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Appendix

6.1 Code Release

Our code is attached as part of the supplementary material to ensure reproducibility.

6.2 Theory
6.2.1 Derivation for Action-free distribution matching

Theorem 6.1. The dual problem to the primal occupancy matching objective (Equation 4) is given
by the DILO objective in Equation 5. Moreover, as strong duality holds from Slater’s conditions the
primal and dual share the same optimal solution d* for any offline transition distribution p and any
choice of mixture distribution ratio (.

We start with the primal objective that matches distributions between the agent’s visitation d(s, s’, a’)
and expert’s visitation d¥ (s, s, a’). As before p denotes the visitation distribution of offline data.

ngn Df (Mixﬁ(dﬁ (57 S/a a/)v p)HMng (dE(57 sla a/)a P)), @)

where for any two distributions pq and o, Mixg(u1, ue) denotes the mixture distribution with
coefficient 5 € (0, 1] defined as Mixg (g1, po) = Bur + (1 — B)pa.

Formulating the objective as a constrained objective in agent’s visitation distribution d allows us to
create a primal objective that is a convex program. This is crucial in subsequently creating a dual
objective that is unconstrained and easy to optimize.

max —D (Mixg(d, p)[Mixs(d”, p))

st 2 nd(s,s",a") = (1 —7)do(s,s") + VZs,a/es“td(Sa s, a)p(s"|s',a’), Vs',s" € S x S.
3

where the constraints above dictate the conditions that any valid visitation distribution d(s’, s”) needs
to satisfy and are our proposed modifications to the commonly known bellman flow constraints.

Below we outline the derivation of how these specific constraints with the mixture distribution
matching objective allows us to create a dual objective that is independent of expert’s actions.
Applying Lagrangian duality to the above constrained distribution matching objective, we can convert
it to an unconstrained problem with dual variables V (s, s') defined for all s, " € S x S:

max min —D;(Mixg(d, p)(s,s’,a’) || Mixg(dZ, p)(s,s’,a"))

d=0 V(s',s")
+ Z V(s',s") <(1 —Y)do(s',s") + Z d(s,s’,a" )p(s"|s',a") — Zd(s’, s”,a")) )

= e min (1= 9B [V, )]+ Ba |1 S I W () =V (5,5) 1

s

— Dy(Mixg(d, p)(s, s, d') || Mixg(d”, p)(s, s, a’)) (10)

where the last equation uses a change of variable from s’, s” to s, s’ without loss of generality. Using
a simple algebraic manipulation below, we can get rid of the inner maximization. We add and subtract
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As strong duality holds using Slater’s conditions [

the terms shown below:

=max min B(1 —7)Eqys,5)[V (s, )]

d=0 V(s,s’)
+ﬁEs,s’,a’~d ’YZP(S”|S/7 al)V(S/7 5”> - V(S7 S/)
+(1 - ﬁ)]Es,s’,a’~p ’7219 ”|S/ a ) V(S7 sl)
—(1 = B)Esa,9~p vz:p(s”|s'7a')V(s'7 sy =V(s,s)
L s |

~Dy(Mixs(d, p)(s, ', a') || Mixs(d”, p)(s, 8, a)) (11)
] (see [43] for a detailed account of strong duality
in RL under visitation distributions). Using the fact that strong duality holds in this problem we can
swap the inner max and min and rewrite an equivalent maximization under the mixture distribution:

= min max 1—Eg (s 0| V(s s
V(s,s’)MiXﬁ(d,p)(s,s’,a’)205( ’Y) do(s, )[ ( )]

+ BEs s a'~d [yEp(s”s’, a V(s s") = Vs, 3’)1

+ (1= B)Es o/ .a/~p l’yZp (s"|s',a )V (s, s") = Vs, s’)}

s

—(1—-PB)Es,« a/~pl72p (s"|s',a )V (s, s”)V(s,s’)l

s

— Dy (Mixﬁ (d, p) (s, s, a/) | MiXB(dE, p)(s, s, a/)) (12)
In the following derivation, we will show that the inner maximization in Eq 12 has a closed form solu-
tion even when adhering to the non-negativity constraints. Let y(s, s',a’) = Egrp(s.ay [V (5',8")] =
Vis,s).

max
Mixg(d,p)(s,s’,a’)=0

Es,s’,a’~Mix5(d,p)(s,s’,a’) l’YZP(S”SI, a/)V(S/, S”) — ‘/Y(S7 S/)]

s

- Df(MiXB(d7 p)(s, 8/7 a,) H MiXﬁ(dE, p)(& 8/7 CL’))

Now to solve this constrained optimization problem we create the Lagrangian dual and study the

KKT (Karush-Kuhn-Tucker) conditions. Let w(s, s’,a’) 2 },ﬁ’:ﬁgﬁ”—m,

Mixg(d, p)(s,s’,a’) = 0 holds if and only if w(s,s’,a’) = 0 Vs, s, d’.

then the constraint

max max By o o i, (@2 p)(s,sr,a) [ WS 8@ )y(s, 8", a") | = Buiny ar p) (5,50 [ f(w(s, 8", a))]

w(s,s’,a’) A=0

+Z)\ s,8',a") —0)

s,s’,a’

13)
Since strong duality holds, we can use the KKT constraints to find the solutions w*(s, s’,a’) and
A*(s, 8, a’).

* Primal feasibility: w*(s,s’,a’) >0 V s,ad’,d’

* Dual feasibility: \* >0 V s,5',a’

14



495 « Stationarity: Mixg(d¥,p)(s,s',a')(—f (w*(s,s',d")) + y(s,s',a’) + \*(s,8',d")) =
496 0Vs,s, d

497 » Complementary Slackness: (w*(s,s’,a’) — 0)A*(s,s',a’) =0 V s,¢,d

498 Using stationarity we have the following:
flw*(s,8,a") =y(s,s,a") + \(s,8',d') Vs,8,d (14)

a99  Now using complementary slackness, only two cases are possible w* (s, s’,a’) = 0 or \*(s, s',a’) =
500 0.

s01  Combining both cases we arrive at the following solution for this constrained optimization:
wH(s,',a') = max (0, " (y(s, 5',0")) (1s)

502 Using the optimal closed-form solution (w*) for the inner optimization in Eq. (12) we obtain

min ((1 — fy)IEdU(sys/)[V(s, s’)]
V(s,s’)

+ Es,s/,a/~Mix5(dE,p)(s,s’,a’) [maX (07 (f/)_l (y(S’ 3/7 a/))) y(87 8/7 a/) - af (max (07 (f/)_l (y(57 5/7 al))))]

— (1= B)Es.a~p 72p(s’|s, a)V(s',s") — Vs, 3’)] (16)

503 For deterministic dynamics, this reduces to the following simplified objective:

Hlln) 6(1 - V)Edg(s,s’) [V(Sa 3/)]

Vis,s’
+ IEs,s/,a/~l"lix5(dE,p)(s,s/,a/) [maX (07 (f/)il (y(s, Sla a/))) y(s, 5,7 a/) - f (max (07 (f/)il (y(s, 3/5 a/))))]
-(1- B)Es,awp['yV(s’, "y =V (s, s’)] (17)

so4  where y(s,a,g) =YV (s, s") =V (s, s).
505 6.2.2 What does the utility function V' * (s, s’) represent?

s06 Prior work [43] shows that for the regularized RL problem
max IEd(s a) [T(S7 a)] - an (d(sa a) H do (57 CL))
d=0 ’ (18)
.t Dead(s,a) = (1=7)do(s) + 7 25 anesxad(s’,a)p(s|s',a’), Vs € S.
s07  the dual optimizes for a Langrangian variable V' that represents a regularized optimal value function.
soe  This insight directly extends to our work with reward function set to zero, our Lagrangian variable
so9 learns only the regularized visitation probabilities under optimal policy.

510 It is easy to see why this is the case using the previous derivation. Following the derivation from the
511 previous section, note that we had rewritten the inner maximization w.r.t the visitation distribution
s12  d, thus effectively getting rid of manipulating visitation distributions in the final objective. Our
513 derivation above uses the following substitution shown in Eq 15 that holds as part of the closed form
514 solution w.r.t inner maximization:

Mixg(d, p)(s,s',a)
Wia (4, p) (5, 5 0)

= max (0, f’_l(y(s, s, a'))) (19)

sts where y = vV (s',s") — V (s, s’). For deterministic dynamics, at convergence, the following holds
si6  forall s, 5", a’ where d*(s, s’,a’) > 0O:
Mixg(d*, p)(s,s’,ad)

—1 x/ 1N * Ny
f (,YV (S ) S ) -V (575 )) - Mng(dE,p)(s,s’,a’) (20)
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implying:
Mixg(d*, p)(s,s’,a’)
V(s ") — V* AN Y A 'S - ror 21
V) =V s) = (R - ) @D
The above relation makes the the interpretation of V*(s, ') clear. (V*(s,s") —yV*(s',s”)) de-

notes the implied reward function r;(s, s, a’) under which V* computes the maximum cumulative
expected return, where o’ is the action that leads to s”. As shown above the the implied reward

. ) 1o g ((Mixg(d¥,p)(s,s",a)
function r;(s, s’,a’) = — f (—MiX/;(dE,p)(s,s’,a’)

tion distribution and agent’s stationary visitation that is obtained after taking the action a’ from s’
and then acting optimally to match the expert visitation distribution. Note that the function f” is
non-decreasing as the function f is convex from definition of f-divergences.

) is the divergence between expert stationary visita-

6.2.3 Analytical form of [ for x* divergence

For 2 divergence, the generator function f(x) = (z — 1)2. f/(x) = 2(z — 1) and correspondingly
f'7H(x) = % + 1. Substituting f'~'(x) in definition of f;¥:

£ (@) = max(0, £~ (2))(2) — f(max(0, £ (z))) (22)

Since z we substitute takes the form of residual residual = YEgr (5.0 [V (s, 8")] — V (s, 5")),
the below pseudocode shows the implementation of f for DILO.

def f_star_p(self, residual, type=’chi_square’):
if type==’chi_square’:

omega_star = torch.max(residual / 2 + 1, torch.zeros_like(
residual))
return residual * omega_star - (omega_star - 1) **2

6.2.4 Intuitive understanding of DILO

To better understand this objective’s behavior we consider the last two terms from Eq 5 in its expanded
form below. We ignore the first term as it is simply pushing down -values at initial distribution of
states, to prevent overestimation when learning from offline datasets.

BE, o i) L5 WV (' 8") = V(s, )] + (1= B) # By s [ (YW (5,87) = Vs, 8))]
(23)

—(1 — ﬁ)Es,s’,a’~p[VES//~p(~\s’,a/) [V(S/, S”)] — V(S, S/)],
Denote 7(s,s’,af) = V(s,s') — vV (s',s") as the implicit expert reward of under a learned Q-
function. The objective presents a clear intuition when we study the objective’s behavior in different
situations individually: (a) For samples from p, the objective pushes down the implicit reward to O as

shown below: 2
. 1-8)5,if r<2
£y =3¢ o ’ *
min (r) {(1 — B)r otherwise. o

(b) For samples from the expert distribution dE, the objective ensures that reward is greater than
equal to 2

2N
min L(r) = A7 r?’lf r<2 (25)
r 0 otherwise.

It becomes clear now that DILO is implicitly learning a valid reward function that ensures higher
discounted return for the expert compared to the suboptimal dataset by shaping Q-values directly.

6.3 Implementation

The algorithm for DILO can be found in Algorithm |. We base the DILO implementation on the
official implementation of pytorch-IQL that is
based on IQL [44]. We keep the same network architecture as the original code and do not vary it
across environments.
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6.3.1 Imitation Learning with Proprioceptive Observations

Our experiment design is based on the benchmark from [13, 28] but we explain the setup here for
completeness.

Environments: For the offline imitation learning experiments we focus on 9 locomotion and
manipulation environments from the MuJoCo physics engine [ 18] comprising of Hopper, Walker2d,
HalfCheetah, Ant, Kitchen, Pen, Door and Hammer to make a total of 24 datasets. The MuJoCo
environments used in this work are and the datasets used from D4RL are
also

Suboptimal Datasets: We use the offline imitation learning benchmark from [28] that utilizes
offline datasets consisting of environment interactions from the D4RL framework [19]. Specif-
ically, suboptimal datasets are constructed following the composition protocol introduced in
SMODICE [13]. The suboptimal datasets, denoted as ‘random+expert’, 'random-+few-expert’,
"medium-+expert’, and *medium-+few-expert’ combine expert trajectories with low-quality trajectories
obtained from the “random-v2” and “medium-v2” datasets, respectively. For locomotion tasks, the
‘random/medium+expert’ dataset contains a mixture of some number of expert trajectories (< 200)
and ~1 million transitions from the ’x” dataset. The ’x+few-expert’ dataset is similar to ‘x+expert,
but with only 30 expert trajectories included. For manipulation environments we consider only 30
expert trajectories mixed with the complete "x’ dataset of transitions obtained from D4RL.

Expert Observation Dataset: To enable imitation learning from observation, we use 1 expert
observation trajectory obtained from the “expert-v2” dataset for each respective environment.

Baselines: To benchmark and analyze the performance of our proposed methods for offline imitation
learning with suboptimal data, we consider different representative baselines in this work: BC [49],
SMODICE [13], RCE [53], ORIL [48], IQLearn [50], ReCOIL [28]. SMODICE has been shown
to be competitive [13] to DEMODICE [34] and hence we exclude it from comparison. SMODICE
is an imitation learning method based on the dual framework, that optimizes an upper bound to
the true imitation objective. ORIL adapts generative adversarial imitation learning (GAIL) [9]
algorithm to the offline setting, employing an offline RL algorithm for policy optimization. The RCE
baseline combines RCE, an online example-based RL method proposed by Eysenbach et al. [53].
RCE also uses a recursive discriminator to test the proximity of the policy visitations to successful
examples. [53], with TD3-BC [54]. Both ORIL and RCE utilize a state-based discriminator similar
to SMODICE, and TD3-BC serves as the offline RL algorithm. All the compared approaches only
have access to the expert state-action trajectory.

The open-source implementations of the baselines SMODICE, RCE, and ORIL provided by the
authors [13] are employed in our experiments. We use the hyperparameters provided by the authors,
which are consistent with those used in the original SMODICE paper [13], for all the MuJoCo
locomotion and manipulation environments.

In our set of environments, we keep the same hyper-parameters across tasks - locomotion, adroit
manipulation, and kitchen manipulation. We train until convergence for all algorithms including
baselines and we found the following timesteps to be sufficient for different set of environments:
Kitchen: 1e6, Few-expert-locomotion: 500k, Locomotion: 300k, Manipulation: 500k

We keep a constant batch size of 1024 across all environments. For all tasks, we average mean returns
over 10 evaluation trajectories and 7 random seeds. Full hyper-parameters we used for experiments
are given in Table 2. For policy update, using Value Weighted Regression, we use the temperature 7
to be 3 for all environments.

Hyperparameters for our proposed off-policy imitation learning method DILO are shown in Table

6.3.2 LfO with Image Observations

We use robomimic [20] for our imitation with image observations experiments. The following two
environments are used here (the description is taken from their paper and written here for conciseness):
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Hyperparameter Value

Policy learning rate 3e-4
Value learning rate 3e-4
f-divergence X2
max-clip (Value clipping for policy learning) 100
MLP layers (256,256)
[ (mixture ratio) 0.5

7 (orthogonal gradient descent) 0.5

T (policy temperature) 3

Table 2: Hyperparameters for DILO in imitation from proprioceptive observations.

Lift: Object observations (10-dim) consist of the absolute cube position and cube quaternion (7-dim),
and the cube position relative to the robot end effector (3-dim). The cube pose is randomized at the
start of each episode with a random z-rotation in a small square region at the center of the table.

Can Object observations (14-dim) consist of the absolute can position and quaternion (7-dim), and
the can position and quaternion relative to the robot end effector (7-dim). The can pose is randomized
at the start of each episode with a random z-rotation anywhere inside the left bin.

Robomimic provides three datasets and two modalities of observation (Proprioceptive, Images)
for both environments above. The datasets are denoted by - MH (Multi-human), MG (Machine
Generated), PH(Proficient-human). We use the MG and MH datasets as the suboptimal datasets in our
task and PH as the source of expert observations. MH and MG datasets consists of 200 trajectories of
usually suboptimal nature and we use 50 observation-only trajectory from PH datasets. This tasks
is complex by the fact that expert-level actions are mostly unseen in the suboptimal dataset and the
agent needs to learn the best actions that matches expert visitation from the suboptimal dataset. We
implement all algorithms in the Robomimic codebase without any change in network architecture,
data-preprocessing or learning hyperparameters. We tune algorithm specific hyperparameters in a
course grid for BCO, SMODICE, and DILO to compare the best performance of methods independent
of hyperparameters. For BCO, we tune the inverse dynamics model learning epochs between [1,5,10].
For SMODICE, we tuned discriminator learning epochs between [1,5], and gradient penalty between
[1,5,10,20]. To control overestimation due to learning with offline datasets in DILO we consider a
linear weighting « between the optimism and pessimism terms in Eq 5 inspired by prior work [28] as
follows:

Hgn(l —A)pB(1 - V)Ed}) [V(s7 9’)] + /\Es,s’,a,’~Mixﬁ(JE,p) [f;)k (’V]ESNNP(.|51’G,)[V(S’7 5//)] — Vs, g/))]
- )\(1 - B)Es,s’,a’~p['YIES"~p(-\s',a’) [V(Slv 3”)] - V(=57 3/)]7

The hyperparameters used for DILO can be found in Table 3. For the architecture specific hyperpa-
rameters we refer the readers to [20].

Hyperparameter Value
max-clip (Value clipping for policy learning) 100
A (pessimism parameter) 0.7
[ (mixture ratio) 0.5
71 (orthogonal gradient descent) 0.5
T (policy temperature) 3

Table 3: Hyperparameters for DILO in imitation from image observations.

6.4 Robot Manipulation Experiments

Our setup for manipulation experiments is inspired by the robot air hockey environment [55] for
applying DILO to physical robotics settings. Our setup utilizes a Universal Robotics 5 kilogram
e-series (URSe) 6-degree of freedom robotic arm on a fixed mount, a Robotiq parallel jaw gripper, a
1.93m x 0.76m Wind Chill air hockey table which is tilted at a 5.5 degree angle, and an overhead
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Sony Playstation Eye, a high framerate camera, which gathers 640 x 480 frames at 60 FPS, mounted
to the ceiling to have a full view of the table. The paddle that is held by the robot end effector is
9.5cm in diameter and the puck is 6.3cm.

In this setup, the negative x
direction is oriented along
the table, and the y is
across the table. The ac-
tion space for the arm uti-
lizes pose control in z,y

thrO}l gh an inverse kmf?_ Figure 5: Tasks: Left: Place object and avoid obstacles. Center: Stationary
matics controller accessi-  pyck Striking. Right: Dynamic Puck Hitting
ble through the Universal

robotics real-time data exchange interface. Utilizing the serving command, the arm is
controlled using delta positions clipped between 26cm in the x direction and 13cm in
the right direction. These control limits are specified to prevent the robot from trigger-
ing force limits, which results in an emergency stop. Actions are taken at a 20Hz fre-
quency to allow for rapid response to dynamic elements, such as hitting a falling puck.

The position and velocity of the end effector
can be recovered through the real-time data ex-
cahnge, but other objects like the puck or the
hand require identification. This work utilizes
an overhead camera running at 60Hz to locate
these objects using a vision pipeline that relies
on hue saturation value segmentation followed
by object identification. This gives an x., y. co-
ordinate in camera space, which we convert via
OpenCV [56] homography to robot coordinates.
This homography is computed by mapping the
end effector positions given by the robot sensors
to visual locations from the camera.

We apply imitation learning from observations
on several tasks built on top of the above robot
setup. The following experiments are described
here:

Safe object manipulation: This task involves
moving a strawberry to a bowl while avoiding  gigyre 6; Cross Embodiment Demonstration: Track-
four cups placed in the workspace of the robot. ing of the strawberry and obstacles for learning action-
The bowl is placed in the top right corner of the free.

workspace, and the cups are placed in fixed loca-

tions. The success metric is the robot stopping

above the bowl while making no contact with any of the cups. The test set involves 10 random
starting locations for the end effector that are fixed between assessments. The observation space is the
2D end effector position, and the strawberry is initialized inside the gripper. Our suboptimal dataset
consists of 50 trajectories of 100 time steps on average where the robot is initialized in a random
location, and the human moves the arm to a random different location, ignoring the positions of the
cups or the bowl. In this setting, we investigated the following expert data, visualized in Figure

* Few Trajectories: The expert data is drawn from a set where the expert is initialized in a
random location, sometimes touching an obstacle, and must use the teleoperation system to
avoid the obstacle and reach the goal. In this setting we used 15 expert trajectories.
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* Fixed start: The expert is initialized at the opposite corner of the workspace, and navigates
to the goal location following different paths using teleoperation. In this setting we used 15
trajectories.

* Few Uniform: Uses the same expert data as the Few Trajectories setting, but the dataset
consists of randomly samples 300 transitions, where one trajectory is approximately 60
transitions of data.

* Cross Embodiment Few/Fixed/Uniform: The expert is a person holding the strawberry in
his/her hand, visualized in Figure 6. They then move the strawberry tracked by the camera
to the goal location while avoiding the obstacles, starting from random/fixed locations with
15 expert trajectories respectively or uniform with 300 transitions.

Stationary Striking: This task involves moving the end effector to strike a stationary puck. The
success metric is the robot touching the puck. The test set involves 10 initializations of the puck posi-
tion across the length of the table. The ensure uniformity across evaluations, the set of initialization
locations of the puck are fixed across methods. The end effector is initialized at 0.38m from the base
in the center of the table, so a success strike does not require backward motion. The observation space
is the 2D end effector position and the tracked position of the puck. Our suboptimal dataset consists
of 50 trajectories of 75 time steps on average where the robot is initialized at the start position, and
the human moves the arm in a random, vaguely striking pattern.

In this setting we used an expert dataset of 400 trajectories where the expert uses mouse teleoperation
to strike the puck. The expert efficiently strikes the puck in a single motion. We visualize the expert
striking and the puck position in Figure 5. We show the learned action vectors for all algorithms and
tasks fixed start (Figure 9), Few Uniform (Figure 8) and Few trajectories (Figure 10).

Dynamic Hitting: This task involves hitting a puck dropped from the top of the table. Because
the table is set at an angle, this will cause the puck to fall with increasing acceleration towards the
opposite side. The setup is visualized in Figure 5. The test set involves 10 initializations of the puck
position dropped from positions across the length of the top of the table. The locations of the 10 puck
drops are fixed using indicators across methods to give fair evaluation, and the arm is initialized in
the center of the table, 0.68m from the base. The observation space is the 2D end effector position
and 2D end effector velocity and the history of the last 5 tracked positions of the puck relative to the
position of the end effector. Our suboptimal dataset consists of 50 trajectories of 200 time steps on
average where the robot is initialized at the start position, and the human moves the arm around the
puck without striking it.

We utilize two success metrics for this task: 1) touching: a trajectory is considered successful if the
agent touches the puck. 2) hitting: the puck must have velocity in the opposite direction that it was
dropped. This task is especially challenging for existing methods because of the long sequence of
actions necessary to position the paddle properly, and the high level of both precision and timing:
even a few millimeters of error or a movement at the wrong time will result in a failure, especially for
hitting. Previous work has observed that this task is challenging even for humans, who often require
several tries of practice, and many dataset trajectories consist of many inaccurate hits. In this domain,
Behavior cloning only achieves 30% success at touching the puck, and Implicit Q-learning, a popular
offline RL method, can only achieve 60% success, even though it employs a hand-designed reward
function.

We used the implementation details from the proprioception task with the difference that in all the
real-robot tasks we tune the following parameters across different methods: For BCO, we tune the
inverse dynamics model learning epochs between [1,5,10]. For SMODICE, we tuned discriminator
learning epochs between [1,5], and gradient penalty between [1,5,10,20]. For DILO we tune the
conservatism parameter from previous section between [0.5,0.6,0.7,0.8].

In this domain, these challenges appear to be empirically validated in the performance of the baseline
methods. We hypothesize that the accumulation of error over long horizons in other learning from
observation methods results in poor performance, as visualized in Table 3 and Figure 4. For methods
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like BCO, learning the necessary inverse dynamics to interpolate the long sequence of actions for a
successful strike is impractical, resulting in behavior that appears listless. On the other hand, while
the SMODICE discriminator rewards are able to occasionally match the visitation distribution of
the expert, there is an exponential explosion of possible combinations of puck history and paddle
positions, resulting in poor generalization: on the left half of the table, SMODICE is unable to hit the
puck.

The hitting scenario involves two settings, both using mouse teleoperation to control the puck: one
where the human strikes the puck only once and then the trajectory ends, which utilizes a dataset
of 50 trajectories, and an expert dataset of 850 trajectories where the human keeps hitting the puck
repeatedly for up to 2000 timesteps. The task is challenging for human, so trajectories average only
500 timesteps and cleaned so that human mistakes are removed from the expert dataset. We visualize
the expert hitting and the puck position in Figure 7.

N

-2.0 -1.5 -1.0 -0.5

Figure 7: Expert Hitting: Visualization of one trajectory of puck tracking and hitting by the expert. Right:
stacked frames of the environment. Left: puck position in robot coordinates
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Figure 8: Action Vectors qualitatively showing the next x-y action for the safe manipulation with uniform
sampled transitions. BCO generalizes incorrectly at a number of locations producing policies that hit obstacles.
DILO learns to mimic expert’s intent better demonstrating signs that it has learned to avoid obstacles by the
arrows around
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Figure 9: Action Vectors qualitatively showing the next x-y action for the safe manipulation with fixed start
state. BCO generalizes incorrectly at a number of locations producing policies that hit obstacles. DILO learns to
mimic expert’s intent better demonstrating signs that it has learned to avoid obstacles by the arrows around
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Figure 10: Action Vectors qualitatively showing the next x-y action for the safe manipulation with few trajectories.
BCO generalizes incorrectly at a number of locations producing policies that hit obstacles. DILO learns to
mimic expert’s intent better demonstrating signs that it has learned to avoid obstacles by the arrows around

6.5 Limitations

Learning from Observation is a challenging setting, and while DILO makes some key assumptions
in order to achieve good performance. First, matching distributions becomes exponentially more
challenging in the dimensionality of the state space. In this work, while DILO outperforms baselines
in the Expert Image observations, it still shows limited performance. Second, while learning from
observations opens the door for good performance without expert actions, the expert observation
space must match that of the agent. In some video settings, this is not the case ex. the agent might use
a fixed camera when the human is egocentric, or vice versa. Finally, DILO utilizes the conservatism
parameter 7 to regulate the degree of extrapolation from the algorithm. In some settings, the values
can diverge, resulting in V'* taking on values that might be too large to be used for learning the
downstream policy. Adaptively selecting 7 to maximize extrapolation while avoiding divergence is
an area of action investigation.

6.5.1 Failure Cases
While DILO outperforms other methods in overall success rate, the failure modes can differ. In

general, DILO tends to be conservative in what actions it takes, learning motions that might be slower
than BCO, or my get stuck before arriving at the goal. In low observation settings, DILO can also
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exhibit “dead zone” behavior, where the model becomes mostly unresponsive. Below we detail some
of the exact error modes in particular tasks:

Safe Manipulation: While DILO and BCO have comparable success rates, the two algorithms fail
in different ways. BCO tends to take large actions while ignoring obstacles to reach the goal, while
DILO takes more conservative actions. Thus, while BCO might fail by knocking over a cup, DILO
will tend to fail to reach the goal. Because this is a low data setting, both algorithms BCO and DILO
can end up coming close to the cups or brushing them gently. As a sidenote, SMODICE fails at even
reaching the goal in most cases in this task, possibly because of this low data setting.

Striking: This domain is challenging because of the narrow data regime, and all methods tend to
struggle in similar ways. The most common consequence of low data arises through sensitivity to
the x location of the puck (along the table). While intuitively, striking behavior should be relatively
invariant for a fixed y (horizontal position on the table), slight variation in x from the dataset can
result in a policy that moves the arm in the opposite direction of the puck, probably due to errors
in extrapolation. In addition, striking is a dynamic behavior that requires a precise combination of
forward and horizontal actions. Even a slight error in the ratio can result in a near miss. Finally,
DILO tends to learn more conservative policies, and in some locations may not not strike the puck
with much force. However, because of the low data coverage, this issue is endemic to all the learned
policies.

Hitting: The primary challenge of achieving a hit in this task is the precise alignment of the paddle
to the puck. While DILO performs well, it is not perfectly accurate, resulting in touches that bounce
off the side of the paddle. This challenge is endemic to all policies. Additionally the conservatisim
of DILO actions appear when it moves under the puck, where it tends to move slowly, and dropping
the puck too quickly can result in DILO failing to reach the puck. As a result, while DILO is likely to
succeed at the first hit, it can struggle to generate multiple hits because this can require rapid side to
side movement. These issues are largely endemic to all the learned policies, where SMODICE tends
to be even less precise and BCO struggle to learn to strike, though it can occasionally position under
the puck.

Visualizations of the failure modes can be seen in the accompanying video attachment.
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