
Appendix457

6.1 Code Release458

Our code is attached as part of the supplementary material to ensure reproducibility.459

6.2 Theory460

6.2.1 Derivation for Action-free distribution matching461

Theorem 6.1. The dual problem to the primal occupancy matching objective (Equation 4) is given462

by the DILO objective in Equation 5. Moreover, as strong duality holds from Slater’s conditions the463

primal and dual share the same optimal solution d˚ for any offline transition distribution ρ and any464

choice of mixture distribution ratio β.465

We start with the primal objective that matches distributions between the agent’s visitation dps, s1, a1q466

and expert’s visitation dEps, s1, a1q. As before ρ denotes the visitation distribution of offline data.467

min
π

Df pMixβpdπps, s1, a1q, ρq}MixβpdEps, s1, a1q, ρqq, (7)

where for any two distributions µ1 and µ2, Mixβpµ1, µ2q denotes the mixture distribution with468

coefficient β P p0, 1s defined as Mixβpµ1, µ2q “ βµ1 ` p1 ´ βqµ2.469

Formulating the objective as a constrained objective in agent’s visitation distribution d allows us to470

create a primal objective that is a convex program. This is crucial in subsequently creating a dual471

objective that is unconstrained and easy to optimize.472

max
dě0

´Df pMixβpd, ρq}MixβpdE , ρqq

s.t
ř

a2 dps1, s2, a2q “ p1 ´ γqd0ps1, s2q ` γ
ř

s,a1PSˆA dps, s1, a1qpps2|s1, a1q, @s1, s2 P S ˆ S.
(8)

where the constraints above dictate the conditions that any valid visitation distribution dps1, s2q needs473

to satisfy and are our proposed modifications to the commonly known bellman flow constraints.474

Below we outline the derivation of how these specific constraints with the mixture distribution475

matching objective allows us to create a dual objective that is independent of expert’s actions.476

Applying Lagrangian duality to the above constrained distribution matching objective, we can convert477

it to an unconstrained problem with dual variables V ps, s1q defined for all s, s1 P S ˆ S:478

max
dě0

min
V ps1,s2q

´Df pMixβpd, ρqps, s1, a1q || MixβpdE , ρqps, s1, a1qq

`
ÿ

s1,s2

V ps1, s2q

˜

p1 ´ γqd0ps1, s2q ` γ
ÿ

s,a1

dps, s1, a1qpps2|s1, a1q ´
ÿ

a

dps1, s2, a2q

¸

(9)

“ max
dě0

min
V ps,s1q

p1 ´ γqEd0ps,s1q

“

V ps, s1q
‰

` Es,s1,a1„d

«

γ
ÿ

s2

pps2|s1, a1qV ps1, s2q ´ V ps, s1q

ff

´Df pMixβpd, ρqps, s1, a1q || MixβpdE , ρqps, s1, a1qq (10)

where the last equation uses a change of variable from s1, s2 to s, s1 without loss of generality. Using479

a simple algebraic manipulation below, we can get rid of the inner maximization. We add and subtract480
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the terms shown below:481

“ max
dě0

min
V ps,s1q

βp1 ´ γqEd0ps,s1q

“

V ps, s1q
‰

`βEs,s1,a1„d

«

γ
ÿ

s1

pps2|s1, a1qV ps1, s2q ´ V ps, s1q

ff

`p1 ´ βqEs,s1,a1„ρ

«

γ
ÿ

s2

pps2|s1, a1qV ps1, s2q ´ V ps, s1q

ff

´p1 ´ βqEs,a,g„ρ

«

γ
ÿ

s1

pps2|s1, a1qV ps1, s2q ´ V ps, s1q

ff

´Df pMixβpd, ρqps, s1, a1q || MixβpdE , ρqps, s1, a1qq (11)

As strong duality holds using Slater’s conditions [52] (see [43] for a detailed account of strong duality482

in RL under visitation distributions). Using the fact that strong duality holds in this problem we can483

swap the inner max and min and rewrite an equivalent maximization under the mixture distribution:484

“ min
V ps,s1q

max
Mixβpd,ρqps,s1,a1qě0

βp1 ´ γqEd0ps,s1q

“

V ps, s1q
‰

` βEs,s1,a1„d

«

γ
ÿ

s1

pps2|s1, a1qV ps1, s2q ´ V ps, s1q

ff

` p1 ´ βqEs,s1,a1„ρ

«

γ
ÿ

s2

pps2|s1, a1qV ps1, s2q ´ V ps, s1q

ff

´ p1 ´ βqEs,s1,a1„ρ

«

γ
ÿ

s2

pps2|s1, a1qV ps1, s2q ´ V ps, s1q

ff

´Df pMixβpd, ρqps, s1, a1q || MixβpdE , ρqps, s1, a1qq (12)

In the following derivation, we will show that the inner maximization in Eq 12 has a closed form solu-485

tion even when adhering to the non-negativity constraints. Let yps, s1, a1q “ Es2„pps1,a1qrV ps1, s2qs´486

V ps, s1q.487

max
Mixβpd,ρqps,s1,a1qě0

Es,s1,a1„Mixβpd,ρqps,s1,a1q

«

γ
ÿ

s2

pps2|s1, a1qV ps1, s2q ´ V ps, s1q

ff

´Df pMixβpd, ρqps, s1, a1q || MixβpdE , ρqps, s1, a1qq

Now to solve this constrained optimization problem we create the Lagrangian dual and study the488

KKT (Karush–Kuhn–Tucker) conditions. Let wps, s1, a1q
∆
“

Mixβpd,ρqps,s1,a1
q

MixβpdE ,ρqps,s1,a1q
, then the constraint489

Mixβpd, ρqps, s1, a1q ě 0 holds if and only if wps, s1, a1q ě 0 @s, s1, a1.490

max
wps,s1,a1q

max
λě0

Es,s1,a1„MixβpdE ,ρqps,s1,a1q

“

wps, s1, a1qyps, s1, a1q
‰

´ EMixβpdE ,ρqps,s1,a1q

“

fpwps, s1, a1qq
‰

`
ÿ

s,s1,a1

λpwps, s1, a1q ´ 0q (13)

Since strong duality holds, we can use the KKT constraints to find the solutions w˚ps, s1, a1q and491

λ˚ps, s1, a1q.492

• Primal feasibility: w˚ps, s1, a1q ě 0 @ s, a1, a1493

• Dual feasibility: λ˚ ě 0 @ s, s1, a1494
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• Stationarity: MixβpdE , ρqps, s1, a1qp´f 1pw˚ps, s1, a1qq ` yps, s1, a1q ` λ˚ps, s1, a1qq “495

0 @ s, s1, a1496

• Complementary Slackness: pw˚ps, s1, a1q ´ 0qλ˚ps, s1, a1q “ 0 @ s, s1, a1497

Using stationarity we have the following:498

f 1pw˚ps, s1, a1qq “ yps, s1, a1q ` λ˚ps, s1, a1q @ s, s1, a1 (14)

Now using complementary slackness, only two cases are possible w˚ps, s1, a1q ě 0 or λ˚ps, s1, a1q ě499

0.500

Combining both cases we arrive at the following solution for this constrained optimization:501

w˚ps, s1, a1q “ max
´

0, f 1´1
pyps, s1, a1qq

¯

(15)

Using the optimal closed-form solution (w˚) for the inner optimization in Eq. (12) we obtain502

min
V ps,s1q

βp1 ´ γqEd0ps,s1q

“

V ps, s1q
‰

` Es,s1,a1„MixβpdE ,ρqps,s1,a1q

“

max
`

0, pf 1q´1
`

yps, s1, a1q
˘˘

yps, s1, a1q ´ αf
`

max
`

0, pf 1q´1
`

yps, s1, a1q
˘˘˘‰

´ p1 ´ βqEs,a„ρ

«

γ
ÿ

s1

pps1|s, aqV ps1, s2q ´ V ps, s1q

ff

(16)

For deterministic dynamics, this reduces to the following simplified objective:503

min
V ps,s1q

βp1 ´ γqEd0ps,s1q

“

V ps, s1q
‰

` Es,s1,a1„MixβpdE ,ρqps,s1,a1q

“

max
`

0, pf 1q´1
`

yps, s1, a1q
˘˘

yps, s1, a1q ´ f
`

max
`

0, pf 1q´1
`

yps, s1, a1q
˘˘˘‰

´ p1 ´ βqEs,a„ρ

“

γV ps1, s2q ´ V ps, s1q
‰

(17)

where yps, a, gq “ γV ps1, s2q ´ V ps, s1q.504

6.2.2 What does the utility function V ˚ps, s1q represent?505

Prior work [43] shows that for the regularized RL problem506

max
dě0

Edps,aqrrps, aqs ´ αDf pdps, aq || dOps, aqq

s.t
ř

aPA dps, aq “ p1 ´ γqd0psq ` γ
ř

ps1,a1qPSˆA dps1, a1qpps|s1, a1q, @s P S.
(18)

the dual optimizes for a Langrangian variable V that represents a regularized optimal value function.507

This insight directly extends to our work with reward function set to zero, our Lagrangian variable508

learns only the regularized visitation probabilities under optimal policy.509

It is easy to see why this is the case using the previous derivation. Following the derivation from the510

previous section, note that we had rewritten the inner maximization w.r.t the visitation distribution511

d, thus effectively getting rid of manipulating visitation distributions in the final objective. Our512

derivation above uses the following substitution shown in Eq 15 that holds as part of the closed form513

solution w.r.t inner maximization:514

Mixβpd, ρqps, s1, a1q

MixβpdE , ρqps, s1, a1q
“ max

´

0, f 1´1
pyps, s1, a1qq

¯

(19)

where y “ γV ps1, s2q ´ V ps, s1q. For deterministic dynamics, at convergence, the following holds515

for all s, s1, a1 where d˚ps, s1, a1q ą 0:516

f 1´1
pγV ˚ps1, s2q ´ V ˚ps, s1qq “

Mixβpd˚, ρqps, s1, a1q

MixβpdE , ρqps, s1, a1q
(20)

15



implying:517

pγV ˚ps1, s2q ´ V ˚ps, s1qq “ f 1

ˆ

Mixβpd˚, ρqps, s1, a1q

MixβpdE , ρqps, s1, a1q

˙

“ ´rips, s
1, a1q (21)

The above relation makes the the interpretation of V ˚ps, s1q clear. pV ˚ps, s1q ´ γV ˚ps1, s2qq de-518

notes the implied reward function rips, s1, a1q under which V ˚ computes the maximum cumulative519

expected return, where a1 is the action that leads to s2. As shown above the the implied reward520

function rips, s1, a1q “ ´f 1

´

Mixβpd˚,ρqps,s1,a1
q

MixβpdE ,ρqps,s1,a1q

¯

is the divergence between expert stationary visita-521

tion distribution and agent’s stationary visitation that is obtained after taking the action a1 from s1522

and then acting optimally to match the expert visitation distribution. Note that the function f 1 is523

non-decreasing as the function f is convex from definition of f -divergences.524

6.2.3 Analytical form of f˚
p for χ2 divergence525

For χ2 divergence, the generator function fpxq “ px´ 1q2. f 1pxq “ 2px´ 1q and correspondingly526

f 1´1pxq “ x
2 ` 1. Substituting f 1´1pxq in definition of f˚

p :527

f˚
p pxq “ maxp0, f 1´1

pxqqpxq ´ fpmaxp0, f 1´1
pxqqq (22)

Since x we substitute takes the form of residual residual “ γEs2„pp¨|s1,a1qrV ps1, s2qs ´ V ps, s1qq,528

the below pseudocode shows the implementation of f˚
p for DILO.529

1 def f_star_p(self , residual , type=’chi_square ’):530

2 if type==’chi_square ’:531

3 omega_star = torch.max(residual / 2 + 1, torch.zeros_like(532

residual))533

4 return residual * omega_star - (omega_star - 1)**2534

6.2.4 Intuitive understanding of DILO535

To better understand this objective’s behavior we consider the last two terms from Eq 5 in its expanded536

form below. We ignore the first term as it is simply pushing down Q-values at initial distribution of537

states, to prevent overestimation when learning from offline datasets.538

βEs,s1,s2„d̃Eq

“

f˚
p pγV ps1, s2q ´ V ps, s1qq

‰

` p1 ´ βq ˚ Es,s1,s2„ρ

“

f˚
p pγV ps1, s2q ´ V ps, s1qq

‰

(23)

´p1 ´ βqEs,s1,a1„ρ

“

γEs2„pp¨|s1,a1q

“

V ps1, s2q
‰

´ V ps, s1q
‰

,

Denote rps, s1, aEq “ V ps, s1q ´ γV ps1, s2q as the implicit expert reward of under a learned Q-539

function. The objective presents a clear intuition when we study the objective’s behavior in different540

situations individually: (a) For samples from ρ, the objective pushes down the implicit reward to 0 as541

shown below:542

min
r

Lprq “

#

p1 ´ βq r
2

4 , if r ă 2,

p1 ´ βqr otherwise.
(24)

(b) For samples from the expert distribution d̃E , the objective ensures that reward is greater than543

equal to 2544

min
r

Lprq “

#

βp r
2

4 ´ rq, if r ă 2,

0 otherwise.
(25)

It becomes clear now that DILO is implicitly learning a valid reward function that ensures higher545

discounted return for the expert compared to the suboptimal dataset by shaping Q-values directly.546

6.3 Implementation547

The algorithm for DILO can be found in Algorithm 1. We base the DILO implementation on the548

official implementation of pytorch-IQL https://github.com/gwthomas/IQL-PyTorch/tree/main that is549

based on IQL [44]. We keep the same network architecture as the original code and do not vary it550

across environments.551
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6.3.1 Imitation Learning with Proprioceptive Observations552

Our experiment design is based on the benchmark from [13, 28] but we explain the setup here for553

completeness.554

Environments: For the offline imitation learning experiments we focus on 9 locomotion and555

manipulation environments from the MuJoCo physics engine [18] comprising of Hopper, Walker2d,556

HalfCheetah, Ant, Kitchen, Pen, Door and Hammer to make a total of 24 datasets. The MuJoCo557

environments used in this work are licensed under CC BY 4.0 and the datasets used from D4RL are558

also licensed under Apache 2.0.559

Suboptimal Datasets: We use the offline imitation learning benchmark from [28] that utilizes560

offline datasets consisting of environment interactions from the D4RL framework [19]. Specif-561

ically, suboptimal datasets are constructed following the composition protocol introduced in562

SMODICE [13]. The suboptimal datasets, denoted as ’random+expert’, ’random+few-expert’,563

’medium+expert’, and ’medium+few-expert’ combine expert trajectories with low-quality trajectories564

obtained from the ”random-v2” and ”medium-v2” datasets, respectively. For locomotion tasks, the565

’random/medium+expert’ dataset contains a mixture of some number of expert trajectories (ď 200)566

and «1 million transitions from the ”x” dataset. The ’x+few-expert’ dataset is similar to ‘x+expert,’567

but with only 30 expert trajectories included. For manipulation environments we consider only 30568

expert trajectories mixed with the complete ’x’ dataset of transitions obtained from D4RL.569

Expert Observation Dataset: To enable imitation learning from observation, we use 1 expert570

observation trajectory obtained from the ”expert-v2” dataset for each respective environment.571

Baselines: To benchmark and analyze the performance of our proposed methods for offline imitation572

learning with suboptimal data, we consider different representative baselines in this work: BC [49],573

SMODICE [13], RCE [53], ORIL [48], IQLearn [50], ReCOIL [28]. SMODICE has been shown574

to be competitive [13] to DEMODICE [34] and hence we exclude it from comparison. SMODICE575

is an imitation learning method based on the dual framework, that optimizes an upper bound to576

the true imitation objective. ORIL adapts generative adversarial imitation learning (GAIL) [9]577

algorithm to the offline setting, employing an offline RL algorithm for policy optimization. The RCE578

baseline combines RCE, an online example-based RL method proposed by Eysenbach et al. [53].579

RCE also uses a recursive discriminator to test the proximity of the policy visitations to successful580

examples. [53], with TD3-BC [54]. Both ORIL and RCE utilize a state-based discriminator similar581

to SMODICE, and TD3-BC serves as the offline RL algorithm. All the compared approaches only582

have access to the expert state-action trajectory.583

The open-source implementations of the baselines SMODICE, RCE, and ORIL provided by the584

authors [13] are employed in our experiments. We use the hyperparameters provided by the authors,585

which are consistent with those used in the original SMODICE paper [13], for all the MuJoCo586

locomotion and manipulation environments.587

In our set of environments, we keep the same hyper-parameters across tasks - locomotion, adroit588

manipulation, and kitchen manipulation. We train until convergence for all algorithms including589

baselines and we found the following timesteps to be sufficient for different set of environments:590

Kitchen: 1e6, Few-expert-locomotion: 500k, Locomotion: 300k, Manipulation: 500k591

We keep a constant batch size of 1024 across all environments. For all tasks, we average mean returns592

over 10 evaluation trajectories and 7 random seeds. Full hyper-parameters we used for experiments593

are given in Table 2. For policy update, using Value Weighted Regression, we use the temperature τ594

to be 3 for all environments.595

Hyperparameters for our proposed off-policy imitation learning method DILO are shown in Table 2.596

6.3.2 LfO with Image Observations597

We use robomimic [20] for our imitation with image observations experiments. The following two598

environments are used here (the description is taken from their paper and written here for conciseness):599
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Hyperparameter Value
Policy learning rate 3e-4
Value learning rate 3e-4
f -divergence χ2

max-clip (Value clipping for policy learning) 100
MLP layers (256,256)
β (mixture ratio) 0.5
η (orthogonal gradient descent) 0.5
τ (policy temperature) 3

Table 2: Hyperparameters for DILO in imitation from proprioceptive observations.

Lift: Object observations (10-dim) consist of the absolute cube position and cube quaternion (7-dim),600

and the cube position relative to the robot end effector (3-dim). The cube pose is randomized at the601

start of each episode with a random z-rotation in a small square region at the center of the table.602

Can Object observations (14-dim) consist of the absolute can position and quaternion (7-dim), and603

the can position and quaternion relative to the robot end effector (7-dim). The can pose is randomized604

at the start of each episode with a random z-rotation anywhere inside the left bin.605

Robomimic provides three datasets and two modalities of observation (Proprioceptive, Images)606

for both environments above. The datasets are denoted by - MH (Multi-human), MG (Machine607

Generated), PH(Proficient-human). We use the MG and MH datasets as the suboptimal datasets in our608

task and PH as the source of expert observations. MH and MG datasets consists of 200 trajectories of609

usually suboptimal nature and we use 50 observation-only trajectory from PH datasets. This tasks610

is complex by the fact that expert-level actions are mostly unseen in the suboptimal dataset and the611

agent needs to learn the best actions that matches expert visitation from the suboptimal dataset. We612

implement all algorithms in the Robomimic codebase without any change in network architecture,613

data-preprocessing or learning hyperparameters. We tune algorithm specific hyperparameters in a614

course grid for BCO, SMODICE, and DILO to compare the best performance of methods independent615

of hyperparameters. For BCO, we tune the inverse dynamics model learning epochs between [1,5,10].616

For SMODICE, we tuned discriminator learning epochs between [1,5], and gradient penalty between617

[1,5,10,20]. To control overestimation due to learning with offline datasets in DILO we consider a618

linear weighting α between the optimism and pessimism terms in Eq 5 inspired by prior work [28] as619

follows:620

min
Q

p1 ´ λqβp1 ´ γqEd̃0
“

V ps, s1q
‰

` λEs,s1,a1„Mixβpd̃E ,ρq

“

f˚
p pγEs2„pp¨|s1,a1q

“

V ps1, s2q
‰

´ V ps, s1qq
‰

´ λp1 ´ βqEs,s1,a1„ρ

“

γEs2„pp¨|s1,a1q

“

V ps1, s2q
‰

´ V ps, s1q
‰

,

The hyperparameters used for DILO can be found in Table 3. For the architecture specific hyperpa-621

rameters we refer the readers to [20].

Hyperparameter Value
max-clip (Value clipping for policy learning) 100
λ (pessimism parameter) 0.7
β (mixture ratio) 0.5
η (orthogonal gradient descent) 0.5
τ (policy temperature) 3

Table 3: Hyperparameters for DILO in imitation from image observations.

622

6.4 Robot Manipulation Experiments623

Our setup for manipulation experiments is inspired by the robot air hockey environment [55] for624

applying DILO to physical robotics settings. Our setup utilizes a Universal Robotics 5 kilogram625

e-series (UR5e) 6-degree of freedom robotic arm on a fixed mount, a Robotiq parallel jaw gripper, a626

1.93m ˆ 0.76m Wind Chill air hockey table which is tilted at a 5.5 degree angle, and an overhead627
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Sony Playstation Eye, a high framerate camera, which gathers 640 ˆ 480 frames at 60 FPS, mounted628

to the ceiling to have a full view of the table. The paddle that is held by the robot end effector is629

9.5cm in diameter and the puck is 6.3cm.630

Figure 5: Tasks: Left: Place object and avoid obstacles. Center: Stationary
Puck Striking. Right: Dynamic Puck Hitting

In this setup, the negative x631

direction is oriented along632

the table, and the y is633

across the table. The ac-634

tion space for the arm uti-635

lizes pose control in x, y636

through an inverse kine-637

matics controller accessi-638

ble through the Universal639

robotics real-time data exchange interface. Utilizing the serving command, the arm is640

controlled using delta positions clipped between 26cm in the x direction and 13cm in641

the right direction. These control limits are specified to prevent the robot from trigger-642

ing force limits, which results in an emergency stop. Actions are taken at a 20Hz fre-643

quency to allow for rapid response to dynamic elements, such as hitting a falling puck.644

Goal Position

Cups

Strawberry

Figure 6: Cross Embodiment Demonstration: Track-
ing of the strawberry and obstacles for learning action-
free.

The position and velocity of the end effector645

can be recovered through the real-time data ex-646

cahnge, but other objects like the puck or the647

hand require identification. This work utilizes648

an overhead camera running at 60Hz to locate649

these objects using a vision pipeline that relies650

on hue saturation value segmentation followed651

by object identification. This gives an xc, yc co-652

ordinate in camera space, which we convert via653

OpenCV [56] homography to robot coordinates.654

This homography is computed by mapping the655

end effector positions given by the robot sensors656

to visual locations from the camera.657

We apply imitation learning from observations658

on several tasks built on top of the above robot659

setup. The following experiments are described660

here:661

Safe object manipulation: This task involves662

moving a strawberry to a bowl while avoiding663

four cups placed in the workspace of the robot.664

The bowl is placed in the top right corner of the665

workspace, and the cups are placed in fixed loca-666

tions. The success metric is the robot stopping667

above the bowl while making no contact with any of the cups. The test set involves 10 random668

starting locations for the end effector that are fixed between assessments. The observation space is the669

2D end effector position, and the strawberry is initialized inside the gripper. Our suboptimal dataset670

consists of 50 trajectories of 100 time steps on average where the robot is initialized in a random671

location, and the human moves the arm to a random different location, ignoring the positions of the672

cups or the bowl. In this setting, we investigated the following expert data, visualized in Figure 5:673

• Few Trajectories: The expert data is drawn from a set where the expert is initialized in a674

random location, sometimes touching an obstacle, and must use the teleoperation system to675

avoid the obstacle and reach the goal. In this setting we used 15 expert trajectories.676
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• Fixed start: The expert is initialized at the opposite corner of the workspace, and navigates677

to the goal location following different paths using teleoperation. In this setting we used 15678

trajectories.679

• Few Uniform: Uses the same expert data as the Few Trajectories setting, but the dataset680

consists of randomly samples 300 transitions, where one trajectory is approximately 60681

transitions of data.682

• Cross Embodiment Few/Fixed/Uniform: The expert is a person holding the strawberry in683

his/her hand, visualized in Figure 6. They then move the strawberry tracked by the camera684

to the goal location while avoiding the obstacles, starting from random/fixed locations with685

15 expert trajectories respectively or uniform with 300 transitions.686

Stationary Striking: This task involves moving the end effector to strike a stationary puck. The687

success metric is the robot touching the puck. The test set involves 10 initializations of the puck posi-688

tion across the length of the table. The ensure uniformity across evaluations, the set of initialization689

locations of the puck are fixed across methods. The end effector is initialized at 0.38m from the base690

in the center of the table, so a success strike does not require backward motion. The observation space691

is the 2D end effector position and the tracked position of the puck. Our suboptimal dataset consists692

of 50 trajectories of 75 time steps on average where the robot is initialized at the start position, and693

the human moves the arm in a random, vaguely striking pattern.694

In this setting we used an expert dataset of 400 trajectories where the expert uses mouse teleoperation695

to strike the puck. The expert efficiently strikes the puck in a single motion. We visualize the expert696

striking and the puck position in Figure 5. We show the learned action vectors for all algorithms and697

tasks fixed start (Figure 9), Few Uniform (Figure 8) and Few trajectories (Figure 10).698

Dynamic Hitting: This task involves hitting a puck dropped from the top of the table. Because699

the table is set at an angle, this will cause the puck to fall with increasing acceleration towards the700

opposite side. The setup is visualized in Figure 5. The test set involves 10 initializations of the puck701

position dropped from positions across the length of the top of the table. The locations of the 10 puck702

drops are fixed using indicators across methods to give fair evaluation, and the arm is initialized in703

the center of the table, 0.68m from the base. The observation space is the 2D end effector position704

and 2D end effector velocity and the history of the last 5 tracked positions of the puck relative to the705

position of the end effector. Our suboptimal dataset consists of 50 trajectories of 200 time steps on706

average where the robot is initialized at the start position, and the human moves the arm around the707

puck without striking it.708

We utilize two success metrics for this task: 1) touching: a trajectory is considered successful if the709

agent touches the puck. 2) hitting: the puck must have velocity in the opposite direction that it was710

dropped. This task is especially challenging for existing methods because of the long sequence of711

actions necessary to position the paddle properly, and the high level of both precision and timing:712

even a few millimeters of error or a movement at the wrong time will result in a failure, especially for713

hitting. Previous work has observed that this task is challenging even for humans, who often require714

several tries of practice, and many dataset trajectories consist of many inaccurate hits. In this domain,715

Behavior cloning only achieves 30% success at touching the puck, and Implicit Q-learning, a popular716

offline RL method, can only achieve 60% success, even though it employs a hand-designed reward717

function.718

We used the implementation details from the proprioception task with the difference that in all the719

real-robot tasks we tune the following parameters across different methods: For BCO, we tune the720

inverse dynamics model learning epochs between [1,5,10]. For SMODICE, we tuned discriminator721

learning epochs between [1,5], and gradient penalty between [1,5,10,20]. For DILO we tune the722

conservatism parameter from previous section between [0.5,0.6,0.7,0.8].723

In this domain, these challenges appear to be empirically validated in the performance of the baseline724

methods. We hypothesize that the accumulation of error over long horizons in other learning from725

observation methods results in poor performance, as visualized in Table 3 and Figure 4. For methods726
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like BCO, learning the necessary inverse dynamics to interpolate the long sequence of actions for a727

successful strike is impractical, resulting in behavior that appears listless. On the other hand, while728

the SMODICE discriminator rewards are able to occasionally match the visitation distribution of729

the expert, there is an exponential explosion of possible combinations of puck history and paddle730

positions, resulting in poor generalization: on the left half of the table, SMODICE is unable to hit the731

puck.732

The hitting scenario involves two settings, both using mouse teleoperation to control the puck: one733

where the human strikes the puck only once and then the trajectory ends, which utilizes a dataset734

of 50 trajectories, and an expert dataset of 850 trajectories where the human keeps hitting the puck735

repeatedly for up to 2000 timesteps. The task is challenging for human, so trajectories average only736

500 timesteps and cleaned so that human mistakes are removed from the expert dataset. We visualize737

the expert hitting and the puck position in Figure 7.738
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Figure 7: Expert Hitting: Visualization of one trajectory of puck tracking and hitting by the expert. Right:
stacked frames of the environment. Left: puck position in robot coordinates

BCO SMODICE DILO

Figure 8: Action Vectors qualitatively showing the next x-y action for the safe manipulation with uniform
sampled transitions. BCO generalizes incorrectly at a number of locations producing policies that hit obstacles.
DILO learns to mimic expert’s intent better demonstrating signs that it has learned to avoid obstacles by the
arrows around
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BCO SMODICE DILO

Goal reaching fixed start

Figure 9: Action Vectors qualitatively showing the next x-y action for the safe manipulation with fixed start
state. BCO generalizes incorrectly at a number of locations producing policies that hit obstacles. DILO learns to
mimic expert’s intent better demonstrating signs that it has learned to avoid obstacles by the arrows around

BCO SMODICE DILO

Goal reaching few traj

Figure 10: Action Vectors qualitatively showing the next x-y action for the safe manipulation with few trajectories.
BCO generalizes incorrectly at a number of locations producing policies that hit obstacles. DILO learns to
mimic expert’s intent better demonstrating signs that it has learned to avoid obstacles by the arrows around

6.5 Limitations739

Learning from Observation is a challenging setting, and while DILO makes some key assumptions740

in order to achieve good performance. First, matching distributions becomes exponentially more741

challenging in the dimensionality of the state space. In this work, while DILO outperforms baselines742

in the Expert Image observations, it still shows limited performance. Second, while learning from743

observations opens the door for good performance without expert actions, the expert observation744

space must match that of the agent. In some video settings, this is not the case ex. the agent might use745

a fixed camera when the human is egocentric, or vice versa. Finally, DILO utilizes the conservatism746

parameter τ to regulate the degree of extrapolation from the algorithm. In some settings, the values747

can diverge, resulting in V ˚ taking on values that might be too large to be used for learning the748

downstream policy. Adaptively selecting τ to maximize extrapolation while avoiding divergence is749

an area of action investigation.750

6.5.1 Failure Cases751

While DILO outperforms other methods in overall success rate, the failure modes can differ. In752

general, DILO tends to be conservative in what actions it takes, learning motions that might be slower753

than BCO, or my get stuck before arriving at the goal. In low observation settings, DILO can also754
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exhibit “dead zone” behavior, where the model becomes mostly unresponsive. Below we detail some755

of the exact error modes in particular tasks:756

Safe Manipulation: While DILO and BCO have comparable success rates, the two algorithms fail757

in different ways. BCO tends to take large actions while ignoring obstacles to reach the goal, while758

DILO takes more conservative actions. Thus, while BCO might fail by knocking over a cup, DILO759

will tend to fail to reach the goal. Because this is a low data setting, both algorithms BCO and DILO760

can end up coming close to the cups or brushing them gently. As a sidenote, SMODICE fails at even761

reaching the goal in most cases in this task, possibly because of this low data setting.762

Striking: This domain is challenging because of the narrow data regime, and all methods tend to763

struggle in similar ways. The most common consequence of low data arises through sensitivity to764

the x location of the puck (along the table). While intuitively, striking behavior should be relatively765

invariant for a fixed y (horizontal position on the table), slight variation in x from the dataset can766

result in a policy that moves the arm in the opposite direction of the puck, probably due to errors767

in extrapolation. In addition, striking is a dynamic behavior that requires a precise combination of768

forward and horizontal actions. Even a slight error in the ratio can result in a near miss. Finally,769

DILO tends to learn more conservative policies, and in some locations may not not strike the puck770

with much force. However, because of the low data coverage, this issue is endemic to all the learned771

policies.772

Hitting: The primary challenge of achieving a hit in this task is the precise alignment of the paddle773

to the puck. While DILO performs well, it is not perfectly accurate, resulting in touches that bounce774

off the side of the paddle. This challenge is endemic to all policies. Additionally the conservatisim775

of DILO actions appear when it moves under the puck, where it tends to move slowly, and dropping776

the puck too quickly can result in DILO failing to reach the puck. As a result, while DILO is likely to777

succeed at the first hit, it can struggle to generate multiple hits because this can require rapid side to778

side movement. These issues are largely endemic to all the learned policies, where SMODICE tends779

to be even less precise and BCO struggle to learn to strike, though it can occasionally position under780

the puck.781

Visualizations of the failure modes can be seen in the accompanying video attachment.782
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