space
(optimizers: GridSearchCV,

Hyperopt, SMAC, …)

Trainable pipeline
(all choices of operators and
hyperparameters are bound)

Point in
search
space

MetricsTrained pipeline
(learnable coefficients are bound)

edit

generate

acquire

decode

train

evaluate

loop

Patience

6

AutoML: Automated Machine Learning

Data
Scientist

Planned pipeline
(some choices of operators and
hyperparameters are still free)

Search space
(optimizers: GridSearchCV,

Hyperopt, SMAC, …)

Trainable pipeline
(all choices of operators and
hyperparameters are bound)

Point in
search
space

MetricsTrained pipeline
(learnable coefficients are bound)

edit

generate

acquire

decode

train

evaluate

inner
loop

Patience

7

AutoML: Automated Machine Learning
clf = LogisticRegression | DecisionTreeClassifier | KNeighborsClassifier
planned = (prep_n & prep_s) >> ConcatFeatures >> clf
trained = planned.auto_configure(train_X, train_y, optimizer=Hyperopt)

Data
Scientist

Planned pipeline
(some choices of operators and
hyperparameters are still free)

Search space
(optimizers: GridSearchCV,

Hyperopt, SMAC, …)

Trainable pipeline
(all choices of operators and
hyperparameters are bound)

Point in
search
space

MetricsTrained pipeline
(learnable coefficients are bound)

edit

generate

display

acquire

decode

train

evaluate

outer
loop

inner
loop

• Inspiration
• Patience

8

Iterated AutoML

Data
Scientist

Planned pipeline
(some choices of operators and
hyperparameters are still free)

Search space
(optimizers: GridSearchCV,

Hyperopt, SMAC, …)

Trainable pipeline
(all choices of operators and
hyperparameters are bound)

Point in
search
space

MetricsTrained pipeline
(learnable coefficients are bound)

edit

generate

display

acquire

decode

train

evaluate

outer
loop

inner
loop

• Inspiration
• Patience

9

Iterated AutoML
pipeline.visualize()
pipeline.pretty_print(ipython_display=True)
Grove = XGBClassifier.customize_schema(n_estimators=schemas.Int(min=2, max=8))

API Description

manual ML

op2 = op1(hyperparams) initialize and make trainable

op3 = op2.fit(train_X, train_y) train

y_pred = op3.predict(test_X) predict

See also LALE's online documentation for the hyperparameter schemas of
over 180 operators (from scikit-learn, imblearn, AIF360, Snap ML, …), e.g.:
from lale.lib.lale import ConcatFeatures, NoOp, Hyperopt

LALE at a Glance

10

pipeline
combinators

op3 = op1 >> op2 pipe (add dataflow edge)

op3 = (op1 & op2) >> ConcatFeatures union (separate transforms)

op3 = op1 | op2 # often with | NoOp choice (AutoML picks one)

semi-
automated

ML

op3 = op1.auto_configure(X, y, optimizer) run AutoML

op.visualize() display graphically

op.pretty_print() display as Python code

