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Abstract: Demonstrations are an effective alternative to task specification for1

learning agents in settings where designing a reward function is difficult. However,2

demonstrating expert behavior in the action space of the agent becomes unwieldy3

when robots have complex, unintuitive morphologies. We consider the practical4

setting where an agent has a dataset of prior interactions with the environment and5

is provided with observation-only expert demonstrations. Typical learning from ob-6

servations approaches have required either learning an inverse dynamics model or a7

discriminator as intermediate steps of training. Errors in these intermediate one-step8

models compound during downstream policy learning or deployment. We overcome9

these limitations by directly learning a multi-step utility function that quantifies10

how each action impacts the agent’s divergence from the expert’s visitation distribu-11

tion. Using the principle of duality, we derive DILO (Dual Imitation Learning from12

Observations), an algorithm that can leverage arbitrary suboptimal data to learn13

imitating policies without requiring expert actions. DILO reduces the learning from14

observations problem to that of simply learning an actor and a critic, bearing similar15

complexity to vanilla offline RL. This allows DILO to gracefully scale to high di-16

mensional observations, and demonstrate improved performance across the board.17

Keywords: Learning from Observations, Imitation Learning18

1 Introduction19

Imitation Learning [1] holds the promise of leveraging a few expert demonstrations to train performant20

agents. This setting is also motivated by literature in behavioral and cognitive sciences [2, 3] that21

studies how humans learn by imitation, for instance mimicking other humans or watching tutorial22

videos. While this is often the motivation, many imitation learning methods [4, 5, 6, 7, 8] typically23

either deal with an impractical setting where the learning agent is allowed to interact with the24

environment as often as needed. We posit that the main reason humans can imitate efficiently is due25

to their knowledge priors from previous interactions with the environment; humans are able to distill26

skills from prior interactions to solve a desired task. Examples of expert behavior are commonly27

available through the ever-increasing curated multi-robot or cross-embodied datasets and even through28

tutorial videos. However, leveraging these expert datasets efficiently presents two challenges: (a)29

The expert data often comes in the form of observation trajectories lacking action information (e.g.30

tutorial videos in the same observation space as agent, cross-embodiment demonstrations, etc.) (b)31

The learning agent should be able to leverage its collected dataset of environment interactions to32

efficiently adapt to the expert’s behavior. These challenges serve as our key motivation to bring33

imitation learning closer to these practical settings. We consider the setup of offline imitation learning34

from observations, where the agent has access to an offline dataset of its own action-labeled transitions35

of arbitrary quality, and is provided with potentially few task-relevant expert demonstrations in the36

form of observation trajectories.37

LfO has been widely studied [9, 10, 11, 12] in the online setting, where the agent is allowed to38

interact with the environment, and those methods are often extended to the offline setting. A39
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Figure 1: DILO Method Overview: Classical offline LfO methods require learning an Discriminator/IDM prior
to the RL/BC step suffering from compounding errors during training/deployment respectively. DILO directly
learns multi-step utility V ˚

ps, s1
q of transitioning to next state in minimizing cumulative divergence with an

expert avoiding errors arising due to using learned intermediate models for subsequent optimization.

common denominator across these methods is the use of learned one-step models to compensate40

for missing expert actions. These either take the form of a discriminator to predict single-step41

expert rewards or Inverse Dynamics models (IDM) to predict expert actions. Distribution Matching42

approaches [8, 11, 13, 4, 14] in offline setting require learning a discriminator that distinguishes the43

states or state-next states between expert and the suboptimal policy data. This discriminator serves as44

a pseudo-reward for the next step of policy optimization. In the offline setting, the discriminator is45

susceptible to overfitting and any errors will compound during RL when treating the discriminator as a46

expert reward function [15]. A negative side-effect of using discriminator-based distribution matching47

in LfO is also its reliance on minimizing an upper bound rather than the true objective [11, 13].48

Another popular family of algorithms for LfO involves learning an IDM [16, 17], where the agent49

uses the offline data to predict actions from consecutive states and uses it to annotate the expert50

trajectories with actions. The policy is extracted by behavior cloning on inferred expert actions.51

Aside from the well-known compounding error issue with behavior cloning (the errors in learned52

IDM only serve to exacerbate the issue), this approach discards the wealth of recovery behaviors53

that could be learned from offline datasets to better imitate the expert. The key question — Can we54

derive an efficient, lightweight yet principled off-policy algorithm for learning from observations that55

(a) learns from offline datasets of arbitrary quality, (b) bypasses the step of learning intermediate56

one-step models, and (c) does not resort to minimizing loose upper bounds?57

In this work, we frame Imitation Learning from Observations as a modified distribution matching58

objective between between joint state-next state visitations of the agent and expert that enables59

leveraging off-policy interactions. The distribution matching objective can be written as a convex60

program with linear constraints. Using the principle of duality, we propose Dual Imitation Learning61

from Observations or DILO, which converts the distribution matching objective to its dual form,62

exploiting the insight that the next state leaks information about missing actions. DILO no longer63

requires knowing expert actions in the agent action space and instead requires sampling multiple64

consecutive states in the environment. An overview of our method can be found in Figure 1. DILO65

presents three key benefits over prior work: (1) DILO is completely off-policy and optimizes for66

exact distribution matching objective without resorting to minimizing upper bounds (2) DILO learns67

a multi-step utility function quantifying the effect of going to a particular next-state in minimizing68

long term divergence with the expert’s visitation distribution, avoiding the compounding errors69

persistent in methods that learn intermediate single-step models. (3) DILO solves a single-player70

objective making the learning stable and more performant. Our experimental evaluation on a suite of71

MuJoCo [18] environments with offline datasets from D4RL [19] and Robomimic [20] show that72

DILO achieves improved performance consistently over the evaluation suite. We demonstrate that73

DILO scales to image observations seamlessly without extensive hyperparameter tuning. Finally,74

DILO shows improved real robot performance compared to prior methods which are observed to be75

more sensitive to the suboptimal dataset available.76
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2 Related Work77

Learning from Observations: Imitation Learning from Observations (LfO) considers the setting78

where the expert trajectories are available in the form of observations but missing action labels. This79

setting is more practical as performant algorithms developed for LfO can unlock learning from a80

plethora of video datasets and develop ways to transfer skills across embodiments. Unfortunately,81

learning from observations alone has been shown to be provably more difficult compared to the82

setting where expert actions are available [21]. As a result, current methods in LfO restrict themselves83

to small observation spaces and involve complicated learning algorithms that first train a model84

using offline interaction data to either predict expert actions [22, 11, 23] or learn a state-only reward85

function [11, 13] in the form of a discriminator. This learned model is used for subsequent Behavior86

Cloning, as in BCO [16], or for RL [13, 11]. As a result, prior methods suffer from compounding87

errors either during training or deployment. The issue of compounding errors in the offline setting88

with BC approaches or RL with a learned reward function has been investigated theoretically and89

empirically in prior works [24, 25, 15]. These errors can be fixed with repeated online interaction,90

but can lead to substantially poor performance in the offline setting.91

Duality in RL and IL: The duality perspective in reinforcement learning has been explored in92

the early works of [26, 27] and has gained recent popularity in the form of Dual RL [28, 29]93

and DICE [30, 31, 32, 33, 34, 35] methods. Dual approaches formulate RL as a convex program94

under linear constraints and leverage the Lagrangian or the Fenchel Rockefeller duality to obtain an95

unconstrained and principled objective for RL. The appeal of the dual perspective stems from the96

ability of dual approaches to learn from arbitrary off-policy data without being sensitive to distribution97

shift or losing sample efficiency as traditional off-policy methods [36, 37]. This behavior is attributed98

to the fact that dual approaches compute the on-policy policy gradient using off-policy data in contrast99

to traditional off-policy methods, which perform Bellman backups uniformly over state space. Duality100

has been previously leveraged in imitation [35, 13, 11] learning from observations by first creating101

an upper bound to the distribution matching objective of imitation learning such that it resembles a102

(return maximization) RL objective and then solving it using dual RL algorithms.103

3 Preliminaries104

We consider a learning agent in a Markov Decision Process (MDP) [38, 39] which is defined as105

a tuple: M “ pS,A, p, R, γ, d0q where S and A denote the state and action spaces respectively,106

p denotes the transition function with pps1|s, aq indicating the probability of transitioning from s107

to s1 taking action a; R denotes the reward function and γ P p0, 1q specifies the discount factor.108

The reinforcement learning objective is to obtain a policy π : S Ñ ∆pAq that maximizes expected109

return: Eπ
“
ř8

t“0 γ
trpst, atq

‰

, where we use Eπ to denote the expectation under the distribution110

induced by at „ πp¨|stq, st`1 „ pp¨|st, atq and ∆pAq denotes a probability simplex supported111

over A. f -divergences define a measure of distance between two probability distributions given by112

Df pP }Qq “ Ex„Q

”

fp
P pxq

Qpxq
q

ı

where f is a convex function.113

Visitation distributions and Dual RL: The visitation distribution in RL is defined as the discounted114

probability of visiting a particular state under policy π, i.e dπps, aq “ p1 ´ γqπpa|sq
ř8

t“0 γ
tP pst “115

s|πq and uniquely characterizes the policy π that achieves the visitation distribution as follows:116

πpa|sq “
dπps,aq

ř

a d
πps,aq

. Our proposed objective is motivated by the recently proposed Dual-V class117

of Dual RL [28] methods where regularized RL with conservatism parameter α is formulated as a118

convex program with state-only constraints:119

max
dě0

Edps,aqrrps, aqs ´ αDf pdps, aq || dOps, aqq

s.t
ř

aPA dps, aq “ p1 ´ γqd0psq ` γ
ř

ps1,a1qPSˆA dps1, a1qpps|s1, a1q, @s P S.
(1)

The above objective is constrained and difficult to optimize, but the Lagrangian dual of the above120

objective presents an unconstrained optimization that results in a performant Dual-RL algorithm.121
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min
V

p1 ´ γqEs„d0rV psqs ` αEps,aq„dO

«

f˚
p

˜«

rps, aq ` γ
ÿ

s1

pps1|s, aqV ps1q ´ V psq

ff

{α

¸ff

,

(2)
where f˚

p pyq “ maxxPRxx ¨ yy ´ fpxq s.t x ě 0. Our proposed method builds upon and extend this122

formulation to an action-free LfO setting.123

Imitation Learning from Observations: In the setting of Learning from observation-only expert124

demonstrations, the expert provides state-only trajectories: DE “ trs00, s
0
1, ...s

0
hs, ...rsn0 , s

n
1 , ...s

n
hsu.125

Our work focuses on the offline setting where in addition to the expert observation-trajectories, we126

have access to an offline interaction data that consists of potentially suboptimal reward-free ts, a, s1u127

transitions coming from the learning agent’s prior interaction with the environments. We denote the128

offline dataset by dO consisting of {state, action,next-state} tuples and ρps, a, s1q as the corresponding129

visitation distribution of the offline dataset. Distribution matching techniques aim to match the state130

visitation distribution of the agent to that of expert. Although we use s as a placeholder for states,131

the method directly extends to fully-observable MDP’s where we perform visitation distribution132

matching in the common observation space of expert and agent.133

4 Dual Imitation Learning from Observations134

Classical offline LfO approaches that rely on learning a discriminator and using it as a psuedoreward135

for downstream RL are susceptible to discriminator errors compounding over timesteps during value136

bootstrapping in RL [40, 21, 41, 15]. The discriminator is likely to overfit with limited data especially137

when expert observations are limited or high dimensional. Methods that learn IDM and use behavior138

cloning (BC) only perform policy learning on expert states and suffer compounding errors during139

deployment as a result of ignoring the recovery behaviors that can be extracted from offline, even140

suboptimal datasets [24, 25]. The key idea of the work is to propose an objective that directly learns141

a utility function that quantifies how state transitions impact the agent’s long-term divergence from142

the expert’s visitation distribution. We derive our method below by first framing LfO as a specific vis-143

itation distribution matching problem and then leveraging duality to propose an action-free objective.144

4.1 LfO as ts, s1u Joint Visitation Distribution Matching145

To derive our method, we first note a key observation, also leveraged by some prior works [10], that146

the next-state encodes the information about missing expert actions as the next-state is a stochastic147

function of the current state and action. We instantiate this insight in the form of a distribution148

matching objective. We define ts, s1u joint visitation distributions denoted by d̃πps, s1, a1q “ p1 ´149

γqπpa1|s1q
ř

s0„d0,at„πpstq γ
tppst`1 “ s1, st “ s|πq. Intuitively, it extends the definition of state-150

action visitation distribution by denoting the discounted probability of reaching the {state, next-state}151

pair under policy π and subsequently taking an action a1. Under this instantiation, the LfO problem152

reduces to finding a solution of:153

min
π

Df pd̃πps, s1, a1q}d̃Eps, s1, a1qq, (3)

as at convergence, d̃πps, s1, a1q “ d̃Eps, s1, a1q holds, which implies d̃πps, s1q “ d̃Eps, s1q and also154

d̃πpsq “ d̃Epsq by marginalizing distributions. Unfortunately, the above objective (a) requires155

computing an on-policy visitation distribution of current policy (d̃π) (b) provides no mechanism156

to incorporate offline interaction data (dO), and (c) requires knowing expert actions in the action157

space of the agent (a1).158

4.2 DILO: Leveraging Action-free Offline Interactions for Imitating Expert Observations159

We now show how framing imitation (Eq. 3) as a constrained optimization objective w.r.t visitation160

distributions allows us to derive an action-free objective. First, in order to leverage offline interaction161

data ρ, we consider a surrogate convex mixture distribution matching objective with linear constraints:162

max
d̃ě0

´Df pMixβpd̃, ρq}Mixβpd̃E , ρqq

s.t
ř

a2 d̃ps1, s2, a2q “ p1 ´ γqd̃0ps1, s2q ` γ
ř

s,a1PSˆA d̃ps, s1, a1qpps2|s1, a1q, @s1, s2 P S ˆ S.
(4)
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The constraints above represent the Bellman flow conditions any valid joint visitation distribution163

needs to satisfy. The mixture distribution matching objective preserves the fixed point of optimization164

d̃πps, s1, a1q “ d̃Eps, s1, a1q irrespective of mixing parameter β, thus serving as a principled objective165

for LfO. Mixture distribution matching has been shown to be a theoretically and practically effective166

way [28, 42] of leveraging off-policy data. Prior works [28, 42] dealing with state-action visitation167

in the context of imitation learning consider an overconstrained objective resulting in a complex168

min-max optimization. Our work departs by choosing constraints that are necessary and sufficient169

while giving us a dual objective that is action-free as well as a simpler single-player optimization.170

The constrained objective is convex with linear constraints. An application of Lagrangian duality to171

the primal objective results in the following unconstrained dual objective we refer to as DILO:172

DILO: min
V

βp1 ´ γqEd̃0
“

V ps, s1q
‰

` Es,s1„Mixβpd̃E ,ρq

“

f˚
p pγEs2„pp¨|s1,a1q

“

V ps1, s2q
‰

´ V ps, s1qq
‰

´ p1 ´ βqEs,s1„ρ

“

γEs2„pp¨|s1,a1q

“

V ps1, s2q
‰

´ V ps, s1q
‰

,
(5)

where V is the Lagrange dual variable defined as V : S ˆ S Ñ R and f˚
p is a variant of conjugate173

f˚ defined as f˚
p pxq “ maxp0, f 1´1

pxqqpxq ´ fpmaxp0, f 1´1
pxqqq. We derive DILO objective as174

Theorem 6.1 in Appendix 6.2 where we also see that strong duality holds and the dual objective175

can recover the same optimal policy with the added benefit of being action-free. Moreover, we176

show that the solution to the dual objective in Equation 5, V ˚ps, s1q represents the discounted177

utility of transitioning to a state s from s1 under the optimal imitating policy that minimizes the178

f -divergence with the expert visitation [43] (Appendix 6.2.2). Intuitively, this holds as the primal179

objective in Eq 4 can be rewritten as the reward maximization problem EMixβpd̃,ρq
rrps, s1, a1qs with180

rps, s1, a1q “ ´
Mixβpd̃,ρq

Mixβpd̃E ,ρq
fp

Mixβpd̃,ρq

Mixβpd̃E ,ρq
q. This reward function can be thought of as penalizing the181

policy every time it takes an action leading to a different next state-action than the expert’s implied182

policy in agent’s action space.183

An empirical estimator for the DILO objective in Eq. 5 only requires sampling s, s1, s2 under a184

mixture offline dataset and expert dataset and no longer requires knowing any of the actions that185

induced those transitions. This establishes DILO as a principled action-free alternative to optimizing186

the occupancy matching objective for offline settings.187

4.3 Policy Extraction and Practical Algorithm188

To instantiate our algorithm, we use the Pearson Chi-square divergence
`

fpxq “ px´ 1q2
˘

which189

has been found to lead to stable DICE and Dual-RL algorithms in the past [7]. With the Pearson chi-190

square divergence, f˚
p takes the form f˚

p pxq “ x ˚
`

max
`

x
2 ` 1

˘

, 0
˘

´
``

max
`

x
2 ` 1

˘

, 0
˘

´ 1
˘2

.191

We outline the intuition of the resulting objective after substituting Pearson chi-square divergence in192

Appendix 6.2.4.193

At convergence, the DILO objective does not directly give us the optimal policy π˚ but rather provides194

us with a utility function V ˚ps, s1q that quantifies the utility of transitioning to state s1 from s in195

visitation distribution matching. To recover the policy, we use value-weighted regression on the196

offline interaction dataset, which has been shown [44, 45, 46] to provably maximize the V function197

(thus taking action to minimize divergence with expert’s visitation) while subject to distribution198

constraint of offline dataset:199

Lpψq “ ´Es,a,s1„ρ

”

eτV
˚

ps,s1
q log πψpa|sq

ı

. (6)

Choice of d̃0ps, s1q: A distribution over state and next-state is implicitly dependent on the policy that200

induces the next-state. This initial distribution in Eq. 5 forms the distribution over states from which201

the learned policy will acquire effective imitation behavior to mimic the expert. In our work, we set202

d̃0ps, s1q to be the uniform distribution over replay buffer ts, s1u pairs, ensuring that the learned policy203

is robust enough to imitate from any starting transition observed from all the transitions available to us.204
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Algorithm 1: DILO
1: Init Vϕ, πψ
2: Params: temperature τ , mixture ratio β
3: Let D “ pρ “ tps, a, s1

qu be an offline
dataset and DE

“ ts, s1
u be expert

demonstrations dataset.
4: for t “ 1..T iterations do
5: Train Vϕ via Orthogonal gradient

update on Eq. 5
6: Update πψ by minimizing Eq. 6
7: end for

Practical optimization difficulty of dual objectives:205

Prior works in reinforcement learning that have lever-206

aged a dual objective based on Bellman-flow constraints207

suffer from learning instabilities under gradient descent.208

Intuitively, in our case, learning instability arises as the209

gradients from V ps, s1q and V ps1, s2q can conflict if the210

network learns similar feature representations for nearby211

states due to feature co-adaptation [47]. Prior works [28]212

have resorted to using semi-gradient approaches but do213

not converge provably to the optimal solution [29]. To214

sidestep this issue, we leverage the orthogonal gradient215

update proposed by ODICE [29] for the offline RL setting that fixes the conflicting gradient by216

combining the projection of the gradient of V ps1, s2q on V ps, s1q and the orthogonal component in217

a principled manner. We refer to the ODICE work for detailed exposition. Our complete practical218

algorithm can be found in Algorithm 1.219

5 Experiments220

In our experiments, first, we aim to understand where the prior LfO methods based on IDM or a221

discriminator fail and how the performance of DILO compares to baselines under a diverse set of222

datasets. Our experiments with proprioceptive observations consider an extensive set of 24 datasets.223

The environments span locomotion and manipulation tasks, containing complex tasks such as 24-DoF224

dextrous manipulation. Second, we examine if the simplicity of DILO objective indeed enables it to225

scale directly to mimic expert image observation trajectories. Finally, we test our method on a set of226

real-robot manipulation tasks where we consider learning from a few expert observations generated227

by human teleoperation as well as cross-embodied demos demonstrated by humans as videos.228

5.1 Offline Imitation from Observation Benchmarking229

We use offline imitation benchmark task from [28, 13] where the datasets are sourced from D4RL [19]230

and generated in MuJoCo simulator [18]. For locomotion tasks, the benchmark generates an offline231

interaction dataset consisting of 1-million transitions from random or medium datasets mixed with232

200 expert trajectories (30 expert trajectory in the few-expert setting). For manipulation environments,233

we have suboptimal datasets comprising of 30 expert trajectories mixed with human or cloned datasets234

from D4RL. The expert demonstrates 1 observation trajectory for all tasks. DILO uses a single set of235

hyperparameters across all environments listed in Appendix 6.3.1.236

Access to expert actions No expert actions Expert

Suboptimal Env RCE BC BC IQ-Learn ReCOIL ORIL SMODICE DILO
Dataset expert data full dataset (offline)

random+ hopper 51.41˘38.63 4.52˘1.42 5.64˘4.83 1.85 ˘2.19 108.18˘3.28 75.21˘21.90 100.46˘0.64 97.87˘8.11 111.33
halfcheetah 64.19˘11.06 2.2˘0.01 2.25˘0.00 4.83˘7.99 47.65˘16.95 60.49˘3.53 85.16˘3.62 91.18˘0.24 88.83

expert walker2d 20.90˘26.80 0.86˘0.61 0.91˘0.5 0.57˘0.09 102.16˘7.19 27.02˘23.49 108.41˘0.47 108.42˘0.64 106.92
ant 105.38˘14.15 5.17˘5.43 30.66˘1.35 42.23˘20.05 126.74˘4.63 54.19˘27.60 122.56˘4.47 122.15˘5.15 130.75

random+ hopper 25.31˘18.97 4.84˘3.83 3.0˘0.54 1.37 ˘1.23 97.85˘17.89 29.86˘22.60 78.80˘3.09 93.73˘7.59 111.33
halfcheetah 2.99˘1.07 -0.93˘0.35 2.24˘0.01 1.14˘1.94 76.92˘7.53 25.76˘9.52 4.10˘1.50 52.32˘10.72 88.83

few-expert walker2d 40.49˘26.52 0.98˘0.83 0.74˘0.20 0.39˘0.27 83.23˘19.00 3.22˘3.29 107.18˘1.87 108.42˘0.25 106.92
ant 67.62˘15.81 0.91˘3.93 35.38˘2.66 32.99˘3.12 67.14˘ 8.30 36.52 ˘ 9.37 -8.89˘39.12 117.50˘4.75 130.75

medium+ hopper 58.71˘34.06 16.09˘12.80 59.25˘3.71 12.90˘24.00 88.51˘16.73 14.15˘18.24 54.28˘3.78 99.97˘12.62 111.33
halfcheetah 65.14˘13.82 -1.79˘0.22 42.45˘ 0.42 25.67˘20.82 81.15˘2.84 65.28˘7.17 56.91˘4.08 90.47˘0.64 88.83

expert walker2d 96.24˘14.04 2.43˘1.82 72.76˘3.82 59.37˘30.14 108.54˘1.81 28.32˘27.82 3.11˘2.41 77.16˘6.96 106.92
ant 86.14˘38.59 0.86˘7.42 95.47˘10.37 37.17˘41.15 120.36˘7.67 49.14˘14.92 103.67˘3.44 102.89˘3.57 130.75

medium hopper 66.15˘35.16 7.37˘1.13 46.87˘5.31 11.05˘20.59 50.01˘10.36 11.67˘14.82 44.61˘6.08 41.80˘14.81 111.33
halfcheetah 61.14˘18.31 -1.15˘0.06 42.21˘0.06 26.27˘20.24 75.96˘4.54 59.11˘4.74 44.66˘0.95 74.71˘6.35 88.83

few-expert walker2d 85.28˘34.90 2.02˘0.72 70.42˘2.86 73.30˘2.85 91.25˘17.63 6.81˘6.76 6.00˘6.69 66.64˘6.05 106.92
ant 67.95˘36.78 -10.45˘1.63 81.63˘6.67 35.12˘50.56 110.38˘10.96 67.18˘30.45 90.30˘2.23 88.03˘9.01 130.75

cloned+expert

pen 19.60˘11.40 13.95˘11.04 34.94˘11.10 2.18˘8.75 95.04˘4.48 0.92˘4.51 13.29˘13.57 101.36˘3.48 106.42
door 0.08˘ 0.15 -0.22˘0.05 0.011˘0.00 0.07˘0.02 102.75˘4.05 -0.32˘0.01 1.45˘ 2.23 105.60˘0.28 103.94

hammer 1.95˘3.89 2.41˘4.48 5.45˘ 7.84 0.27˘0.02 95.77˘17.90 0.26˘ 0.01 0.00˘ 0.10 112.55˘22.10 125.71

human+expert

pen 17.81˘5.91 13.83˘10.76 90.76˘25.09 14.29˘28.82 103.72˘2.90 5.76˘3.85 -3.33˘0.12 88.61˘14.30 106.42
door -0.05˘0.05 -0.03˘0.05 103.71˘1.22 5.6˘7.29 104.70˘0.55 -0.32˘0.01 -0.12˘ 0.16 101.51˘0.99 103.94

hammer 5.00˘5.64 0.18˘0.14 122.61˘4.85 -0.32˘1.38 125.19˘3.29 3.11˘0.04 0.40˘0.48 117.52˘8.55 125.71

partial+expert kitchen 6.875˘9.24 2.5˘5.0 45.5˘1.87 0.0˘0.0 60.0˘5.70 0.00˘0.00 35.0˘ 4.08 43.0˘5.30 75.0

mixed+expert kitchen 1.66˘2.35 2.2˘3.8 42.1˘1.12 0.0˘0.0 52.0˘1.0 0.00˘0.00 48.33˘4.24 44.0˘8.30 75.0

Table 1: The normalized return obtained by different offline IL (both provided with and without expert actions)
methods on the D4RL suboptimal datasets with 1 expert trajectory. The mean and std statistics are obtained
over 5 random seeds. Methods with avg. perf within the 1 std-dev of the top-performing method are highlighted.
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Baselines: We compare DILO against offline imitation from observations (LfO) methods such237

as ORIL [48], SMODICE [13] as well as offline imitation from action-labelled demonstration238

(LfD) methods like BC [49], IQ-Learn [50] and ReCOIL [28]. We choose these imitation learning239

methods as they represent the frontier of the LfO and LfD setting, outperforming methods like240

ValueDICE [42] and DemoDICE [34] as shown in prior works. Intuitively, the imitation from241

action-labeled demonstrations represents the upper bound of performance as they have additional242

information on expert actions even though sometimes we observe LfO algorithms to surpass them in243

performance. ORIL and SMODICE first learn a discriminator and, subsequently run downstream RL244

treating the discriminator as the expert pseudo-reward.245

Table 1 shows the cumulative return of different algorithms under the ground truth expert reward246

function that is unavailable to the learning agent during training. DILO demonstrates improved247

performance across a wide range of datasets. Particularly in the setting of few-expert observations248

or high dimensional observations like dextrous manipulation, the performance of methods relying249

on a learned discriminator falls sharply potentially due to overfitting of discrimination that results250

in compounding downstream errors. DILO gets rid of this intermediate step, completely reducing251

the problem of LfO to a similar training setup as a traditional actor-critic algorithm. BC methods,252

representing an upper bound to BCO [16] shows poor performance even without a learned IDM.253

5.2 Imitating from Expert Image Observations254

Learning to mimic expert in the image observation space presents a difficult problem, especially in255

the absence of a pretrained representations. To evaluate our algorithm in this setting, we consider256

the Robomimic datasets [20] which gives the flexibility of choice to use image observations or the257

corresponding proprioceptive states for learning. Our suboptimal datasets comprises of Multi-Human258

(MH), Machine Generated (MG) datasets from Robomimic without access to expert trajectories. We259

obtain 50 expert-observation trajectories from Proficient Human (PH) datasets. This setup is more260

complicated as the agent has to learn expert actions purely from OOD datasets and match expert261

visitations. We consider the most performant LfO baseline from the previous section SMODICE [13]262

along with a BCO [16] baseline as BCO has shown success in scaling up to image observations [51].263

Lift-MG Lift-MH Can-MG Can-MH

St
at

e
50

D
em

os BCO 0.00 ˘ 0.00 0.00 ˘ 0.00 0.00 ˘ 0.00 0.0 0˘ 0.00
SMODICE 0.41 ˘ 0.02 0.46 ˘ 0.1 0.54 ˘ 0.01 0.28˘ 0.01
DILO 0.59 ˘ 0.03 0.97 ˘ 0.02 0.53 ˘ 0.02 0.64 ˘ 0.03

Im
ag

e
50

D
em

os BCO 0.00 ˘ 0.00 0.00 ˘ 0.00 0.00 ˘ 0.00 0.00 ˘ 0.00
SMODICE 0.21 ˘ 0.02 0.40 ˘ 0.12 0.10 ˘ 0.04 0.02 ˘ 0.01
DILO 0.76 ˘ 0.08 0.94 ˘ 0.02 0.25 ˘ 0.02 0.15 ˘ 0.01

Figure 2: Side-by-side comparison of LfO methods
on state-only imitation vs image-only imitation. DILO
shows noticeable improvement over existing LfO meth-
ods without hyperparameter tuning. Columns denote
different suboptimal datasets.

Fig 2 shows the result of these approaches on 4-264

different datasets using both state and image265

observations. SMODICE shows competitive266

results when learning from state-observations267

but does not scale up well to images likely268

due to the overfitting of the discriminator in269

high-dimensional space. BCO fails consistently270

across both state and image experiments as learn-271

ing an IDM is challenging in this task with con-272

tacts, and any mistake by IDM can compound.273

DILO outperforms baselines and demonstrates274

improved performance across both state and im-275

age observations.276

5.3 Imitating from Human Trajectories for Robot Manipulation277

Setup: Our setup utilizes a UR5e Robotic Arm on a tilted 1.93m ˆ 0.76m Wind Chill air hockey278

table to hit a puck or manipulate tabletop objects. Puck detection utilizes an overhead camera, with279

additional environment details in Appendix 6.4. The set of tasks in this domain is designed to stress280

both 1) challenging inverse dynamics through complex striking motions and 2) partial state coverage281

through the wide variety of possible paddle ˆ puck positions and velocities. While baselines can282

struggle with compounding errors in one or both of these settings DILO’s theoretical properties allow283

it to scale gracefully to these complexities.284

Tasks and Datasets: We consider three tasks and 9 datasets for real-world experiments. Our tasks are:285

1) Safe Objective Manipulation: Navigate object safely to the goal without hitting obstacles. 2) Puck286

Striking: Hit a stationary puck 3) Dynamic Puck Hitting: A challenging task of hitting a dynamically287
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Safe Object Manipulation Puck-Striking

Few Trajectories Fixed Start Few Uniform 20 expert 10 expert

BCO 3/10 7/10 6/10 7/11 4/11
SMODICE 2/10 1/10 0/10 5/11 4/11
DILO 8/10 9/10 5/10 8/11 5/11

Safe Object Manipulation (Cross-Embodiment) Dynamic Puck Hitting

Few Trajectories Fixed Start Few Uniform 400 expert 400 expert
(touch) (hitting)

BCO 6/10 6/10 8/10 2/10 0/10
SMODICE 1/10 1/10 1/10 6/10 4/10
DILO 8/10 9/10 8/10 10/10 9/10

Figure 3: Real Robot Experiments: Table shows the
(x/y) success rates as x successes in y trials for differ-
ent methods on real-robot setup of air-hockey. For the
dynamic puck-hitting task, we evaluate the number of
touches made in addition to hitting behavior, which
returns the puck in the opposite direction.

BCO SMODICE DILO

Figure 4: Example of learned hitting behavior
across algorithms: Puck’s (red) gradient shows move-
ment across time for Dynamics Puck Hitting.

moving puck. For the safe manipulation task, we investigate three datasets a) Few-Trajectories:288

15 expert trajectory observations are given with uniform initial state b) Fixed-start-trajectories: 15289

expert observation trajectories are provided to the agent with fixed start state. c) Few Uniform: 300290

transitions are provided to the agent uniformly in state space. For Puck Striking tasks, we consider291

two observation datasets, one with 20 experts and the other with 10 experts. For Dynamic Puck hitting,292

we consider a dataset of 400 expert trajectories. The suboptimal datasets for all tasks contain the same293

amount of transitions as the expert dataset containing a mix of successes and failures. The datasets294

for all tasks are obtained by a teleoperation setup by humans, except for the cross-embodiment tasks295

where the humans demonstrate using their hands, and the state is detected using an overhead camera.296

Analysis: Fig. 3 compares the success rate of Learning from Observation algorithms in settings with297

varying dynamics. Safe Object Manipulation presents a task with easy inverse dynamics modeling298

since the arm restricts its motion to move through the workspace. Consequently, BCO performs well299

when provided with good coverage of expert observations (few-uniform), but is still outperformed300

by DILO as a result of ignoring offline datasets to learn recovery behaviors. SMODICE shows poor301

performance consistently in tasks with small datasets—i.e. poor coverage. Puck striking presents302

both easy inverse dynamics and good state coverage, which may explain the comparable performance303

from BCO and SMODICE against DILO. On the other hand, Dynamic Puck Hitting is challenging304

both for inverse dynamics, because of the wide range of actions necessary to hit a moving puck,305

and for state coverage, where the range of possible paddle and puck positions is substantial. Fig. 4306

demonstrates an example of learned puck hiting behavior. DILO handles both complexities gracefully,307

resulting in an impressive success rate over both baselines.308

6 Conclusion309

Offline Imitation from Observations provides a solution for fast adaptation of the agent to a variety310

of expert behaviors agnostic of the agent’s action space. In this work, we propose a principled,311

computationally efficient, and empirically performant solution to this problem. Our work frames the312

problem as a particular distribution-matching objective capable of leveraging offline data. Using the313

principle of duality under a well-chosen but sufficient set of constraints, we derive an action-free314

objective whose training computational complexity is similar to an efficient offline RL algorithm.315

We show that the proposed method shows improved performance across a wide range of simulated316

and real datasets, learning from proprioceptive or image observations and cross-embodied expert317

demonstrations.318

Limitations: Our proposed method is limited by the assumption of matching visitation distributions319

in the observation space of the agent and expert rather than a meaningful semantic space, but we hope320

that with improvement in universal representations, this limitation is lifted by distribution matching321

in compact representation space. Our work assumes that expert’s optimality, but in reality, experts322

demonstrate a wide range of biases. We leave this extension to future work. Finally, we demonstrate323

the failure modes of our method and further limitations in Appendix 6.5.324
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Appendix457

6.1 Code Release458

Our code is attached as part of the supplementary material to ensure reproducibility.459

6.2 Theory460

6.2.1 Derivation for Action-free distribution matching461

Theorem 6.1. The dual problem to the primal occupancy matching objective (Equation 4) is given462

by the DILO objective in Equation 5. Moreover, as strong duality holds from Slater’s conditions the463

primal and dual share the same optimal solution d˚ for any offline transition distribution ρ and any464

choice of mixture distribution ratio β.465

We start with the primal objective that matches distributions between the agent’s visitation dps, s1, a1q466

and expert’s visitation dEps, s1, a1q. As before ρ denotes the visitation distribution of offline data.467

min
π

Df pMixβpdπps, s1, a1q, ρq}MixβpdEps, s1, a1q, ρqq, (7)

where for any two distributions µ1 and µ2, Mixβpµ1, µ2q denotes the mixture distribution with468

coefficient β P p0, 1s defined as Mixβpµ1, µ2q “ βµ1 ` p1 ´ βqµ2.469

Formulating the objective as a constrained objective in agent’s visitation distribution d allows us to470

create a primal objective that is a convex program. This is crucial in subsequently creating a dual471

objective that is unconstrained and easy to optimize.472

max
dě0

´Df pMixβpd, ρq}MixβpdE , ρqq

s.t
ř

a2 dps1, s2, a2q “ p1 ´ γqd0ps1, s2q ` γ
ř

s,a1PSˆA dps, s1, a1qpps2|s1, a1q, @s1, s2 P S ˆ S.
(8)

where the constraints above dictate the conditions that any valid visitation distribution dps1, s2q needs473

to satisfy and are our proposed modifications to the commonly known bellman flow constraints.474

Below we outline the derivation of how these specific constraints with the mixture distribution475

matching objective allows us to create a dual objective that is independent of expert’s actions.476

Applying Lagrangian duality to the above constrained distribution matching objective, we can convert477

it to an unconstrained problem with dual variables V ps, s1q defined for all s, s1 P S ˆ S:478

max
dě0

min
V ps1,s2q

´Df pMixβpd, ρqps, s1, a1q || MixβpdE , ρqps, s1, a1qq

`
ÿ

s1,s2

V ps1, s2q

˜

p1 ´ γqd0ps1, s2q ` γ
ÿ

s,a1

dps, s1, a1qpps2|s1, a1q ´
ÿ

a

dps1, s2, a2q

¸

(9)

“ max
dě0

min
V ps,s1q

p1 ´ γqEd0ps,s1q

“

V ps, s1q
‰

` Es,s1,a1„d

«

γ
ÿ

s2

pps2|s1, a1qV ps1, s2q ´ V ps, s1q

ff

´Df pMixβpd, ρqps, s1, a1q || MixβpdE , ρqps, s1, a1qq (10)

where the last equation uses a change of variable from s1, s2 to s, s1 without loss of generality. Using479

a simple algebraic manipulation below, we can get rid of the inner maximization. We add and subtract480
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the terms shown below:481

“ max
dě0

min
V ps,s1q

βp1 ´ γqEd0ps,s1q

“

V ps, s1q
‰

`βEs,s1,a1„d

«

γ
ÿ

s1

pps2|s1, a1qV ps1, s2q ´ V ps, s1q

ff

`p1 ´ βqEs,s1,a1„ρ

«

γ
ÿ

s2

pps2|s1, a1qV ps1, s2q ´ V ps, s1q

ff

´p1 ´ βqEs,a,g„ρ

«

γ
ÿ

s1

pps2|s1, a1qV ps1, s2q ´ V ps, s1q

ff

´Df pMixβpd, ρqps, s1, a1q || MixβpdE , ρqps, s1, a1qq (11)

As strong duality holds using Slater’s conditions [52] (see [43] for a detailed account of strong duality482

in RL under visitation distributions). Using the fact that strong duality holds in this problem we can483

swap the inner max and min and rewrite an equivalent maximization under the mixture distribution:484

“ min
V ps,s1q

max
Mixβpd,ρqps,s1,a1qě0

βp1 ´ γqEd0ps,s1q

“

V ps, s1q
‰

` βEs,s1,a1„d

«

γ
ÿ

s1

pps2|s1, a1qV ps1, s2q ´ V ps, s1q

ff

` p1 ´ βqEs,s1,a1„ρ

«

γ
ÿ

s2

pps2|s1, a1qV ps1, s2q ´ V ps, s1q

ff

´ p1 ´ βqEs,s1,a1„ρ

«

γ
ÿ

s2

pps2|s1, a1qV ps1, s2q ´ V ps, s1q

ff

´Df pMixβpd, ρqps, s1, a1q || MixβpdE , ρqps, s1, a1qq (12)

In the following derivation, we will show that the inner maximization in Eq 12 has a closed form solu-485

tion even when adhering to the non-negativity constraints. Let yps, s1, a1q “ Es2„pps1,a1qrV ps1, s2qs´486

V ps, s1q.487

max
Mixβpd,ρqps,s1,a1qě0

Es,s1,a1„Mixβpd,ρqps,s1,a1q

«

γ
ÿ

s2

pps2|s1, a1qV ps1, s2q ´ V ps, s1q

ff

´Df pMixβpd, ρqps, s1, a1q || MixβpdE , ρqps, s1, a1qq

Now to solve this constrained optimization problem we create the Lagrangian dual and study the488

KKT (Karush–Kuhn–Tucker) conditions. Let wps, s1, a1q
∆
“

Mixβpd,ρqps,s1,a1
q

MixβpdE ,ρqps,s1,a1q
, then the constraint489

Mixβpd, ρqps, s1, a1q ě 0 holds if and only if wps, s1, a1q ě 0 @s, s1, a1.490

max
wps,s1,a1q

max
λě0

Es,s1,a1„MixβpdE ,ρqps,s1,a1q

“

wps, s1, a1qyps, s1, a1q
‰

´ EMixβpdE ,ρqps,s1,a1q

“

fpwps, s1, a1qq
‰

`
ÿ

s,s1,a1

λpwps, s1, a1q ´ 0q (13)

Since strong duality holds, we can use the KKT constraints to find the solutions w˚ps, s1, a1q and491

λ˚ps, s1, a1q.492

• Primal feasibility: w˚ps, s1, a1q ě 0 @ s, a1, a1493

• Dual feasibility: λ˚ ě 0 @ s, s1, a1494
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• Stationarity: MixβpdE , ρqps, s1, a1qp´f 1pw˚ps, s1, a1qq ` yps, s1, a1q ` λ˚ps, s1, a1qq “495

0 @ s, s1, a1496

• Complementary Slackness: pw˚ps, s1, a1q ´ 0qλ˚ps, s1, a1q “ 0 @ s, s1, a1497

Using stationarity we have the following:498

f 1pw˚ps, s1, a1qq “ yps, s1, a1q ` λ˚ps, s1, a1q @ s, s1, a1 (14)

Now using complementary slackness, only two cases are possible w˚ps, s1, a1q ě 0 or λ˚ps, s1, a1q ě499

0.500

Combining both cases we arrive at the following solution for this constrained optimization:501

w˚ps, s1, a1q “ max
´

0, f 1´1
pyps, s1, a1qq

¯

(15)

Using the optimal closed-form solution (w˚) for the inner optimization in Eq. (12) we obtain502

min
V ps,s1q

βp1 ´ γqEd0ps,s1q

“

V ps, s1q
‰

` Es,s1,a1„MixβpdE ,ρqps,s1,a1q

“

max
`

0, pf 1q´1
`

yps, s1, a1q
˘˘

yps, s1, a1q ´ αf
`

max
`

0, pf 1q´1
`

yps, s1, a1q
˘˘˘‰

´ p1 ´ βqEs,a„ρ

«

γ
ÿ

s1

pps1|s, aqV ps1, s2q ´ V ps, s1q

ff

(16)

For deterministic dynamics, this reduces to the following simplified objective:503

min
V ps,s1q

βp1 ´ γqEd0ps,s1q

“

V ps, s1q
‰

` Es,s1,a1„MixβpdE ,ρqps,s1,a1q

“

max
`

0, pf 1q´1
`

yps, s1, a1q
˘˘

yps, s1, a1q ´ f
`

max
`

0, pf 1q´1
`

yps, s1, a1q
˘˘˘‰

´ p1 ´ βqEs,a„ρ

“

γV ps1, s2q ´ V ps, s1q
‰

(17)

where yps, a, gq “ γV ps1, s2q ´ V ps, s1q.504

6.2.2 What does the utility function V ˚ps, s1q represent?505

Prior work [43] shows that for the regularized RL problem506

max
dě0

Edps,aqrrps, aqs ´ αDf pdps, aq || dOps, aqq

s.t
ř

aPA dps, aq “ p1 ´ γqd0psq ` γ
ř

ps1,a1qPSˆA dps1, a1qpps|s1, a1q, @s P S.
(18)

the dual optimizes for a Langrangian variable V that represents a regularized optimal value function.507

This insight directly extends to our work with reward function set to zero, our Lagrangian variable508

learns only the regularized visitation probabilities under optimal policy.509

It is easy to see why this is the case using the previous derivation. Following the derivation from the510

previous section, note that we had rewritten the inner maximization w.r.t the visitation distribution511

d, thus effectively getting rid of manipulating visitation distributions in the final objective. Our512

derivation above uses the following substitution shown in Eq 15 that holds as part of the closed form513

solution w.r.t inner maximization:514

Mixβpd, ρqps, s1, a1q

MixβpdE , ρqps, s1, a1q
“ max

´

0, f 1´1
pyps, s1, a1qq

¯

(19)

where y “ γV ps1, s2q ´ V ps, s1q. For deterministic dynamics, at convergence, the following holds515

for all s, s1, a1 where d˚ps, s1, a1q ą 0:516

f 1´1
pγV ˚ps1, s2q ´ V ˚ps, s1qq “

Mixβpd˚, ρqps, s1, a1q

MixβpdE , ρqps, s1, a1q
(20)
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implying:517

pγV ˚ps1, s2q ´ V ˚ps, s1qq “ f 1

ˆ

Mixβpd˚, ρqps, s1, a1q

MixβpdE , ρqps, s1, a1q

˙

“ ´rips, s
1, a1q (21)

The above relation makes the the interpretation of V ˚ps, s1q clear. pV ˚ps, s1q ´ γV ˚ps1, s2qq de-518

notes the implied reward function rips, s1, a1q under which V ˚ computes the maximum cumulative519

expected return, where a1 is the action that leads to s2. As shown above the the implied reward520

function rips, s1, a1q “ ´f 1

´

Mixβpd˚,ρqps,s1,a1
q

MixβpdE ,ρqps,s1,a1q

¯

is the divergence between expert stationary visita-521

tion distribution and agent’s stationary visitation that is obtained after taking the action a1 from s1522

and then acting optimally to match the expert visitation distribution. Note that the function f 1 is523

non-decreasing as the function f is convex from definition of f -divergences.524

6.2.3 Analytical form of f˚
p for χ2 divergence525

For χ2 divergence, the generator function fpxq “ px´ 1q2. f 1pxq “ 2px´ 1q and correspondingly526

f 1´1pxq “ x
2 ` 1. Substituting f 1´1pxq in definition of f˚

p :527

f˚
p pxq “ maxp0, f 1´1

pxqqpxq ´ fpmaxp0, f 1´1
pxqqq (22)

Since x we substitute takes the form of residual residual “ γEs2„pp¨|s1,a1qrV ps1, s2qs ´ V ps, s1qq,528

the below pseudocode shows the implementation of f˚
p for DILO.529

1 def f_star_p(self , residual , type=’chi_square ’):530

2 if type==’chi_square ’:531

3 omega_star = torch.max(residual / 2 + 1, torch.zeros_like(532

residual))533

4 return residual * omega_star - (omega_star - 1)**2534

6.2.4 Intuitive understanding of DILO535

To better understand this objective’s behavior we consider the last two terms from Eq 5 in its expanded536

form below. We ignore the first term as it is simply pushing down Q-values at initial distribution of537

states, to prevent overestimation when learning from offline datasets.538

βEs,s1,s2„d̃Eq

“

f˚
p pγV ps1, s2q ´ V ps, s1qq

‰

` p1 ´ βq ˚ Es,s1,s2„ρ

“

f˚
p pγV ps1, s2q ´ V ps, s1qq

‰

(23)

´p1 ´ βqEs,s1,a1„ρ

“

γEs2„pp¨|s1,a1q

“

V ps1, s2q
‰

´ V ps, s1q
‰

,

Denote rps, s1, aEq “ V ps, s1q ´ γV ps1, s2q as the implicit expert reward of under a learned Q-539

function. The objective presents a clear intuition when we study the objective’s behavior in different540

situations individually: (a) For samples from ρ, the objective pushes down the implicit reward to 0 as541

shown below:542

min
r

Lprq “

#

p1 ´ βq r
2

4 , if r ă 2,

p1 ´ βqr otherwise.
(24)

(b) For samples from the expert distribution d̃E , the objective ensures that reward is greater than543

equal to 2544

min
r

Lprq “

#

βp r
2

4 ´ rq, if r ă 2,

0 otherwise.
(25)

It becomes clear now that DILO is implicitly learning a valid reward function that ensures higher545

discounted return for the expert compared to the suboptimal dataset by shaping Q-values directly.546

6.3 Implementation547

The algorithm for DILO can be found in Algorithm 1. We base the DILO implementation on the548

official implementation of pytorch-IQL https://github.com/gwthomas/IQL-PyTorch/tree/main that is549

based on IQL [44]. We keep the same network architecture as the original code and do not vary it550

across environments.551
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6.3.1 Imitation Learning with Proprioceptive Observations552

Our experiment design is based on the benchmark from [13, 28] but we explain the setup here for553

completeness.554

Environments: For the offline imitation learning experiments we focus on 9 locomotion and555

manipulation environments from the MuJoCo physics engine [18] comprising of Hopper, Walker2d,556

HalfCheetah, Ant, Kitchen, Pen, Door and Hammer to make a total of 24 datasets. The MuJoCo557

environments used in this work are licensed under CC BY 4.0 and the datasets used from D4RL are558

also licensed under Apache 2.0.559

Suboptimal Datasets: We use the offline imitation learning benchmark from [28] that utilizes560

offline datasets consisting of environment interactions from the D4RL framework [19]. Specif-561

ically, suboptimal datasets are constructed following the composition protocol introduced in562

SMODICE [13]. The suboptimal datasets, denoted as ’random+expert’, ’random+few-expert’,563

’medium+expert’, and ’medium+few-expert’ combine expert trajectories with low-quality trajectories564

obtained from the ”random-v2” and ”medium-v2” datasets, respectively. For locomotion tasks, the565

’random/medium+expert’ dataset contains a mixture of some number of expert trajectories (ď 200)566

and «1 million transitions from the ”x” dataset. The ’x+few-expert’ dataset is similar to ‘x+expert,’567

but with only 30 expert trajectories included. For manipulation environments we consider only 30568

expert trajectories mixed with the complete ’x’ dataset of transitions obtained from D4RL.569

Expert Observation Dataset: To enable imitation learning from observation, we use 1 expert570

observation trajectory obtained from the ”expert-v2” dataset for each respective environment.571

Baselines: To benchmark and analyze the performance of our proposed methods for offline imitation572

learning with suboptimal data, we consider different representative baselines in this work: BC [49],573

SMODICE [13], RCE [53], ORIL [48], IQLearn [50], ReCOIL [28]. SMODICE has been shown574

to be competitive [13] to DEMODICE [34] and hence we exclude it from comparison. SMODICE575

is an imitation learning method based on the dual framework, that optimizes an upper bound to576

the true imitation objective. ORIL adapts generative adversarial imitation learning (GAIL) [9]577

algorithm to the offline setting, employing an offline RL algorithm for policy optimization. The RCE578

baseline combines RCE, an online example-based RL method proposed by Eysenbach et al. [53].579

RCE also uses a recursive discriminator to test the proximity of the policy visitations to successful580

examples. [53], with TD3-BC [54]. Both ORIL and RCE utilize a state-based discriminator similar581

to SMODICE, and TD3-BC serves as the offline RL algorithm. All the compared approaches only582

have access to the expert state-action trajectory.583

The open-source implementations of the baselines SMODICE, RCE, and ORIL provided by the584

authors [13] are employed in our experiments. We use the hyperparameters provided by the authors,585

which are consistent with those used in the original SMODICE paper [13], for all the MuJoCo586

locomotion and manipulation environments.587

In our set of environments, we keep the same hyper-parameters across tasks - locomotion, adroit588

manipulation, and kitchen manipulation. We train until convergence for all algorithms including589

baselines and we found the following timesteps to be sufficient for different set of environments:590

Kitchen: 1e6, Few-expert-locomotion: 500k, Locomotion: 300k, Manipulation: 500k591

We keep a constant batch size of 1024 across all environments. For all tasks, we average mean returns592

over 10 evaluation trajectories and 7 random seeds. Full hyper-parameters we used for experiments593

are given in Table 2. For policy update, using Value Weighted Regression, we use the temperature τ594

to be 3 for all environments.595

Hyperparameters for our proposed off-policy imitation learning method DILO are shown in Table 2.596

6.3.2 LfO with Image Observations597

We use robomimic [20] for our imitation with image observations experiments. The following two598

environments are used here (the description is taken from their paper and written here for conciseness):599
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Hyperparameter Value
Policy learning rate 3e-4
Value learning rate 3e-4
f -divergence χ2

max-clip (Value clipping for policy learning) 100
MLP layers (256,256)
β (mixture ratio) 0.5
η (orthogonal gradient descent) 0.5
τ (policy temperature) 3

Table 2: Hyperparameters for DILO in imitation from proprioceptive observations.

Lift: Object observations (10-dim) consist of the absolute cube position and cube quaternion (7-dim),600

and the cube position relative to the robot end effector (3-dim). The cube pose is randomized at the601

start of each episode with a random z-rotation in a small square region at the center of the table.602

Can Object observations (14-dim) consist of the absolute can position and quaternion (7-dim), and603

the can position and quaternion relative to the robot end effector (7-dim). The can pose is randomized604

at the start of each episode with a random z-rotation anywhere inside the left bin.605

Robomimic provides three datasets and two modalities of observation (Proprioceptive, Images)606

for both environments above. The datasets are denoted by - MH (Multi-human), MG (Machine607

Generated), PH(Proficient-human). We use the MG and MH datasets as the suboptimal datasets in our608

task and PH as the source of expert observations. MH and MG datasets consists of 200 trajectories of609

usually suboptimal nature and we use 50 observation-only trajectory from PH datasets. This tasks610

is complex by the fact that expert-level actions are mostly unseen in the suboptimal dataset and the611

agent needs to learn the best actions that matches expert visitation from the suboptimal dataset. We612

implement all algorithms in the Robomimic codebase without any change in network architecture,613

data-preprocessing or learning hyperparameters. We tune algorithm specific hyperparameters in a614

course grid for BCO, SMODICE, and DILO to compare the best performance of methods independent615

of hyperparameters. For BCO, we tune the inverse dynamics model learning epochs between [1,5,10].616

For SMODICE, we tuned discriminator learning epochs between [1,5], and gradient penalty between617

[1,5,10,20]. To control overestimation due to learning with offline datasets in DILO we consider a618

linear weighting α between the optimism and pessimism terms in Eq 5 inspired by prior work [28] as619

follows:620

min
Q

p1 ´ λqβp1 ´ γqEd̃0
“

V ps, s1q
‰

` λEs,s1,a1„Mixβpd̃E ,ρq

“

f˚
p pγEs2„pp¨|s1,a1q

“

V ps1, s2q
‰

´ V ps, s1qq
‰

´ λp1 ´ βqEs,s1,a1„ρ

“

γEs2„pp¨|s1,a1q

“

V ps1, s2q
‰

´ V ps, s1q
‰

,

The hyperparameters used for DILO can be found in Table 3. For the architecture specific hyperpa-621

rameters we refer the readers to [20].

Hyperparameter Value
max-clip (Value clipping for policy learning) 100
λ (pessimism parameter) 0.7
β (mixture ratio) 0.5
η (orthogonal gradient descent) 0.5
τ (policy temperature) 3

Table 3: Hyperparameters for DILO in imitation from image observations.

622

6.4 Robot Manipulation Experiments623

Our setup for manipulation experiments is inspired by the robot air hockey environment [55] for624

applying DILO to physical robotics settings. Our setup utilizes a Universal Robotics 5 kilogram625

e-series (UR5e) 6-degree of freedom robotic arm on a fixed mount, a Robotiq parallel jaw gripper, a626

1.93m ˆ 0.76m Wind Chill air hockey table which is tilted at a 5.5 degree angle, and an overhead627
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Sony Playstation Eye, a high framerate camera, which gathers 640 ˆ 480 frames at 60 FPS, mounted628

to the ceiling to have a full view of the table. The paddle that is held by the robot end effector is629

9.5cm in diameter and the puck is 6.3cm.630

Figure 5: Tasks: Left: Place object and avoid obstacles. Center: Stationary
Puck Striking. Right: Dynamic Puck Hitting

In this setup, the negative x631

direction is oriented along632

the table, and the y is633

across the table. The ac-634

tion space for the arm uti-635

lizes pose control in x, y636

through an inverse kine-637

matics controller accessi-638

ble through the Universal639

robotics real-time data exchange interface. Utilizing the serving command, the arm is640

controlled using delta positions clipped between 26cm in the x direction and 13cm in641

the right direction. These control limits are specified to prevent the robot from trigger-642

ing force limits, which results in an emergency stop. Actions are taken at a 20Hz fre-643

quency to allow for rapid response to dynamic elements, such as hitting a falling puck.644

Goal Position

Cups

Strawberry

Figure 6: Cross Embodiment Demonstration: Track-
ing of the strawberry and obstacles for learning action-
free.

The position and velocity of the end effector645

can be recovered through the real-time data ex-646

cahnge, but other objects like the puck or the647

hand require identification. This work utilizes648

an overhead camera running at 60Hz to locate649

these objects using a vision pipeline that relies650

on hue saturation value segmentation followed651

by object identification. This gives an xc, yc co-652

ordinate in camera space, which we convert via653

OpenCV [56] homography to robot coordinates.654

This homography is computed by mapping the655

end effector positions given by the robot sensors656

to visual locations from the camera.657

We apply imitation learning from observations658

on several tasks built on top of the above robot659

setup. The following experiments are described660

here:661

Safe object manipulation: This task involves662

moving a strawberry to a bowl while avoiding663

four cups placed in the workspace of the robot.664

The bowl is placed in the top right corner of the665

workspace, and the cups are placed in fixed loca-666

tions. The success metric is the robot stopping667

above the bowl while making no contact with any of the cups. The test set involves 10 random668

starting locations for the end effector that are fixed between assessments. The observation space is the669

2D end effector position, and the strawberry is initialized inside the gripper. Our suboptimal dataset670

consists of 50 trajectories of 100 time steps on average where the robot is initialized in a random671

location, and the human moves the arm to a random different location, ignoring the positions of the672

cups or the bowl. In this setting, we investigated the following expert data, visualized in Figure 5:673

• Few Trajectories: The expert data is drawn from a set where the expert is initialized in a674

random location, sometimes touching an obstacle, and must use the teleoperation system to675

avoid the obstacle and reach the goal. In this setting we used 15 expert trajectories.676
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• Fixed start: The expert is initialized at the opposite corner of the workspace, and navigates677

to the goal location following different paths using teleoperation. In this setting we used 15678

trajectories.679

• Few Uniform: Uses the same expert data as the Few Trajectories setting, but the dataset680

consists of randomly samples 300 transitions, where one trajectory is approximately 60681

transitions of data.682

• Cross Embodiment Few/Fixed/Uniform: The expert is a person holding the strawberry in683

his/her hand, visualized in Figure 6. They then move the strawberry tracked by the camera684

to the goal location while avoiding the obstacles, starting from random/fixed locations with685

15 expert trajectories respectively or uniform with 300 transitions.686

Stationary Striking: This task involves moving the end effector to strike a stationary puck. The687

success metric is the robot touching the puck. The test set involves 10 initializations of the puck posi-688

tion across the length of the table. The ensure uniformity across evaluations, the set of initialization689

locations of the puck are fixed across methods. The end effector is initialized at 0.38m from the base690

in the center of the table, so a success strike does not require backward motion. The observation space691

is the 2D end effector position and the tracked position of the puck. Our suboptimal dataset consists692

of 50 trajectories of 75 time steps on average where the robot is initialized at the start position, and693

the human moves the arm in a random, vaguely striking pattern.694

In this setting we used an expert dataset of 400 trajectories where the expert uses mouse teleoperation695

to strike the puck. The expert efficiently strikes the puck in a single motion. We visualize the expert696

striking and the puck position in Figure 5. We show the learned action vectors for all algorithms and697

tasks fixed start (Figure 9), Few Uniform (Figure 8) and Few trajectories (Figure 10).698

Dynamic Hitting: This task involves hitting a puck dropped from the top of the table. Because699

the table is set at an angle, this will cause the puck to fall with increasing acceleration towards the700

opposite side. The setup is visualized in Figure 5. The test set involves 10 initializations of the puck701

position dropped from positions across the length of the top of the table. The locations of the 10 puck702

drops are fixed using indicators across methods to give fair evaluation, and the arm is initialized in703

the center of the table, 0.68m from the base. The observation space is the 2D end effector position704

and 2D end effector velocity and the history of the last 5 tracked positions of the puck relative to the705

position of the end effector. Our suboptimal dataset consists of 50 trajectories of 200 time steps on706

average where the robot is initialized at the start position, and the human moves the arm around the707

puck without striking it.708

We utilize two success metrics for this task: 1) touching: a trajectory is considered successful if the709

agent touches the puck. 2) hitting: the puck must have velocity in the opposite direction that it was710

dropped. This task is especially challenging for existing methods because of the long sequence of711

actions necessary to position the paddle properly, and the high level of both precision and timing:712

even a few millimeters of error or a movement at the wrong time will result in a failure, especially for713

hitting. Previous work has observed that this task is challenging even for humans, who often require714

several tries of practice, and many dataset trajectories consist of many inaccurate hits. In this domain,715

Behavior cloning only achieves 30% success at touching the puck, and Implicit Q-learning, a popular716

offline RL method, can only achieve 60% success, even though it employs a hand-designed reward717

function.718

We used the implementation details from the proprioception task with the difference that in all the719

real-robot tasks we tune the following parameters across different methods: For BCO, we tune the720

inverse dynamics model learning epochs between [1,5,10]. For SMODICE, we tuned discriminator721

learning epochs between [1,5], and gradient penalty between [1,5,10,20]. For DILO we tune the722

conservatism parameter from previous section between [0.5,0.6,0.7,0.8].723

In this domain, these challenges appear to be empirically validated in the performance of the baseline724

methods. We hypothesize that the accumulation of error over long horizons in other learning from725

observation methods results in poor performance, as visualized in Table 3 and Figure 4. For methods726
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like BCO, learning the necessary inverse dynamics to interpolate the long sequence of actions for a727

successful strike is impractical, resulting in behavior that appears listless. On the other hand, while728

the SMODICE discriminator rewards are able to occasionally match the visitation distribution of729

the expert, there is an exponential explosion of possible combinations of puck history and paddle730

positions, resulting in poor generalization: on the left half of the table, SMODICE is unable to hit the731

puck.732

The hitting scenario involves two settings, both using mouse teleoperation to control the puck: one733

where the human strikes the puck only once and then the trajectory ends, which utilizes a dataset734

of 50 trajectories, and an expert dataset of 850 trajectories where the human keeps hitting the puck735

repeatedly for up to 2000 timesteps. The task is challenging for human, so trajectories average only736

500 timesteps and cleaned so that human mistakes are removed from the expert dataset. We visualize737

the expert hitting and the puck position in Figure 7.738

0.4

-2.0 -1.5 -1.0 -0.5

0.0

-0.4

Figure 7: Expert Hitting: Visualization of one trajectory of puck tracking and hitting by the expert. Right:
stacked frames of the environment. Left: puck position in robot coordinates

BCO SMODICE DILO

Figure 8: Action Vectors qualitatively showing the next x-y action for the safe manipulation with uniform
sampled transitions. BCO generalizes incorrectly at a number of locations producing policies that hit obstacles.
DILO learns to mimic expert’s intent better demonstrating signs that it has learned to avoid obstacles by the
arrows around
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BCO SMODICE DILO

Goal reaching fixed start

Figure 9: Action Vectors qualitatively showing the next x-y action for the safe manipulation with fixed start
state. BCO generalizes incorrectly at a number of locations producing policies that hit obstacles. DILO learns to
mimic expert’s intent better demonstrating signs that it has learned to avoid obstacles by the arrows around

BCO SMODICE DILO

Goal reaching few traj

Figure 10: Action Vectors qualitatively showing the next x-y action for the safe manipulation with few trajectories.
BCO generalizes incorrectly at a number of locations producing policies that hit obstacles. DILO learns to
mimic expert’s intent better demonstrating signs that it has learned to avoid obstacles by the arrows around

6.5 Limitations739

Learning from Observation is a challenging setting, and while DILO makes some key assumptions740

in order to achieve good performance. First, matching distributions becomes exponentially more741

challenging in the dimensionality of the state space. In this work, while DILO outperforms baselines742

in the Expert Image observations, it still shows limited performance. Second, while learning from743

observations opens the door for good performance without expert actions, the expert observation744

space must match that of the agent. In some video settings, this is not the case ex. the agent might use745

a fixed camera when the human is egocentric, or vice versa. Finally, DILO utilizes the conservatism746

parameter τ to regulate the degree of extrapolation from the algorithm. In some settings, the values747

can diverge, resulting in V ˚ taking on values that might be too large to be used for learning the748

downstream policy. Adaptively selecting τ to maximize extrapolation while avoiding divergence is749

an area of action investigation.750

6.5.1 Failure Cases751

While DILO outperforms other methods in overall success rate, the failure modes can differ. In752

general, DILO tends to be conservative in what actions it takes, learning motions that might be slower753

than BCO, or my get stuck before arriving at the goal. In low observation settings, DILO can also754
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exhibit “dead zone” behavior, where the model becomes mostly unresponsive. Below we detail some755

of the exact error modes in particular tasks:756

Safe Manipulation: While DILO and BCO have comparable success rates, the two algorithms fail757

in different ways. BCO tends to take large actions while ignoring obstacles to reach the goal, while758

DILO takes more conservative actions. Thus, while BCO might fail by knocking over a cup, DILO759

will tend to fail to reach the goal. Because this is a low data setting, both algorithms BCO and DILO760

can end up coming close to the cups or brushing them gently. As a sidenote, SMODICE fails at even761

reaching the goal in most cases in this task, possibly because of this low data setting.762

Striking: This domain is challenging because of the narrow data regime, and all methods tend to763

struggle in similar ways. The most common consequence of low data arises through sensitivity to764

the x location of the puck (along the table). While intuitively, striking behavior should be relatively765

invariant for a fixed y (horizontal position on the table), slight variation in x from the dataset can766

result in a policy that moves the arm in the opposite direction of the puck, probably due to errors767

in extrapolation. In addition, striking is a dynamic behavior that requires a precise combination of768

forward and horizontal actions. Even a slight error in the ratio can result in a near miss. Finally,769

DILO tends to learn more conservative policies, and in some locations may not not strike the puck770

with much force. However, because of the low data coverage, this issue is endemic to all the learned771

policies.772

Hitting: The primary challenge of achieving a hit in this task is the precise alignment of the paddle773

to the puck. While DILO performs well, it is not perfectly accurate, resulting in touches that bounce774

off the side of the paddle. This challenge is endemic to all policies. Additionally the conservatisim775

of DILO actions appear when it moves under the puck, where it tends to move slowly, and dropping776

the puck too quickly can result in DILO failing to reach the puck. As a result, while DILO is likely to777

succeed at the first hit, it can struggle to generate multiple hits because this can require rapid side to778

side movement. These issues are largely endemic to all the learned policies, where SMODICE tends779

to be even less precise and BCO struggle to learn to strike, though it can occasionally position under780

the puck.781

Visualizations of the failure modes can be seen in the accompanying video attachment.782
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