Predicting Influenza A Reassortment Potential Using
Foundation Models and Genetic Algorithms for
Pandemic Preparedness

Seeraja Konnur*

Al & Robotics Technology Park, I-Hub,
Indian Institute of Science,
Bengaluru, India
seeraja@artpark.in

Abstract

Influenza A virus (IAV) poses a persistent global threat due to its ability to evolve
rapidly through reassortment. We present a computational framework that inte-
grates DNABERT-2, a transformer-based foundation model for genomic sequences,
with machine learning and genetic algorithms to predict reassortment events. Us-
ing H5N1 subtype sequences from the 2021-2022 U.S. outbreak, we generated
segment-specific embeddings with DNABERT-2 to train a machine learning classi-
fier capable of distinguishing reassortant from non-reassortant genotypes. Newly
collected environmental samples are evaluated using this classifier to identify po-
tential reassortants, while genetic algorithms generate novel segment combinations
from these sequences to assess their likelihood of producing viable and potentially
more virulent reassortants. This approach enables early detection of high-risk
strains, offering a scalable tool for pandemic preparedness.

1 Introduction

Influenza A virus (IAV) represents one of the most significant ongoing threats to global public health,
affecting both human and animal populations with devastating consequences. The virus continues
to be a leading cause of respiratory infections worldwide, resulting in an estimated 36,000 deaths
during typical endemic seasons in the United States alone (1). This substantial disease burden extends
beyond human health, causing severe economic losses in agricultural sectors particularly the poultry
and swine industries where outbreaks can lead to millions of dollars in losses through culling, trade
restrictions, and reduced productivity. The persistent threat posed by Influenza A virus stems from its
remarkable evolutionary adaptability, characterized by rapid mutation rates and genetic reassortment
capabilities. These characteristics enable the virus to continuously evolve, evading host immune
responses and existing therapeutic interventions. Two main phenomena drive this evolution: antigenic
drift, involving the gradual accumulation of point mutations, and antigenic shift, which is caused by
reassortment (2). In this study, we focus on the latter antigenic shift caused by reassortment. Influenza
is a segmented RNA virus consisting of eight segments. Reassortment occurs when two or more
different Influenza A viruses infect the same host cell and exchange viral RNA segments. This process
can generate novel combinations of viral segments, potentially resulting in strains with enhanced
transmissibility, virulence, or immune evasion capabilities. Historical pandemics—including the
catastrophic 1918 HIN1 pandemic, the 1957 H2N2 Asian flu, and the 2009 HIN1 pandemic all
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emerged through reassortment events, underscoring the critical importance of understanding and
predicting these evolutionary processes.

2 Challenge and innovation

Current influenza surveillance and vaccine development strategies face significant challenges due to
the virus’s unpredictable evolutionary trajectory. Annual vaccine formulations require predictions
made months in advance, often resulting in mismatches between circulating strains and vaccine
components. Furthermore, existing antiviral drugs show limited long-term effectiveness due to
the rapid development of resistance mutations (3). The inability to accurately predict future viral
variants hampers both vaccine design and antiviral drug development, highlighting the urgent need for
innovative computational approaches to forecast viral evolution. Early detection and characterization
of reassortment events are crucial for pandemic preparedness and response strategies. Environmental
surveillance has emerged as a promising approach for monitoring viral circulation and diversity in
various ecological niches. This study presents a novel computational framework that integrates the
foundation model DNABERT-2 with genetic algorithms and environmental surveillance data to assess
reassortment potential in circulating influenza viruses (4). By leveraging DNABERT-2, a foundation
model developed for analyzing genomic sequence data, in combination with evolutionary algorithms,
we aim to develop a predictive system capable of identifying reassortants in the environment and
predicting the reassortment potential of circulating viruses. We aim to assess both existing and
predicted reassortants for their potential risk. This approach represents a significant advancement in
computational virology, offering the potential to transform routine environmental surveillance data
into actionable intelligence for pandemic preparedness. By establishing quantitative risk scores for
different reassortment scenarios, this system could provide early warning capabilities for public health
authorities and inform targeted intervention strategies before pandemic emergence occurs. This paper
presents work in progress from this ongoing research project, with the ultimate goal of developing a
comprehensive surveillance and prediction system for influenza reassortment events. The prediction
and assessment of influenza virus reassortment potential face several critical challenges. Traditional
approaches to understanding viral evolution and reassortment rely predominantly on retrospective
phylogenetic analyses, which while informative offer limited predictive power for future evolutionary
events. Current computational methods in viral surveillance primarily use handcrafted features and
use conventional machine learning techniques or statistical models, which often struggle to capture
the complex, non-linear relationships present in viral genomic data (5)). To address these limitations,
we propose a novel approach that integrates foundation models with genetic algorithms to capture
rich, non-linear representations particularly effective for modeling subtle reassortment patterns. At a
later stage, we aim to incorporate the seasonality of the virus by including climatic variables such as
rainfall, temperature, and humidity to better understand the influence of environmental factors on
viral behavior (6)).

3 Methods

This work-in-progress presents a four-stage computational pipeline designed to identify and assess
influenza virus reassortment potential from environmental surveillance data. In order to generate a
proof of concept, we started with the HSN1 subtype of Influenza A virus. HSN1 has emerged as one
of the most devastating influenza subtypes with case fatality rates far exceeding those of seasonal
influenza. Unlike many other subtypes, HSN1 exhibits a broad host range and a proven capacity to
cross the species barrier, raising concerns of pandemic potential. Its evolutionary trajectory has been
shaped by frequent reassortment events with co-circulating avian influenza viruses, leading to the
emergence of novel genotypes with altered virulence, transmissibility, and immune escape properties.
This makes HSN1 an ideal candidate to establish a proof-of-concept framework for reassortment
potential prediction. Starting with HSN1 allows us to demonstrate the utility of predictive methods
on a subtype where reassortment has repeatedly influenced viral evolution and where public health
implications are immediate and significant. Our methodology begins by training a machine learning
model on H5N1 reassorted and non-reassorted sequences, using DNABERT-2 embeddings for feature
extraction to classify influenza A virus sequences as reassortants or non-reassortants. During routine
environmental surveillance, newly sequenced influenza A viruses are processed through this trained
model to identify potential reassortants. Critically, even sequences classified as non-reassortants retain
the potential to undergo reassortment and generate more dangerous influenza variants. To proactively



assess this risk, we employ genetic algorithms to simulate reassortment using biological features that
drive the process, as reassortment is not entirely random but governed by molecular compatibility
constraints that serve as fitness functions to filter biologically viable reassortants from purely mathe-
matical combinations. While genetic algorithms generate exclusively reassortant sequences, applying
our binary classifier trained on natural reassortants versus non-reassortants is biologically justified
through evolutionary pattern recognition. Natural reassortants represent "pre-validated" genomic
combinations that survived evolutionary selection—successfully navigating host immune responses,
demonstrating competitive fitness, and achieving population spread. These sequences encode the
biological "rules" for successful reassortment, capturing molecular patterns including compatible
segment combinations and functional genomic arrangements. Non-reassortant sequences provide
the essential baseline, representing canonical genomic organization and helping the model identify
what makes reassortants evolutionarily exceptional. When applied to GA-generated candidates, the
model effectively asks: "Which of the possible reassortants exhibit the same molecular signatures of
evolutionary success found in naturally viable reassortants?" The resulting probability scores create a
biologically-grounded viability ranking system, where high-scoring candidates demonstrate strong
similarity to evolutionary successful patterns, while low-scoring candidates lack these critical success
signatures.

3.1 Feature extraction using foundation model

We used H5SN1 clade 2.3.4.4b sequences from the United States during 2021-2022, a period marked by
major reassortment events (7). This dataset captured both non-reassortant and reassortant genotypes
circulating in the U.S. during this time. Specifically, it included non-reassortant genotypes such as
Al, A2, and A3, as well as reassortant genotypes including B1.1, B1.2, B2, B3.1, B3.2, B4, B5, and
additional minor reassortants that represent subsets of these major genotypes. For model development,
we selected 120 non-reassortant sequences from genotype A1l as the negative training set and 119
reassortant sequences spanning genotypes B1.1, B1.2, B2, B3.1, B3.2, B4, and BS as the positive
training set, maintaining proportional representation across groups. Similarly, to evaluate model
generalization on unseen data, non-reassortant genotypes A2 and A3 (25 sequences combined) were
reserved exclusively for testing, while 30 minor reassortants were used as the reassortant test set. To
capture segment-level patterns critical for reassortment detection, we employed a segment-specific
feature extraction strategy using the DNABERT-2 foundation model. Instead of concatenating all
eight influenza A genome segments into a single sequence, each segment (PB2, PB1, PA, HA, NP,
NA, MP, and NS) was processed independently through DNABERT-2 to generate distinct embeddings.
This design choice is particularly well-suited for reassortment analysis, as reassortment involves the
exchange of individual genome segments between strains, making segment-level representations
more biologically meaningful than whole-genome embeddings. For segments exceeding 400 base
pairs, we implemented a chunking strategy with 100 bp overlaps to accommodate DNABERT-2’s
input length limitations, averaging embeddings across chunks to preserve segment integrity. The
resulting segment-specific embeddings were then concatenated to construct a comprehensive genome-
level representation that retains the distinct evolutionary history and functional characteristics of
each segment. This methodology enables the model to capture both segment-specific signatures
and inter-segment relationships essential for distinguishing reassortant from non-reassortant HSN1
viruses, leveraging DNABERT-2’s transformer architecture to learn complex k-mer patterns and
sequence motifs without the need for manual feature engineering.

3.2 Machine learning classifier

To classify reassortant versus non-reassortant HSN1 sequences, we used a Random Forest (RF)
classifier trained on the DNABERT?2-derived embeddings. RF was chosen for its robustness on small
to medium datasets and its ability to handle non-linear relationships without extensive feature scaling.
The training set embeddings were used to fit the RF model. Hyperparameters were optimized using
a grid search with stratified 5-fold cross-validation to balance performance and prevent overfitting.
The search space included the number of trees, maximum tree depth, minimum samples required for
splitting, and minimum samples required at a leaf. The grid search was conducted with GridSearchCV
from scikit-learn, using cross-validated accuracy as the primary scoring metric. The best-performing
model from grid search was retrained on the full training set. The optimized Random Forest model
was evaluated on an unseen test set comprising 25 non-reassortant sequences (genotypes A2 and A3)
and 30 reassortant sequences (minor reassortants).



3.3 Genetic algorithm based candidate search

Influenza virus reassortment is not entirely random but is influenced by host species, viral sub-
types, and segment combination (8). This part of the work is still in progress and requires further
development before a full-scale genetic algorithm can be established. For the proof of concept,
we initiated experiments using two non-reassortant parental genotypes reported in the same study:
one example being the Al genotype of H5N1, and the other the North American virus A/ruddy
turnstone/Delaware Bay/210-212/2020 (H7N6). The fitness functions were constructed based on
both the non-reassortants and the reassortants analyzed in this study. Since the reassortant segment
combinations were already known, the fitness functions were designed to recover these combinations.
Reassortants with an intact polymerase complex (PB2, PB1, PA derived from the same parent) were
given higher fitness, consistent with the requirement for coordinated polymerase activity. Additional
weight was given when the nucleoprotein (NP) originated from the same parent as the polymerase,
reflecting their essential interaction in viral replication (9). Given that our analysis focuses on 2021-
2022 H5N1 reassortants from the United States, where HA and NA segments consistently shared
parental origin, co-inheritance of these surface glycoproteins was incorporated as an additional fitness
parameter. Finally, complete parental genotypes received fitness penalties to prioritize reassortment.
Using these criteria, we were able to generate reassortants that closely resembled the published
B1 reassortant. Additional details and a pseudocode are provided in appendix A. In future work,
additional biological fitness functions will be incorporated to improve the evaluation of reassortant
viability, alongside expanding the number of parental sequences used in the algorithm.

4 Results

We applied t-distributed Stochastic Neighbor Embedding (t-SNE) to the trained data in order to
project the high-dimensional embeddings into two dimensions. The visualization revealed distinct
clustering between reassortant and non-reassortant sequences, highlighting DNABERT-2’s ability
to capture reassortment-related genomic features without task-specific fine-tuning. For classifica-
tion, the optimal Random Forest configuration was max_depth = 5, max_features = sqrt,
min_samples_leaf = 5, min_samples_split = 5, n_estimators = 200. On unseen data,
the classifier achieved 100 % accuracy, with perfect precision, recall, and F1-scores for both classes.
Statistical evidence supporting this performance, including p-value calculations, overfitting analysis,
and biological justification, is presented in Appendix A. The prediction probabilities ranged from
a minimum of 0.699 to a maximum of 1.000, with an average confidence of 0.960. Notably, all
predictions exceeded a confidence threshold of 0.6, underscoring both the robustness and reliability
of the model. The lowest prediction probability was for a reassortant which had different PB1 and PA
segments as compared to the rest.
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Figure 1: t-SNE visualization of DNABERT-2 embeddings showing distinct clustering of reassortant
and non-reassortant influenza sequences



5 Future work

While this study focused on H5N1 clade 2.3.4.4b, the segment-specific DNABERT-2 framework can
be extended to other influenza A subtypes. Additionally, we aim to enhance our genetic algorithm
with enhanced biologically driven fitness functions incorporating nucleotide level features such as
host adaptation signatures, segment compatibility complexes, and mutations associated with increased
virulence to improve viable reassortant prediction from environmental samples.
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A Technical Appendices and Supplementary Material

Technical appendices with additional results, figures, graphs and proofs may be submitted with
the paper submission before the full submission deadline (see above), or as a separate PDF in the
ZIP file below before the supplementary material deadline. There is no page limit for the technical
appendices.

A.1 Genetic Algorithms Fitness Functions

Below is the pseudocode for the fitness functions constructed in this study. These functions were
designed specifically for H5SN1 viruses of clade 2.3.4.4b. In future work, we aim to extend this frame-
work to include additional clades and subtypes, as well as incorporate more refined fitness functions
that capture detailed biological properties, structural constraints, and compatibility requirements of
viable reassortants.
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function fitness_function

1. Dbegin
2. fitness «+ O
3. genome < I.segments // genome = [sO0, sl1, s2, s3, s4, sb, s6, s7]
4. // order: [PB2, PB1, PA, HA, NP, NA, M, NS]
5. // ---------- Polymerase complex integrity ----------
6. polymerase < [genome[0], genome[1], genome [2]]
7. if all_same(polymerase) then
8. fitness < fitness + 100
9. pol_parent < polymerase [0]
10.
11. // NP-Polymerase compatibility
12. if genome[4] = pol_parent then
13. fitness < fitness + 50
14. end if
15. else
16. // Partial polymerase integrity (2 and 1 split)
17. if count(polymerase, 0) = 2 or count(polymerase, 1) = 2 then
18. fitness < fitness + 35
19. end if
20. end if
21. /) ---------- HA NA functional pairing ----------
22. if genome [3] = genome [5] then
23. fitness <« fitness + 40
24. end if
25. // ---------- Penalty for pure parental types ----------
26. if count(genome, 0) = 8 or count(genome, 1) = 8 then
27. fitness < fitness —70
28. end if
29. return fitness
30. end
Listing 1: Fitness Function for Influenza Reassortant Evaluation
Output:

[PB2:P1, PB1:P1, PA:P1, HA:PO, NP:P1, NA:PO, M:PO, NS:PO] Fitness: 190.0

Polymerase complex: Parent 1 (intact)
NP: Parent 1

HA-NA pair: Parent 0O, Parent O
Segments from Parent 0: 4, Parent 1: 4

PB2 PB2 PB2
PB1 PB1 PB1
| X [
NP NP NP
NA NA NA
M M M
NS NS NS
Eurasian Al: Parent 0 (P0) North American virus: Parent 1 (P1) B1 reassortant

BI reassortant generated using genetic algorithm fitness functions

Figure 2:




A.2 Classification Accuracy

Multiple lines of evidence demonstrate that 100% accuracy reflects genuine biological signal rather
than overfitting. The segment-specific approach is particularly well-suited for reassortment detection
because influenza reassortment occurs through exchange of entire intact segments rather than point
mutations, creating categorical genomic signatures. During model development, cross-validation
analysis on training data showed zero overfitting gap (mean training score: 100.0%, mean validation
score: 100.0%, gap: 0.0%), indicating excellent generalization capacity. This perfect generalization
was confirmed on 55 completely unseen test samples from different genotypes, achieving 100.0%
accuracy with high prediction confidence (mean = 0.96, all probabilities > 0.7). Statistical hypothesis
testing indicates this performance is highly unlikely by chance (p = 0.006, binomial exact test).
Since reassortment involves complete segment exchanges between North American and Eurasian
genotypes, each segment retains its distinct evolutionary signature, enabling clear discrimination
between reassorted and non-reassorted genomes. The combination of zero overfitting gap during
training, uniformly high test prediction confidence, cross-genotype validation, and biological mecha-
nism alignment demonstrates that segment-specific DNABERT-2 embeddings capture fundamental
reassortment signatures.
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contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]



Justification: [TODO]
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The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
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whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?



Answer: [TODO]
Justification: [TODO]
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
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» The answer NA means that the paper does not include experiments.
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* The factors of variability that the error bars are capturing should be clearly stated (for
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [TODO]
Justification: [TODO]
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: [TODO]
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [TODO]
Justification: [TODO]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [TODO]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [TODO]
Justification: [TODO]
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [TODO]
Justification: [TODO]
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [TODO]

Justification: [TODO]

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [TODO]
Justification: [TODO]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [TODO]
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Justification: [TODO]
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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