A Algorithmic Details

A.1 FiLM Conditioning

Feature-wise Linear Modulation (FiLM) [46] is a technique used for conditioning neural networks
that allows the network to modulate its behavior based on an external conditioning signal, such as
text instructions or observations. In the context of text conditioning for policy learning, the text
instructions are first encoded into a conditioning vector. This conditioning vector is then used to
modulate the activations of the neural network through FiLM layers. FiLM applies a feature-wise
affine transformation (scaling and shifting) to the activations of the network, conditioned on the text
embedding. In other word, assuming x is a FILM layer’s input, z is a conditioning input, and ~ and 3
are z-dependent scaling and shifting vectors,

FiLM(x) = v(z) ®x+ ((z) 3

This allows the network to adapt its computation and output based on the given text instructions,
enabling tasks like instruction following or conditioning the policy on language descriptions.

A.2 Action Heads

Having a separate action prediction module allows BAKU to leverage state-of-the-art techniques for
action generation. In this work, we evaluate five different action head variants. Below we briefly
describe each variant. For more details on these methods, please refer to the original publications.

Multilayer Perceptron (MLP) This is a simple neural network comprising multiple dense layers.
We use a two-layer MLP for our experiments.

Gaussian Mixture Model (GMM) [36] A Gaussian mixture model (GMM) action head models
the policy as a mixture of Gaussians, enabling multi-modal action sampling for continuous control
problems. The GMM parameters are part of the learned policy network. For our experiments, we
employ a two-layer GMM action head with five action modes and a Softplus activation function.

Behavior Transformer (BeT) [60] The Behavior Transformer (BeT) models continuous action
prediction as a two-part problem. Actions in the training data are first clustered into k bins using
k-means clustering. A discrete action head classifies the cluster an action belongs to, while an offset
action head predicts an offset value added to the corresponding cluster center. The discrete head uses
a focal loss, while the offset head uses L2 loss. For our experiments, we use BeT with 64 action
clusters.

Vector-Quantized Behavior Transformer (VQ-BeT) [31] The Vector-Quantized Behavior Trans-
former (VQ-BeT) extends BeT by replacing k-means clustering with residual VQVAE-based tok-
enization, significantly improving performance over BeT. For our experiments, we employ VQ-BeT
with two residual VQ layers of codebook size and latent dimension 16 and 256, respectively.

Diffusion [45, 10, 55] A diffusion action head models action prediction as a diffusion process
that generates actions over time by iteratively denoising samples from a Gaussian distribution.
While highly effective for multi-modal distributions, the iterative denoising during inference slows
deployment speed. In this work, we use a transformer-based diffusion head introduced by prior
work [45, 10]. We use a two-layer diffusion head for our experiments.

A.3 Temporal smoothing over action chunking

A naive implementation of action chunking, where a new environment observation in incorporated
every k steps can be suboptimal and can result in jerky robot motion. To improve the smoothness
in robot motion, we incorporate an exponential temporal ensembling technique, following prior
work [77, 5]. Instead of querying the policy every k steps, we query it at every timestep. This results
in an overlap in predicted action chunks and at any given timestep, there will be more than one
predicted actions. Instead of using only the current action prediction, we use a temporal ensemble to
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combine all the past predictions. This temporal ensemble performs a weighted average over these
predictions with an exponential weighing scheme w; = exp(—m * i), where wy is the weight for the
oldest action. The speed for incorporating a new observation is governed by m, where a smaller m
means faster incorporation. It must be noted that this ensembling incurs no additional training cost,
only extra inference-time computation. In our experiments, similar to prior work [77, 5], we find both
action chunking and temporal ensembling to be important for producing precise and smooth motion.

A.4 Hyperparameters

The complete list of hyperparameters is provided in Table 4. For RT-1 [6], we use our implementation
with an RT-1 action head that discretizes the continuous action into discrete bins uniformly. For
MT-ACT [5], we use the open-source implementation with the default hyperparameters. We vary the
action chunk length for MT-ACT for different benchmarks, the values for which have been provided
in Table 4.

Training time Below we provide details about the time required to train BAKU on a single NVIDIA
RTX A4000 GPU.

1. LIBERO: Training for 600k steps with a batch size of 64 and 2 camera views and robot proprio-
ception as input requires around 10.5 hours.

2. Meta-World: Training for 600k steps with a batch size of 64 and 1 camera view as input requires
around 8 hours.

3. DM Control: Training for 2M steps with a batch size of 128 and robot state as input requires
around 26 hours.

4. xArm Robot: Training for 200k steps with a batch size of 64 and 4 camera views and robot
proprioception as input requires around 6 hours.

B Simulation Tasks

We evaluate BAKU on three simulated benchmarks: LIBERO-90 [34], MetaWorld [76], and DM
Control [67]. For LIBERO-90, we directly use the dataset provided, which includes demonstrations
for all 90 tasks. For details on the specific LIBERO-90 tasks, please refer to the original paper [34].
For MetaWorld and DM Control, we collected demonstrations from expert agents trained with
reinforcement learning (RL). We include only the tasks for which we were able to obtain expert
demonstration data. Table 5 lists the 30 MetaWorld tasks and 9 DM Control tasks used in our
experiments.

C Robot Tasks

We evaluate BAKU on 30 tasks in our real-world multi-task kitchen environment. We provide the
task description along with policy deployment rollouts with BAKU for each task in Figures 5, 6, 7, 8,
and 9. The long-horizon task rollouts have been shown in Figure 10.

Robot control We deploy our learned policies at 10Hz using a high-level controller. To facilitate
smooth motion on the robot, we deploy a low-level Minimum-Jerk Controller at 100Hz.

D Additional Results and Analysis

D.1 Real-World Task-wise Results

Table 6 provides the task-wise performance for all 30 tasks in our real-world multi-task kitchen
environment. We collect an average of 17 demonstrations per task, with a total of 520 demonstrations
across all tasks. Task-wise performance for the real-world long-horizon tasks has been included in
Table 7.
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Table 4: List of hyperparameters.

Method Parameter Value
Common Learning rate le
Image size 128 x 128 (LIBERO-90, xArm)
84 x 84 (Meta-World)
Mini-batch size 64 (LIBERO-90, Meta-World, xArm)
128 (DM Control)
Optimizer Adam
Number of training steps 600000 (LIBERO-90, Meta-World)
2000000 (DM Control)
200000 (xArm)
Number of demonstrations 50 (LIBERO-90)
35 (Meta-World)
500 (DM Control)
15 (xArm)
Transformer architecture minGPT [29] (with 8 layers and 4 heads)
Action chunk length 10 (LIBERO-90, Meta-World)
3 (DMCO)
20 (xArm)
BAKU Observation trunk Transformer
Action head MLP (base)
GMM, BeT, VQ-BeT, Diffusion (variants)
Hidden dim 256
Observation history False
Action chunking True
Intermediate goal steps (k) 50 (LIBERO-90)
30 (Meta-World)
RT-1 Observation trunk Transformer
Action head MLP (base)
Hidden dim 512
Observation history True
History length 6
Action chunking False
MT-ACT Observation history False
Action chunking True

18



Table 5: List of tasks in Meta-World and DM Control.

Meta-World DM Control
basketball-v2 cartpole swingup
bin-picking-v2 cheetah run
button-press-v2 hopper stand
button-press-topdown-v2 quadruped run
button-press-topdown-wall-v2  quadruped walk
button-press-wall-v2 teacher easy
coffee-button-v2 walker stand
coffee-pull-v2 walker walk
coffee-push-v2 walker run

dial-turn-v2
disassemble-v2
door-lock-v2
door-open-v2
door-unlock-v2
drawer-close-v2
drawer-open-v2
faucet-close-v2
faucet-open-v2
hammer-v2
handle-press-v2
handle-press-side-v2
handle-pull-v2
handle-pull-side-v2
peg-insert-side-v2
peg-unplug-side-v2
plate-slide-v2
plate-slide-back-v2
plate-slide-back-side-v2
plate-slide-side-v2
shelf-place-v2
soccer-v2
stick-push-v2
sweep-v2
sweep-into-v2
window-close-v2
window-open-v2

D.2 Additional Analysis

In addition to the analysis in Section 4.4, we provide further comparisons here to better justify our
design choices.

Separate vs. Shared Vision Encoders On the LIBERO-90 benchmark, environment observations
include images from two camera views. Table 12 compares multi-task performance using either a
common encoder for both views or separate view-specific encoders. While separate encoders provide
a 2% boost in performance, this minor gain comes at the cost of a 15% increase in parameter count
per camera view added (since the visual encoders comprise 1.5M parameters in our 10M parameter
model). For our real-world experiments involving 4 camera views, this parameter increase would be
even more significant. Therefore, in BAKU, we use a shared encoder for all views to keep the model
compact, assisting with faster inference speeds.
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Fetch towel from rack: Fetch the towel from the lower rack.

Fetch th een tea from the lower rack.
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vitamin water from the lower rack.
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Pick light blue bowl: Pick up the light blue bowl from the kitchen counter.
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Pick orange from bowl: Pick up the orange from inside the light blue bowl kept on the kitchen counter.

Figure 5: Real-world policy rollouts showing BAKU’s capability in complex manipulation tasks.

Data Efficiency Analysis We analyze the performance of BAKU with varying number of demon-
strations in Table 8 and Table 9. We observe that at each level of data availability, BAKU shows a
significantly higher success rate than MT-ACT and RT-1.
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Pick box of corn starch: Pic up the box of corn starch from the kitchen counter.

2 e

léte from rack

8 & M

plate kept on the upper rack.

Figure 6: Real-world policy rollouts showing BAKU’s capability in complex manipulation tasks.

Robustness to training seeds We provide results on BAKU, RT-1, and MT-ACT across 3 seeds in
Table 10. We observe that all three methods are robust to different seed values. Further, probabilistic
approaches like GMM and diffusion might be sensitive to favorable seed values, and evaluating on a
single seed might make the result unreliable. Thus, Table 11 includes results across 3 seeds on BAKU
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Put coke can in basket: Pick up the can of coke and put it in the basket.
: y o

- _SER

Put pear in bowl: Pick up the p:ear and put 1t in the bowl.

Figure 7: Real-world policy rollouts showing BAKU’s capability in complex manipulation tasks.

with different multimodal heads. We observe that BAKU with different action heads is robust to the
value of the random seed. Due to limited compute and the large number of multi-task experiments,
we provide these results on the LIBERO-90 and Metaworld benchmarks.
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fridge: Pick up the bottle of tomato ketchup and put it inside the fridge.

Fetch tea bottle or of the fridge.
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Fetch yoghurt bottle from fridge door: Take the bottle of yoghurt out from the door of the fridge.
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Fetch tomato can from fridge: Take the can of tomato soup out of the fridge.

Figure 8: Real-world policy rollouts showing BAKU’s capability in complex manipulation tasks.

Observation trunk input In our proposed architecture (see Section 3.4), the encoded observations
from different modalities are passed individually as tokens into the observation trunk along with the
action token to output the action feature representation. An alternative approach is to concatenate
all the encoded inputs into a single vector and pass it through the observation trunk. As shown
in Table 12, for Meta-World and DMC, which each have only a single input source, there is no
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the bottle of vitamin water out of the fridge.

ZAE

Fetch knife from organizer: Fetch the knife fromAthe organizer placed on the kitchen countér.

Put yoghurt inside and take water bottle out of fridge: Put the yoghurt in the door of the fridge and
take out the bottle of water from inside the fridge.

Figure 10: Real-world policy rollouts showing BAKU’s capability on long-horizon manipulation
tasks.

24



Table 6: Real task-wise performance

Task Number ?f Successes (out of 5)
Demonstrations
Baku w/
RT-1 MTACT Baku VQ-BeT
Fetch glass from rack 20 5 5 5 5
Fetch towel from rack 28 5 2 5 5
Fetch tea bottle from rack 16 0 3 5 5
Fetch water bottle from rack 16 0 0 5 5
Pick blue mug 16 5 5 5 5
Pick light blue bowl 25 5 5 5 5
Pick orange from bowl 27 0 0 3 4
Pick coffee bag 19 3 5 5 5
Pick box of corn starch 14 0 3 5 5
Lift blue plate from the rack 18 0 4 5 5
Lift white plate from the rack 18 5 5 5 5
Lift black plate from the rack 12 2 3 5 5
Open oven door 17 0 0 0 3
Close oven door 27 0 3 3 4
Place glass on rack 19 5 5 5 5
Wipe towel 17 4 5 5 5
Lift pan lid 18 1 2 4 4
Put coke can in basket 19 0 0 3 3
Put cream cheese in basket 19 0 3 5 5
Put orange into bowl 14 0 0 4 5
Put pear into bowl 17 0 0 3 5
Put tea bottle in fridge door 18 0 0 1 0
Put yoghurt bottle in fridge door 17 3 5 3 5
Put ketchup bottle inside fridge 15 5 4 5 5
Put tomato can inside fridge 11 0 0 5 4
Fetch tea bottle from fridge door 11 5 5 5 5
Fetch tomato can from fridge door 11 0 1 5 5
Fetch yoghurt bottle from fridge door 10 0 3 5 4
Fetch water bottle from fridge 11 2 3 5 5
Fetch knife from organizer 20 0 5 5 5
Mean 17 1.83 2.8 43 4.53
Mean success rate (out of 1) - 0.37 0.56 0.86 0.91

difference in performance, as expected. However, for LIBERO-90, which uses two camera views and
the robot’s proprioceptive state as inputs, there is a 3% absolute improvement in performance when
using separate observation tokens as compare to a single concatenated vector.

E Broader Impacts

In this work, we present BAKU, a simple and efficient transformer architecture for multi-task policy
learning. This work takes an important step toward enabling more efficient training of generalist
robotic agents capable of performing diverse tasks, reducing the need for large datasets of expert
demonstrations which are costly and time-consuming to collect. Further, BAKU focuses on improving
data efficiency by maximally leveraging available training data, which is particularly valuable in
robotics where data collection is expensive.
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Table 7: Real task-wise performance for long-horizon tasks

Number of

Task Demonstrations Successes (out of 5)
MTACT  Baku
Set up table 34 3 3
Pick broom and sweep 13 4 5
Pick towel and wipe 14 2 4
Take bowl out of the oven 18 5 5
Put yoghurt inside and take water bottle out of fridge 17 2 4
Mean 19 32 4.2
Mean success rate (out of 1) - 0.64 0.84

Table 8: Data efficiency analysis on the Table 9: Data efficiency analysis on the Meta-

LIBERO-90 benchmark. World benchmark.
#Demos RT-1 MT-ACT BAKU #Demos RT-1 MT-ACT BAKU
5 0 0.31 0.58 5 0.40 0.07 0.59
10 0.01 0.48 0.71 10 0.49 0.10 0.67
25 0.04 0.49 0.83 25 0.62 0.11 0.76
50 0.16 0.54 0.9 35 0.65 0.13 0.79

Table 10: Performance of multi-task policies learned using BAKU on LIBERO-90 and Meta-World.
We report the mean and standard deviation for each variant across 3 seeds.

LIBERO-90 Meta-World

Method (90 tasks) (30 tasks)
RT-1 0.14 £0.02 0.64 £ 0.01
MTACT 0.554+0.01 0.124+0.01

BAKU (Ours) 0.89 £0.01  0.81 £ 0.02

Table 11: Performance of BAKU with different action heads on LIBERO-90 and Meta-World. We
report the mean and standard deviation for each variant across 3 seeds.

Action Head LIBERO-90 Meta-World

MLP 0.89 +£0.01  0.81 +£0.02
GMM 0.83+0.02 0.64 £0.02
BeT 0.88 +£0.01 0.77 £0.01
VQ-BeT 09 +0.01 0.78 = 0.005
Diffusion 0.88 +£0.01 0.64 £ 0.01

Table 12: Study of design decisions for the model architecture that affects multi-task performance.

Category Variant LIBERO-90 Meta-World DMC

Separate vs. Shared Vision Encoders Common 0.90 - -
Separate 0.92 - -

Observation Trunk Input Separate 0.90 0.79 0.70
Concatenated 0.87 0.79 0.70
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