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ABSTRACT

Distributional reinforcement learning (RL) is a class of state-of-the-art algorithms
that estimate the entire distribution of the total return rather than only its expecta-
tion. The empirical success of distributional RL is determined by the representa-
tion of return distributions and the choice of distribution divergence. In this paper,
we propose a new class of Sinkhorn distributional RL (SinkhornDRL) algorithm
that learns a finite set of statistics, i.e., deterministic samples, from each return
distribution and then uses Sinkhorn iterations to evaluate the Sinkhorn distance
between the current and target Bellmen distributions. Sinkhorn divergence fea-
tures as the interpolation between the Wasserstein distance and Maximum Mean
Discrepancy (MMD). SinkhornDRL finds a sweet spot by taking advantage of the
geometry of optimal transport-based distance and the unbiased gradient estimate
property of MMD. Finally, compared to state-of-the-art algorithms, Sinkhorn-
DRL’s competitive performance is demonstrated on the suit of 55 Atari games.

1 INTRODUCTION

Classical reinforcement learning (RL) algorithms are normally based on the expectation of dis-
counted cumulative rewards that an agent observes while interacting with the environment. Recently,
a new class of RL algorithms called distributional RL estimates the full distribution of total returns
and has exhibited the state-of-the-art performance in a wide range of environments (Bellemare et al.,
2017a;|Dabney et al.,|2018bza; Yang et al., {2019} [Zhou et al., |2020; Nguyen et al., [2020).

In distributional RL literature, it is easily recognized that algorithms based on either Wasserstein
distance or MMD have gained great attention due to their superior performance. Their mutual con-
nection from the perspective of mathematical properties intrigues us to explore further in order to
design new algorithms. Particularly, Wasserstein distance, long known to be a powerful tool to com-
pare probability distributions with non-overlapping supports, has recently emerged as an appealing
contender in various machine learning applications. It is known that Wasserstein distance was long
disregarded because of its computational burden in its original form to solve an expensive network
flow problem. However, recent works (Sinkhorn, |1967; (Genevay et al., [2018)) have shown that this
cost can be largely mitigated by settling for cheaper approximations through strongly convex regular-
izers. The benefit of this regularization has opened the path to wider applications of the Wasserstein
distance in relevant learning problems, including the design of distributional RL algorithms.

The Sinkhorn divergence (Sinkhorn, |1967)) introduces the entropic regularization on the Wassertein
distance, allowing it tractable for the evaluation especially in high-dimensions. It has been suc-
cessfully applied in numerous crucial machine learning developments, including the Sinkhorn-
GAN (Genevay et al., |2018) and Sinkhorn-based adversarial training (Wong et al., [2019). More
importantly, it has been shown that Sinkhorn divergence interpolates Wasserstein ditance and MMD,
and their equivalence form can be well established in the limit cases (Feydy et al.l [2019; Ramdas
et al.,[2017; Nguyen et al.| [2020). However, a Sinkhorn-based distributional RL algorithm has not
yet been formally proposed and its connection with algorithms based on Wasserstein distance and
MMD is also less studied. Therefore, a natural question is can we design a new class of distributional
RL algorithms via Sinkhorn divergence, thus bridging the gap between existing two main branches
of distributional RL algorithms? Moreover, the dominant quantile regression-based algorithms,
e.g., QR-DQN (Dabney et al., 2018b), aimed at approximating Wasserstein distance, suffers from
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the non-crossing issue in the quantile estimation (Zhou et al., 2020)), while sample-based Sinkhorn
distributional algorithm can naturally circumvent this problem.

In this paper, we propose a novel distributional RL family based on Sinkhorn divergence. Firstly,
we show key roles of distribution divergence and value distribution representation in the design of
distributional RL algorithms. After a detailed introduction of our proposed SinkhornDRL algorithm,
with a non-trivial proof, we theoretically analyze the convergence property of distributional Bellman
operators under Sinkhorn divergence. A regularized MMD equivalence with Sinkhorn divergence
is also established, interpreting its empirical success in real applications. Finally, we compare the
performance of our SinkhornDRL algorithm with typical baselines on 55 Atari games, verifying
the competitive performance of our proposal. Our method inspires researchers to find a trade-off
that simultaneously leverages the geometry of the Wasserstein distance and the favorable unbiased
gradient estimate property of MMD while designing new distributional RL algorithms in the future.

2 PRELIMINARY KNOWLEDGE

2.1 DISTRIBUTIONAL REINFORCEMENT LEARNING

In classical RL, an agent interacts with an environment via a Markov decision process (MDP),
a 5-tuple (S, A, R, P,v), where S and A are the state and action spaces, respectively. P is the
environment transition dynamics, R is the reward function and v € (0, 1) is the discount factor.

From Value function to Value distribution. Given a policy , the discounted sum of future rewards
is a random variable Z7(s,a) = Y ;o v R(s¢, a;), where so = s, ap = a, 411 ~ P(:|s4,ar),
and a; ~ 7(:|s). In the control setting, expectation-based RL is based on the action-value func-
tion Q™ (s, a), which is the expectation of Z7(s,a), i.e., Q™ (s,a) = E[Z7(s,a)]. By contrast,
distributional RL focuses on the action-value distribution, the full distribution of Z7(s,a). The
incorporation of additional distributional knowledge intuitively interprets its empirical success.

Distributional Bellman operators. For the policy evaluation in expectation-based RL, the action-
value function is updated via Bellman operator 77 Q(s,a) = E[R(s, a)] + 7Eg np.x (@ (s',a")]. In
distributional RL, the distribution of Z™ (s, a) is updated via the distributional Bellman operator €™

T7Z(s,a) = R(s,a) +vZ (s, d'), (1)
where s ~ P(:|s,a) and a’ ~ 7 (-|s). The equality in Eq.[I|implies random variables of both sides
are equal in distribution. The distributional Bellman operator T™ is contractive under certain distri-

bution divergence metrics, but the distributional Bellman optimality operator T can only converge
to a set of optimal non-stationary value distributions in a weak sense (Elie & Arthur, [2020).

2.2 DIVERGENCES BETWEEN MEASURES

Optimal Transport (OT) and Wasserstein Distance. The optimal transport (OT) metric between
two probability measures (1, V) is defined as the solution of the linear program:

min c(x,y)dI(x 2
Lanin [ (e p)dil(e, ), @
where c is the cost function and I1 is the joint distribution with marginals (u, ). Wasserstein distance
(ak.a. earth mover distance) is a special case of optimal transport with the Euclidean norm as the
cost function. In particular, given two scalar random variables X and Y, p-Wasserstein metric W,
between the distributions of X and Y can be simplified as

woen) - ([l - rreras) ®

where F'~! is the inverse cumulative distribution function of a random variable. The desirable
geometric property of Wasserstein distance allows it to recover full support of measures, but it
suffers from the curse of dimension (Genevay et al.l|2019;|Arjovsky et al.,[2017).

Maximum Mean Discrepancy. The squared Maximum Mean Discrepancy (MMD) MMD? with
the kernel k is formulated as

MMD? =E [k (X, X)] +E[k(Y,Y")] - 2E [k(X,Y)], (G))
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where k(-,-) is a continuous kernel on X. X’ (resp. Y’) is a random variable independent of X
(resp. Y). If k is a trivial kernel, MMD degenerates to the energy distance. Mathematically, the
“flat” geometry that MMD induces on the space of probability measures does not faithfully lift the
ground distance (Feydy et al., 2019), but MMD is cheaper to compute than OT and has a smaller
sample complexity, i.e., approximating the distance with samples of measures (Genevay et al.,[2019).
We provide the detailed introduction of more distribution divergences in Appendix [A]

3 ROLES OF DISTRIBUTION DIVERGENCE AND REPRESENTATION

3.1 DISTRIBUTIONAL RL: FROM NEURAL FITTED Q TO Z ITERATION

Neural Fitted Q-Iteration. It is known that Deep Q Networks (Mnih et al.| [2015) can be simplified
into Neural Fitted Q-Iteration (Fan et al., 2020) under tricks of experience replay and the target
network Qg~, where we update parameterized (g (s, a) in each iteration k:

R , 2
BL argmin S i - Q (si,a0)] (5)
o i=1

where the target y; = r(s;,a;) + ymax,e 4 Q. (s}, a) is fixed within every Tiyge Steps to up-
date target network Dy« by letting 8* = 6 and the experience buffer induces independent samples
{(si;ai, 73, 57)}iepn)- Inanideal case that neglects the non-convexity and TD approximation errors,

we have QSH = T Q%, which is exactly equivalent to the updating rule under Bellman optimality

operator.

Neural Fitted Z-Iteration. Analogous to Neural Fitted Q-iteration, we can also simplify value-
based distributional RL methods based on a parameterized Zy into a Neural Fitted Z-Iteration as

1 n
Zg+1 = armein; Z dp(Yi, Z (si,a4)), (6)
0 i=1

where the target Y; = R(s;,a;) + vZp. (s}, 77(s')) with 77(s') = argmax,, E [Z}.(s',a)] is
fixed within every Tiare Steps to update target network Zy+, and d, is the distribution divergence.

3.2 KEY ROLES OF d, AND Zj

Within the Neural Fitted Z-Iteration framework proposed in Eq. [6] we observe that the choice of
representation manner on Zy and the metric d,, are pivotal for the distributional RL algorithms. For
instance, QR-DQN (Dabney et al.,[2018b) approximates Wasserstein distance W,,, which leverages
quantiles to represent the distribution of Zy. C51 (Bellemare et al., 2017a) represents Zy via a
categorical distribution under the convergence of Cramér distance (Bellemare et al.,|2017b; Rowland
et al., |2018), while MMD distributional RL (MMDDRL) (Nguyen et al.l [2020) learns samples to
represent the distribution of Zy based on MMD. We compare characteristics of these distribution
divergence, including the convergence rate and sample complexity, in Table [T Theoretical results
regarding Sinkhorn divergence is based on (Genevay et al.,|2019) and the detailed convergence proof
of other distances is also provided in Appendix [Al In summary, we argue that d,, and Zy are two
crucial factors in distributional RL design, based on which we introduce Sinkhorn distributional RL.

Algorithm d, Distribution Divergence Representation Z, Convergence Rate of T Sample Complexity of d,

C51 Cramér distance Histogram Nai ~
QR-DQN Wasserstein distance Quantiles ¥ O(n’ﬁ)
MMDDRL MMD Samples /2 with kernel k,, O(1/n)
SinkhornDRL Sinkhorn divergence Samples 13//2(6 —0 O(n<L721V7) (e — 0)
(ours) vy (e — 00) O(n’%) (e = 0)

Table 1: Comparison between typical distributional RL algorithms under different distribution di-
vergences and represention of Zy. k, = —||x — y||* in MMDDRL, d is the sample dimension and
k = 20d + |||, where the cost function ¢ is -Lipschitz (Genevay et al.,[2019). Sample complex-
ity of MMD can be improved to O(1/n) using kernel herding technique (Chen et al.,[2012).
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4  SINKHORN DISTRIBUTIONAL RL (SINKHORNDRL)

In this section, we firstly introduce Sinkhorn divergence and apply it in distributional RL. Next,
we conduct a theoretical analysis about the convergence and a new moment matching manner of
our algorithm under the Sinkhorn divergence. Finally, a practical Sinkhorn iteration algorithm is
introduced to evaluate the Sinkhorn divergence.

4.1 SINKHORN DIVERGENCE AND GENETIC ALGORITHM

We design Sinkhorn distributional RL algorithm via Sinkhorn divergence. Sinkhorn diver-
gence (Sinkhorn, [1967) is a tractable loss to approximate the optimal transport problem by leverag-
ing an entropic regularization to turn the original Wasserstein distance into a differentiable and more
robust quantity. The resulting loss can be computed using Sinkhorn fixed point iterations, which is
naturally suitable for modern deep learning frameworks. In particular, the entropic smoothing gen-
erates a family of losses interpolating between MMD. As such, it allows us to find a sweet trade-off
that simultaneously leverages the geometry of Wasserstein distance on the one hand, and the favor-
able high-dimensional sample complexity and unbiased gradient estimates of MMD. We introduce
the entropic regularized Wassertein distance W, . (u, v) as

min /c(aj, y)d(x,y) + eKL(IT|p @ v), @)
el (p,v)

where KL(II|p®@v) = [log (%) dII(z, y) is a strongly convex regularization. The impact

of this entropy regularization is similar to /5 ridge regularization in linear regression. Next, the
sinkhorn loss (Feydy et al.l[2019;|Genevay et al.l 2018) between two measures p and v is defined as

Wee(p,v) = 2We e (1, v) = Wee(pt, 1) = We e (v, v). @®)

As demonstrated by (Feydy et al., 2019), the Sinkhorn divergence W...(u,v) is convex, smooth
and positive definite that metrizes the convergence in law. In statistical physics, W, (i, v) can be
re-factored as a projection problem:

We,e(p,v) := Herﬁg},u) KL (IT|K) , )

where IC is the Gibbs distribution and its density function satisfies diC(x, y) = e~ e du(x)dv(y).
This problem is often referred to as the “static Schrodinger problem” (Léonard, [2013} |Riischendorf
& Thomsen, [1998)) as it was initially considered in statistical physics.

Distributional RL with Sinkhorn Divergence and Particle Representation. The key of applying
Sinkhorn divergence in distributional RL is to simply leverage the Sinkhorn loss W, . to mea-
sure the distance between the current action-value distribution Zy(s, a) and the target distribution
T Zy(s,a), yielding W .(Zp(s,a),T" Zy(s,a)) for each s, a pairs. In terms of the representation
for Zy(s, a), we employ the unrestricted statistics, i.e., deterministic samples, due to its superiority
in MMDDRL (Nguyen et al., 2020), instead of using predefined statistic functionals, e.g., quantiles
in QR-DQN (Dabney et al., 2018b) or categorical distribution in C51 (Bellemare et al., 2017a).

Algorithm 1 Generic Sinkhorn distributional RL Update

Require: Number of generated samples [V, the cost function c and hyperparameter €.
Input: Sample transition (s, a,r’, s")
1: if Policy evaluation then

a* ~7(-s).
else

a* < argmaxgcA Zf\; Zo (s',d),
end if
C XZi —r+vZp+ (s',a%), V1 <i <N

Output: W... ({Z(s.a)i}\L, . {TZ0(s, )}, )

AN AN A
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More concretely, we use neural networks to generate samples that approximate the value distribu-
tion. This can be expressed as Zy(s,a) := {Zy(s,a);}},, where N is the number of generated
samples. We refer to the samples {Zy(s,a);}Y, as particles. Then we leverage the Dirac mix-
ture % Ziil 074 (s,a); to approximate the true density function of Z7 (s, a), thus minimizing the
Sinkhorn divergence between the approximate distribution and its distributional Bellman target. A
detailed and generic distributional RL algorithm with Sinkhorn divergence and particle representa-
tion is provided in Algorithm T}

Remark. By comparing the state-of-the-art MMDDRL algorithm (Nguyen et al.l [2020), our
Sinkhorn distributional RL simply modifies the distribution divergence. Hence, we can also eas-
ily extend our generic Sinkhorn algorithm to DQN-like architecture as well as IQN (Dabney et al.,
2018a) and FQF (Yang et al.,2019). A following question is whether there is any theoretical connec-
tion between Sinkhorn distributional RL and algorithms based on MMD and Wasserstein distance.
We provide this crucial analysis in Section[4.2]

4.2 THEORETICAL ANALYSIS UNDER SINKHORN DIVERGENCE

Convergence. Firstly, we denote the supreme form of Sinkhorn divergence as WZOE (u,v):

WZ,OE(M7 V) = sup WC,E(M(.’E,G/),V(.’E,G,))- (10)
(z,a)ESx A

We will use WC:E(M, V) to establish the convergence of ™ in Theorem

Theorem 1. If we leverage Sinkhorn loss W..(u,v) in Eq. E] as the distribution divergence in
distributional RL, and choose the unrectified kernel k,, := —||z — y||* as —c (a > 0), it holds that

(1) (e = ) We (11, v) — 2Wo (11, v). When e = 0, T is a y-contraction under Wjog
(2) (e = +o0) We e(p,v) — MMD%Q (p, V). When & = +o0, T™ is v*/?-contractive under W:os

(3) (¢ € (0,+00)), T™ is a contractive operator under Wzi. The related non-constant contraction
Sactor A(~y, ) < 1 also depends on the distribution sequence in distributional Bellman iterations.

We provide the long yet rigorous proof of Theorem [I] in Appendix [B] Theorem [I] (1) and (2) are
follow-up conclusions in terms of the convergence behavior of €™ based on the interpolation rela-
tionship between Sinkhorn divergence with Wasserstein distance and MMD (Genevay et al., [2018).
Our key theoretical contribution is for the general ¢ € (0,00), in which we conclude that T7 is
a contractive operator. The crux of the proof is two-fold. Firstly, we show the a variant of scale
sensitive property of Sinkhorn divergence when ¢ = —x,,, where the resulting non-constant scaling
factor is also determined by the specified two probability measures. Next, we propose a new distri-
bution Contraction mapping theorem in Theorem |2 of Appendix |B| based on which we eventually
arrive at the convergence of distributional Bellman operator under Wfoa Intriguingly yet reason-
ably, the contraction factor A(7, &) is non-constant but a function less than 1 that also depends on
the distribution sequence while iteratively applying distribution Bellman updates. Our non-trivial
proof about Sinkhorn divergence can even contribute to the optimal transport literature.

Consistency with Related Conclusions. As Sinkhorn divergence interpolates between Wasserstein
distance and MMD, its contraction property when the cost function holds ¢ = —k,, for the general
e € [0, o0] is intuitive. Note that if we choose Gaussian kernels as the cost function, there will be no
concise and consistent contraction results as Theorem[I](3). This conclusion is also consistent with
MMDDRL (Nguyen et al., [2020), where T is generally not a contraction operator under MMD
equipped with Gaussian kernels as a counterexample has been pointed out in MMDDRL (when
€ — 400). To be consistent with the contraction property analyzed in our theory (Theorem (1] (3)),
we employ the rectified kernel k, as the cost function in our experiments and set « = 2, under
which SinkhornDRL suggests a favorable performance in Section [5]

Regularized Moment Matching under Sinkhorn Divergence Associated with Gaussian Ker-
nels. We further examine the potential connection between SinkhornDRL with existing distribu-
tional RL families. Inspired by the similar manner in MMDDRL (Nguyen et al.| |2020), we find
that the Sinkhorn divergence with the Gaussian kernel can also promote to match all moments be-
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tween two distributions. More specifically, the Sinkhorn divergence can be rewritten as a regularized
moment matching form in Proposition

Proposition 1. Fore € (0, +00), Sinkhorn divergence W.. . (11, v) associated with Gaussian kernels
k(z,y) = exp(—(z — y)?/(20?)) as —c, can be equivalent to

(I (X, Y))?
T2 (X, X (V, V) |

L (Vi) - Mn(u))Q +eE {log

o2np!

Wee(p,v) = Z (11)
n=0

where 117 denotes the optimal 11 determined by ¢ by evaluating the Sinkhorn divergence via
minrer () We,e (1t v): M (1) = Eqroys [671"2/(2”2)“%"}, and similarly for M, (v).

We provide the proof of Proposition [T] in Appendix [C] Similar to MMDDRL associated with a
Gaussian kernel (Nguyen et al., 2020), Sinkhorn divergence approximately performs a regularized

moment matching scaled by e~ /(277).
Equivalence to Regularized MMD Distributional RL. Based on Proposition [I} we can immedi-
ately establish the connection between Sinkhorn divergence and MMD in Corollary [1} indicating

that minimizing Sinkhorn divergence between two distributions is equivalent to minimizing a regu-
larized squared MMD.

Corollary 1. For e € (0,+00) and denote I1% as the optimal 11 by evaluating the Sinkhorn diver-
gence, it holds that

(II:(X,Y))?
I (X, XY, Y") |’

Wee := MMD? (1, v) + €E |log (12)

where we use W, .. to replace W, .(u, v) for short.

Proof of Corollary [I] is provided in Appendix [C] It is worthy of noting that this equivalence is
established for the general case when & € (0,+00), and it does not hold in the limit cases when
e — 0 or +oo. For example, when ¢ — +o00, the second part including ¢ in Eq. [I2]is not expected
to dominate. This is owing to the fact that the regularization term would be 0 as II} — 1 ® v when
€ — +oo. In summary, even though the Sinkhorn divergence was initially proposed to serve as
an entropy regularized Wasserterin distance when the cost function ¢ = kg, it turns out that it is
equivalent to a regularized MMD if associated with Gaussian kernels, as revealed in Corollary [I]

4.3 DISTRIBUTIONAL RL VIA SINKHORN ITERATIONS

The theoretical analysis in Section[d.2]sheds light on the behavior of distributional RL with Sinkhorn
divergence, but another crucial issue we need to address is how to evaluate the Sinkhorn loss effec-
tively. Due to the advantages of Sinkhorn divergence that both enjoys geometry property of optimal
transport and the computational effectiveness of MMD, we can utilize Sinkhorn’s algorithm, i.e.,
Sinkhorn Iterations (Sinkhorn, |1967; |Genevay et al.,|2018)), to evaluate the Sinkhorn loss. Notably,
Sinkhorn iteration with L steps yields a differentiable and solvable efficiently loss function as the
main burden involved in it is the matrix-vector multiplication, which streams well on the GPU with
simply adding extra differentiable layers on the typical deep neural network, such as a DQN archi-
tecture.

Specifically, given two sample sequences {Zi}f\il AZZ; };Vzl in the distributional RL algorithm,
the optimal transport distance is equivalent to the form:

; AW _ T _
Perg]lianﬂPvC)aPlN—lN,P 1N—1N}a (13)

where the empirical cost function ¢, ; = ¢(Z;,€Z;). By adding entropic regularization on opti-
mal transport distance, Sinkhorn divergence can be viewed to restrict the search space of P in the
following scaling form:

Pij = aiki jbj, (14)

where K; ; = e~%:i/¢ is the Gibbs kernel defined in Eq. @ This allows us to leverage iterations
regarding the vectors a and b. More specifically, we initialize by = 1y, and then the Sinkhorn
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Algorithm 2 Sinkhorn Iterations to Approximate W, . ({Zl}f\il A%Z; };V:l)

N

Input: Two samples sequences {Z;}~ | , {TZ; Fie1s

rameter ¢.
1: éi,j = C(Zi,TZj) for Vi = 1,...,N,j = 1,...,N
Kij = exp(—¢;;/e)
bo — 1y
for! =1,2,...,L do
ap < 7K}71N_1,bl — 1%’1
end for
o N N R
Wee ({2350 45211, = (K © 0, a)

Return: ﬁc’g ({Zz},f\il ) {sz};‘\;)

number of Sinkhorn iterations L and hyperpa-

I A

iterations are expressed as

1n 1n

aj41 < Kby and bl+1 — ICTalH’
where - indicates an entry-wise division. It has been proven that Sinkhorn iteration asymptotically
converges to the true loss in a linear rate (Genevay et al., 2018} |[Franklin & Lorenz, [1989; |Cuturi,
2013). We provide a detailed algorithm description of Sinkhorn iterations in Algorithm [2| With the
efficient and differential Sinkhorn iterations, we can easily evaluate the Sinkhorn divergence and
thus let our algorithm enjoy its theoretical advantages. In practice, we need to choose L and ¢, and
we conduct a rigorous sensitivity analysis in Section 3]

(15)

5 EXPERIMENTS

We demonstrate the effectiveness of SinkhornDRL as described in Algorithm|I{on the full 55 Atari
2600 games. Specifically, we leverage the same architecture as QR-DQN (Dabney et al., 2018b),
and replace the quantiles output with IV particles, i.e., samples. In contrast to MMDDRL, Sinkhorn-
DRL only changes the distribution divergence from MMD to Sinkhorn divergence, and therefore the
potential superiority in the performance can be attributed to the advantages of Sinkhorn divergence.

Baselines. Due to the interpolation feature of Sinkhorn divergence between Wassertein distance
and MMDDRL, we choose three typical distributional RL algorithms as classic baselines, including
QR-DQN (Dabney et al.,|2018b) that approximates the Wasserstein distance, C51 (Bellemare et al.,
2017a) and MMDDRL (Nguyen et al., 2020), as well as DQN (Mnih et al., [2015). MMDDRL
algorithm is implemented with the same architecture as QRDQN, and leverages Gaussian kernels
kn(x,y) = exp(—(x—y)?/h) with the kernel mixture trick covering a range of bandwidths h, which
is same as the basic setting in the original MMDDQN paper (Nguyen et al., 2020). We deploy all
algorithms on 55 Atari 2600 games, and reported results are averaged over 3 seeds with the shade
indicating the standard deviation. We runs 10M frame for each algorithm for the computation cost
reason, but we report learning curves across all games to make results convincing enough.

Hyperparameter settings. For a fair comparison with QR-DQN, C51 and MMDDRL, we used
the same hyperparamters: the number of generated samples N = 200, Adam optimizer with
Ir = 0.00005, €agam = 0.01/32. We used a target network to compute the distributional Bellman
target, which fits well in the Neural Fitted Z-Iteration framework. In addition, we choose number of
Sinkhorn iterations L = 10 and smoothing hyperparameter ¢ = 10.0 in Section [5.1] as they are not
sensitive within a proper interval as demonstrated in Section We choose the unrectified kernel
as the cost function, i.e.,—c = k,, and select & = 2 in k,, in our SinkhornDRL algorithm.

5.1 PERFORMANCE OF SINKHORNDRL

Figure [I] illustrates that SinkhornDRL can achieve the competitive performance across 55 Atari
games compared with various baseline algorithms with different metrics d,, and representation man-
ners on Zy. On a large number of games, e.g., Tennis, Seaquest and Atlantis, SinkhornDRL can
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Figure 1: Learning curves of SinkhornDRL algorithm compared with DQN, C51, QR-DQN and

MMD, on nine typical Atari games over 3 seeds.

significantly outperform other baselines, especially on Tennis where other algorithms even fail to
converge. The improvement of SinkhornDRL over MMDDRL empirically verifies the regulariza-

tion advantage of the Sinkhorn as analyzed in Corollary[T} On
Spacelnvaders, SinkhornDRL is on par with MMDDRL and

in Figure [} SinkhornDRL is slightly inferior to the state-of-

some games, e.g., Breakout, Pong and
other baselines, while on the last row
the-art algorithm. We provide learn-

ing curves of all typical distributional RL algorithms on all 55 Atari games in Appendix [E} where

SinkhornDRL still achieves the competitive performance in g

eneral.
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Figure 2: Ratio improvement of return for Sinkhorn distributional RL algorithm over QRDQN (left)
and MMDDRL (right) over 3 seeds. For example, the ratio improvement is calculated by (Sinkhorn

- QRDQN) / QRDQN in the left.
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We conduct a ratio improvement comparison across 55 Atari games between SinkhornDRL with
QRDQN and MMDDRL, respectively. Figure [2| showcases that by comparing with QRDQN (left),
SinkhornDRL achieves better performance across more than half of considered games and the
superiority of SinkhornDRL is significant across a large amount of games, including Venture,
Seaquest, Tennis and Phoenix. This empirical outperformance verifies the effectiveness of smooth-
ing Wassertein distance in distributional RL. In contrast with MMDDRL, the advantage of Sinkhorn-
DRL is reduced with the performance improvement on a smaller proportion of games, but a remark-
able performance improvement for SinkhornDRL on a large amount of games can be easily ob-
served. We also report mean and median of best human-normalized scores in Table[2]of Appendix[D]
where SinkhornDRL achieves almost state-of-the-art performance as MMDDRL on average.

Therefore, we conclude that SinkhornDRL is competitive with the state-of-the-art distributional RL
algorithms, e.g., MMDDRL, and can be extremely superior over existing algorithms on a large
proportion of games. This empirical success can be owing to theoretical advantage of Sinkhorn
divergence that simultaneously makes full use of the data geometry from Wasserstein distance and
the unbiased gradient estimate property from MMD, which coincides with results in Theorem [I]

Seaquest Breakout Breakout
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— Samples=20 500 —— L=2
500 —— Samples=50
Samples=200
—— Samples=500
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400

15000 400
300
300
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Average Return

200

Average Return
Average Return

5000
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06 08 00 02 08 00 02 08

. 04 6 04 0.6 04 0.6
Time Steps (1e7) Time Steps (1e7) Time Steps (1€7)

(a) Hyper-parameter ¢ (b) Number of Samples (c¢) Sinkhorn Iterations L

Figure 3: Sensitivity analysis of SinkhornDRL on Breakout regarding €, number of samples, and
number of iteration L. Learning curves are reported over 3 seeds.

5.2 SENSITIVITY ANALYSIS AND COMPUTATIONAL COST

Figure[3](a) suggests the performance of SinkhornDRL tends to QR-DQN or MMDDRL on Seaquest
when we decrease or increase €, respectively, which is consistent with the interpolation property of
Sinkhorn divergence between Wasserstein distance and MMD. An overly large or small € will lead to
numerical instability of Sinkhorn iterations in Algorithm 2} worsening the performance. In practice,
we choose a proper ¢ = 10 across all games. It is also illustrated that our algorithm is relatively
robust to the number of iterations L and samples IV, but an overly large N can slightly degrade the
performance of SinkhornDRL, and at the same time increases the computational burden. Therefore,
a proper number of samples, e.g., 200, is sufficient to attain an appealing performance with the
computational effectiveness. For the computation cost, SinkhronDRL indeed increases around 50%
computation cost compared with QR-DQN and C51, but only slightly increases the cost (by around
20%) in contrast to MMDDRL. Detailed comparisons are given in Appendix

6 DISCUSSIONS AND CONCLUSION

The main limitation of our proposal is that the superiority over existing state-of-the-art algorithms
may not be sufficiently significant. To extend our algorithm for better performance, implicit gener-
ative models, including parameterizing the cost function in Sinkhorn loss, can be further incorpo-
rated. We leave it as the future work. Moreover, other divergences, e.g., thoses that can also smooth
Wassertein distance, can also be applied into the design of distributional RL algorithms in the future.

In this paper, a novel family of distributional RL algorithms based on Sinkhorn Divergence is pro-
posed that accomplishes a competitive performance compared with the-state-of-the-art distributional
RL algorithms on 55 Atari games. Theoretical analysis about the convergence and moment match-
ing behavior is provided along with a rigorous empirical verification. Albeit being associated with
MMD algorithm, distributional RL with Sinkhorn divergence is complementary to previous algo-
rithms, leading to an important contribution among the research community.
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Ethics Statement. Our study is about the design of distributional RL algorithms, which is not
involved with any ethics issue.

Reproducibility Statement. Our results is based on the public implementation released in (Zhang,
2018) with necessary implementation details given in Appendix [E| We also provide the detailed
proof from Appendix [B|to Appendix [C]
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A DEFINITION OF DISTANCES AND CONTRACTION

Definition of distances. Given two random variables X and Y, p-Wasserstein metric ¥/}, between
the distributions of X and Y is defined as

1 1/p
WP(X,Y):(/O \Fxl(w)—Fyl(w)y”dw> =||F5' — Fy ' p, (16)

which F~1 is the inverse cumulative distribution function of a random variable with the cumulative
distribution function as F'. Further, ¢,, distance (Elie & Arthur, [2020) is defined as

) 1/p
)= ([ 1R - @ ) = 1Fx - Frll a7

— 00

The /,, distance and Wassertein metric are identical at p = 1, but are otherwise distinct. Note that
when p = 2, ¢, distance is also called Cramér distance (Bellemare et al., 2017b) dc(X,Y"). Also,
the Cramér distance has a different representation given by

1 1
dc(X.Y) =E[X Y|~ JE|X - X'| - JE|Y Y7, (18)

where X’ and Y are the i.i.d. copies of X and Y. Energy distance (Székelyl 2003} [Ziel, 2020) is a
natural extension of Cramér distance to the multivariate case, which is defined as

1 1
dp(X,Y) = E[X - Y| - gE[X - X'| - E[Y - Y[, (19)

where X and Y are multivariate. Moreover, the energy distance is a special case of the maximum
mean discrepancy (MMD), which is formulated as

MMD(X, Y k) = (E [k (X, X')] + E [k (Y, Y")] — 2E[k(X, Y)))"/* (20)

where k(-,-) is a continuous kernel on X. In particular, if & is a trivial kernel, MMD degener-
ates to energy distance. Additionally, we further define the supreme MMD, which is a functional
P(X)S*A x P(X)5*4 — R defined as

MMD,.(ir) =  sup  MMDa(u(e,a), v(x.a) on
(z,a)eSxA

We further present the convergence rate under different distribution divergences.

e T is y-contractive under the supreme form of Wassertein distance W/,.
e T is v'/P-contractive under the supreme form of ¢, distance.

e 77 is v*/2-contractive under MMD,,, with the kernel k, (z,y) = —|| — y||*, Va > 0.
Proof of Contraction.

o Contraction under supreme form of Wasserstein diatance is provided in Lemma 3 (Belle-
mare et al., 2017a)).

o Contraction under supreme form of ¢, distance can refer to Theorem 3.4 (Elie & Arthur,
2020).

e Contraction under MMD,, is provided in Lemma 6 (Nguyen et al., [2020)).

B PROOF OF THEOREM

Proof. 1. ¢ — 0 and ¢ = —k, It is obvious to observe that Sinkhorn loss degenerates to the
wasserstein distance. We also have the conclusion that the distributional Bellman operator ™ is
~-contractive under the supreme form of Wasserstein diatance, the proof of which is provided in
Lemma 3 (Bellemare et al., 2017a). Since the above conclusion is made directly based on the

12
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limiting case when € = 0, for an unspecified €, we need a more rigorous proof. We show that their
distance difference is at most an infinitesimal J.

Firstly, as W, . — W, and the regularization term is non-negative, using the language of (¢, §)
definition, we have: for V4, there exists a small positive constant a, such that W, . — W, < § when
€ < a. Based on that, we have the contraction conclusion:

e XN, T ) = WS (T 21, T Za) + WP (X7 21,37 Z3)
<0+ WIR(Z"Z,,T" Z3),

o0 5700

W, (T72, T Z) =W
(22)

where the second term W2° (%7 Z;, 7 Z5) is contractive, and thus for the unspecified €, the only

difference from the limting € = 0 is an infinitesimal §, which will vanish as e — 0 or a — 0.

2. ¢ — oo. Our complete proof is inspired by (Ramdas et al.| 2017; |Genevay et al.l 2018). Recap
the definition of squared MMD is
E[k(X,X)]+E[k(Y,Y)] - 2E[k(X,Y)]

When the kernel function k degenerates to a unrectified k (x,y) := —||z — y||* for a € (0, 2), the
squared MMD would degenerate to

E[IX - X'|* + E[Y - Y'||* - 2E[[X — Y|

On the other hand, we have the Sinkhorn loss as

We oo (1) = 2We 00 (1, V) = We o0 (V3 V) = We oo (11, )

Denoting I1. be the unique minimizer for W, ., it holds that II. — 1 ® v as ¢ — oo. That being
said, We oo (1, ) = [ e(z, y)du(z)dv(y) + 0 = [ c(z,y)du(z)dv(y). If ¢ = —ka = [ —y||*,
we eventually have W_j,_ (p,v) = [ ||z —y||*du(z)dv(y) = E|X =Y. Finally, we can have
Wk 00 = 2E[X = Y[|* = E[IX = X||* - E[IY - Y'||*

which is exactly the form of squared MMD. Now the key is prove that II. — p ® v as e — oo.
Firstly, it is apparent that W, . (1, v) < [ ¢(z,y)du(z)dv(y) as p@v € I(u, v). Let {e} } be a pos-
itive sequence that diverges to oo, and II; be the corresponding sequence of unique minimizers for
W, . According to the optimality condition, it must be the case that f c(z,y)dy + e, KL, p®
v) < [e(z,y)dp ® v+ 0 (when II(p1, v) = 1 ® v). Thus,

1
KL(Hk,u®V)<€(/cd,u@y—/cdﬂk> — 0.
k

Besides, by the compactness of TI(u, /), we can extract a converging subsequence II,,, — Tl.
Since KL is weakly lower-semicontinuous, it holds that

KL (Mo, p @ v) < limkinf KL (II,,,,n®v)=0
—00

Hence Il = p®v. That being said that the optimal coupling is simply the product of the marginals,
indicating that II. — ;1 ® v as € — oco. As a special case, when oo = 1, W_y, o (u,v) is equivalent
to the energy distance

dp(X,Y) := 2E|X - Y| - E|X - X' —E[Y - Y'|. 23)

In summary, if the cost function is the rectified kernel k,,, it is the case that W_kms converges to

the squared MMD as ¢ — co. According to (Nguyen et al., [2020), T™ is v*/2-contractive in the
supreme form of MMD with the rectified kernel k,,.

For the unspecified €, we can get the similar result to the case of ¢ — 0. For V0, there exists a large
positive constant M, such that MMD%Q — W, < d when e > M. Based on that, we have the
contraction conclusion:

w

o0 TA500

T2, T Zy) =W_,. (T"21,T" Zs) — MMDZ (T" Z1,T" Z3) + MMD2 (Y7 Z,, 3" Z5)
< MMD? (T7Z,,3" Z5) — 6,

-

(24)
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where the first term MMD?_(T7 Z,,T™ Z,) is 7% -contractive, and thus for the unspecified ¢, the
only difference from the limiting € = oo is an infinitesimal §, which will vanish as € — 400 or
(M — +o00).

3. For ¢ € (0, 4+00), the contraction property needs a long proof. The proof pipeline is firstly we
prove the three properties of Sinkhorn divergence, and then we show the contraction of distributional
Bellman operator under Sinkhorn divergence based on its properties. Most importantly, we analyzed
the contraction under a new non-constant factor.

3.1 Properties of Sinkhorn Divergence. We recap three crucial properties of a divergence metric.
The first is scale sensitive (S) (of order 3, 3 > 0), i.e., dy(cX,cY) < |c|[?d,(X,Y). The second
property is shift invariant (I), ie., d(A + X, A +Y) < d,(X,Y). The last one is unbiased
gradient (U). A key observation for the analysis is that the Sinkhorn divergence would degenerate
to a two-dimensional KL divergence, and therefore embraces a similar convergence behavior to KL
divergence. Concretely, according to the equivalent form of W, . (u, v) in Eq. E], it can be expressed
as the KL divergence between an optimal joint distribution and a Gibbs distribution associated with
the cost function:

WC#E(/%V) =KL (H*(,ua V)“C(H’ay))7 (25)
where II* is the optimal joint distribution. Thus, the total Sinkhorn divergence is expressed as

We.e(p,v) := 2KL (I (p, ) [ K (11, v)) — KL (11 (2, 1) [K (11, p)) — KL (IT* (v, ) | K (v, V))(~26

Due to the form of W, . (1, V), the convergence behavior is determined by W, .(u, V), which is
similar to the behavior of KL divergence. Thus, we will focus on the convergence analysis of
We.e(, ). According to the fact that KL divergence has unbiased gradient estimates (U) and shift
invariant (I), and Sinkkhorn divergence can be viewed as a two-dimensional KL divergence, both
properties of U and I can be extended to Sinkhorn divergence. However, we find the non scale
sensitive (S) property can not directly apply to Sinkhorn divergence due to the minimum nature of
We.(p,v) as the optimal joint distribution IT* (1, ) could be different from I1°(ap, av) where a is
the scale factor. We need a new rigorous proof of scale sensitive property as follows.

3.2 Scale Sensitive Property of Sinkhorn Divergence.

We show Sinkhorn divergence satisfies a variant of scale sensitive property when ¢ = —k,, that
corresponds to a non-constant scale factor A(a, «) that is not only a function of the vanilla scale
factor a and «v in k,, but also the two specified probability measures (U, V'). By definition, the pdf
of K(U,V) x e~ w(z)v(y). After a scaling transformation, the pdf of aU and aV" with respect
to # and y would be L 1(£) and 2v(¥). Thus K(aU, aV) o e~ Lu(2)Iv(¥). We denote IT*

and TI° as the optimal joint distribution of W, . (u, v) and W, . (au, av).

Wee(aU,aV) = /c(ac7 y)dIT (z, ) + eKL(IT°|ap @ av)

< [ e )it (a.y) + EKLAT fap 5 )

Ly Ly, ETEY)
—FRa o [ *” J dzd *(YJ 1 a a’a’ qrd
/(:ZZ y) agﬂ- (ava) €z y+€/a2ﬂ— (a7a) og %,U/(%)V<%) xay
. . T (z,y)
=la|® [ (x — y)*7" (x,y dwdy+5/7r z,y)log ———<dzdy
ol [ (@) @) () oz T

= /(w —y)*7"(z,y)dzdy + eKLAT" |p @ v) — (1 = |a|]¥) [ (x — y)* 7" (2, y)dzdy

W (U, V) — (1— a]) / (& — y)*dIT* (z, )

— AU7V(G,, OZ)Wc,s(Ua V)
(27)

where AV (a,0) = 1 — Uflala)v{}izg)‘jin*(m’y) € (0,1) fore € (0,400) and & < 1 due to the

fact that 0 < (1 — |a|®) [(z — y)*dII*(z,y) < [(z — y)*dII*(z,y) < W (U, V). AV (a,q)

14



Under review as a conference paper at ICLR 2023

is function less than 1 that depends on the two margin distributions and the scale factor a. The
result implies that we have a new variant of scale sensitive property of Sinkhorn divergence with a
non-constant factor A%V (a, o) < 1 when we choose ¢ = —k,, and |a| < 1.

3.3 A New Contraction Mapping Theorem.

We derive a new contraction mapping theorem based on the distribution distance d in order to prove
the convergence in 3.4.

Theorem 2. (Distribution Contraction Mapping Theorem with a Non-constant Factor) Consider a
distribution distance d and a function g : P — ‘P. The mapping d is a contraction: There exists a

Sunction ¢(X,Y) < 1 such that for ¥ distributions X and Y :
d(g(X),9(Y)) < q(X,Y)d(X,Y) (28)

Then there exists a unique distribution X* with g(X*) = X*.

Proof. We consider the convergence of the distribution sequence X*. We have the updating rule as
(X XF) = d(g(X), g(X*) < grp—rd(XF, XY, (29)

where we use g x—1 = q(X*, X*~1) for short. Hence, we have

A(XH xRy < g, 1d(XT, XO). (30)
Let dy = d(X*, X©). From the triangle inequality, we have

d(XFHXRY < d(XFFL XRY L (X XD
<TI0 qiiqdo+ .. + T "Yg, i 1dy
< Hleqi,ifl(l + qrr1k oo+ Hk:;iﬁ(h,z‘q)do

K3

ST qiia (14 Qryr g + oo+ Hfi]ijr}%}i—l +...)do

€2V

For the infinite series 1 + gg+1,% + ... + i@éﬂqi,i,l + ..., which we denote as u; for i-the term,

according to the ratio convergence judgment method of infinite series, limy_, ";“ < 1. Thus, the

infinite series is convergent. Due to the fact IT¥_;¢; ;1 — 0 as k — oo, we have d(X*+1, X*) — 0
as k — oo. Therefore, it must converge to a limit distribution X * that satisfies g(X*) = X*. O

3.4 Contraction of Distributional Bellman Operator under Sinkhorn Divergence.

According to the equation of WC@ it holds the same properties as W, ., i.e., shift invariant and scale
sensitive. Thus, we derive the convergence of distributional Bellman operator ™ under the supreme

EVel . 500
form of W, i.e., WC’E:

W (3721, K™ Zs)
= supWC’E(TTZl (s,a),T"Za(s,a))

=W, (R(s,a) +7Z1(s',d"), R(s,a) +vZ2(s',a"))
c=—keq

AZl(S’,a/),Zz(s’ﬂ/)(’% a)wc’g(zl(sl7 CLI), 22(8/7 a/)) (32)
< sup AL a2 (3 o) sup W o (Z4(5',d), Za(s, a))

o al s’,a’
< AZ1’22 (,y’ Oé) Supwfkwa(zl (3/’ a/)7 Zz(sl, a/))
s’,a’

=A% (Vs Q)Wioka,e(zlﬂ Z)

where the first inequality comes from the scale sensitive property proof of Sinkhorn divergence and
we let AZ1:%2(vy, q) = sup,, , AZ1(5"a):22(sa) () If AZ1:%2(, @) is only a constant function
in terms of v and «, we can directly arrive the conclusion that distributional Bellman operator is
AZ1:22(~y, o)-contractive based on existing Banach fixed point theorem. However, the fact is that
A%1:22(y ) also depends on Z; and Z, and thus we need a new contraction mapping theorem
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to guarantee the convergence of fixed distribution iteration. According to Theorem [2]in 3.3 that we

specifically figure out for the our contraction proof, we have WZC& can guarantee the convergence
via distributional Bellman iterations. In summary, we conclude that T” is a contractive operator
when we use the —k,, as the cost function and v < 1, while the contraction factor, which is short
for A(,a) < 1, is not only a function of « and ~, but also depends on distribution sequence
in the while iterations.

O

C PROOF OF PROPOSITION [1| AND COROLLARY

Proof. As we leverage II* to denote the optimal II by evaluating the Sinkhorn divergence via
minyer(y,) We,e (1, V5 k), the Sinkhorn divergence can be composed in the following form:

Wee(p,vi k)
= 2KL (IT* (1, v) K& (1, v)) — KL (IT* (g, ) [ (2, 1)) — KL (IT* (v, ) |[K g (v, v))

= 9(Exy log T (1)) + B x [e(X,V)]) — (Exx: g TF (1,)]) + ~Ex,y [e(X, V)

= By [log IT* (v, v)]) + éEw [e(Y,Y")])
(IT*(X, Y))?
(X, X (Y, Y")

(I (X, Y))? 1 ,
I (X, X)IT*(Y, Y’):| + EMMDﬂ:(My v)

=Ex x/ vy |:10g :| + é(EX,X’ [k(X, XI)] +Eyy [k(Y, Y/)] —2Ex x- [k(X, Y)])

=Ex x vy {log

(33)
where the cost function ¢ in the Gibbs distribution K is minus Gaussian kernel, i.e., c(z,y) =
—k(z,y) = e~ @9/ (20*) Till now, we have shown the result in Corollary

Next, we use Taylor expansion to prove the moment matching of MMD. Firstly, we have the follow-
ing equation:

MMD? (1, v) = Ex x+ [K(X, X')] + Eyy [k(Y,Y")] = 2Ex x' [k(X,Y)]
= Ex x [¢(X)T¢(X)] + Ey,yr [6(Y) "o(Y")] = 2Ex x- [$(X) T6(Y)] (34)
= Ell¢(X) - o(Y)|?
We expand the Gaussian kernel via Taylor expansion, i.e.,

k(z,y) = e (@9)7/(207)

z2 v2  zy

— e 2:2¢ 2:2€o2

w2 2 o 1 1y
e 262 ¢ 202 _ - (T \n_ T (g\n
e nz:% =" 75 (35)
2 1 oz 2 1 oy
= e 202 Ve 202 Zyn
nz:;) \/rﬁ(a) \/ﬁ(o)
= ¢(z) " 8(y)
Therefore, we have
s 1 2 2 2 2 2
2 _ —x /(20 ) n| _ -y /(20 ) n
MMDZ(x, v) Zo o2np) (Ewwu [e . } o [e y D
" 36
o i i ) (36)
=3 i (W) = 31,(0)
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M, (1) = By e~ /(27%)zn | and similarly for M, (v). The conclusion is the same as the

moment matching in (Nguyen et al., 2020). Finally, due to the equivalence of W. . (u,v) after
multiplying €, we have

R . L 2
WC,E(M? Vs k) T MMD*C(AL’ V) +eE |:H*(X, X/)H* (Y7 Y/)

(I (X, Y))? ]
= ; erlln! (M”(“) B M”(”))2 ek [H*(gg XNII+(Y,Y")

This result is also equivalent to Theorem [T} where II* would degenerate to y ® v as € — +o00. In
that case, the first regularization term would vanish, and thus the Sinkhorn divergence degrades to a
MMD loss, i.e., MMD? _(u, ).

O

D HUMAN-NORMALIZED SCORES

Our implemnetation is based on (Zhang| |2018)) and all the experimental settings, including parame-
ters are identical to the distributional RL baselines implemented by (Zhang, 2018). The main results
about mean and median human-normalized scores of all considered distributional RL algorithms are
reported in Table 2] Note that our implementaion is based on Pytorch, and thus the results in Table 2]
are not exactly same as results implemented based on Dopamine framework (Castro et al., |2018)).
However, Table [2] also suggests that our SinkhornDRL algorithm can achieve almost state-of-the-
art performance in terms of mean human-normalized scores. We argue that although it seems that
SinkhronDRL is on par with MMD across all games, our algorithm significant outperforms MMD-
DRL on a large amount of Atari games, as suggested in Figure[2] The detailed comparison based on
learning curves is also exhibited in Appendix [E]

E MORE EXPERIMENTAL RESULTS

We provide learning curves of DQN, QRDQN, C51, MMD and SinkhornDRL algorithms on all
55 Atari games in Figures @|[|[6][7|8][O It illustrates that SinkhornDRL dramatically surpasses the
other distributional RL algorithms on a large amount of environments, e.g., Venture, Atlantis, Tennis
and Spacelnvader, and presents competitive performance or is only slightly inferior as opposed to
the state-of-the-art baselines on other games. Note that the average improvement of SinkhornDRL
on Venture game is significant owing to one to two times convergence of SinkhornDRL algorithm
over 3 seeds, while the other baselines do not converge over the considered seeds. Although this
improvement may also suffer from the instability issue, its occasional success for our SinkhornDRL
algorithm also presents huge potential on some complicated environments. We leave the further
exploration on the advantage and potential of SinkhornDRL algorithm as the future work.

Mean | Median | > Human | >DQN
DQN 173 % | 49 % 17 0
C51 309% | 77 % 26 42
QR-DQN-1 430 % | 104 % 31 47
MMDQN 600 % | 94 % 27 43
SinkhornDRL | 570 % | 89 % 27 42

Table 2: Mean and median of best human-normalized scores across 55 Atari 2600 games. The
results for all considered algorithms are aaveraged over 3 seeds.
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Figure 4: Performance of SinkhornDRL compared with DQN, C51, QRDQN and MMD on Break-
out, Enduro, Pong, YarRevenge, Alien, BattleZone, Berzerk, Qbert and Spacelnvader.
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Figure 5: Performance of SinkhornDRL compared with DQN, C51, QRDQN and MMD on UpN-
Down, Asterix, Asteriods, BeamRider, Centipede, FishingDerby, Frostbite and Riverraid.
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Figure 6: Performance of SinkhornDRL compared with DQN, C51, QRDQN and MMD on TimePi-
lot, StarGuner, Seaquest, NameThisGame, Phoenix, Tennix, Tutankham, Venture and VideoPinball.
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Figure 7: Performance of SinkhornDRL compared with DQN, C51, QRDQN and MMD on Road-
Runner, Jamesbond, IceHockey, Hero, BankHeist, Atlantis, WizardOfWor, Amidar and Assault.
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Figure 8: Performance of SinkhornDRL compared with DQN, C51, QRDQN and MMD on Bowl-
ing, Boxing, DoubleDunk, Freeway, Gravitar, Kangaroo, Krull, KunFuMaster and MontezumaRe-
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22



Under review as a conference paper at ICLR 2023

MsPacman
4000  —— DQN 0 =
3500 85R1DQN 200 cs1
c
5300 vvp c QRDQON
b 3 400 | —— MMD
o 2500 Sinkhorn g — Sinkhorn
0] 600 1y f
©2000 o
o &
D 1500 B 800
>
<z 2
1000 ~1000
500 1200
0.0 02 04 06 08 0.0 0.2 04 0.6 0.8
Time Steps (1€7) Time Steps (1e7)
Robotank
~10000
., — DQN
50
= — ¢cs&1 15000
S QRDQN £
T — MmD Z .,
x5 Sinkhorn & 7 [ gy
) s
[ © -25000
[Tl o
> z \
< 10 30000
o 35000
0.0 0.2 04 0.6 08 0.0 02 04 0.6 0.8
Time Steps (1e7) Time Steps (1e7)
Zaxxon ChopperCommand
16000
—— DQN J—
14000 5000 DON
— C51 —— C51
< 12000 QRDQN c
£ e £ 4000 QRDQN
@ 10000 o ‘q‘, — MMD
['4 inkhorn .
© 8000 %3(,0“ Sinkhorn
o o
© 6000 )
2 © 2000
4000
< <
2000 1000
0
00 0.2 04 06 08 0.0 02 0.4 0.6 08
Time Steps (1€7) Time Steps (1e7)
DemonAttack
400000~ 2?1“
c QRDQN
—— MMD
:é 300000 Sinkhorn
o
o
®
8200000
©
[}
Z 100000

0.0 0.2 0.4 0.6 0.8 1.0

Time Steps (1€7)

PrivateEye
7000 —— DQN
6000 cs1
- QRDQN
5 5000 MMD
& 4000 - —— Sinkhorn
8, 3000
<,
o© 2000
>
< 1000
0
I
—1000
0.0 0.2 04 0.6 0.8
Time Steps (1€7)
Solaris
— DQN
5000 —— C51
QRDQN
g.umo — MMD
Ko —— Sinkhorn
o )
@ 3000
i<
g 2000
2000
>
<
1000
0
0.0 0.2 04 0.6 08
Time Steps (1€7)
Gopher
12000
10000
1S
3
H,‘ 8000
['4
8, 6000
o
2 4000
£

2000

0.8

04 0.6
Time Steps (1e7)

Figure 9: Performance of SinkhornDRL compared with DQN, C51, QRDQN and MMD on MsPac-
man, Pitfall, PrivateEye, Robotank, Skiing, Solaris, Zaxxon, ChopperCommand, Gopher and De-

monAttack.
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F SENSITIVITY ANALYSIS AND COMPUTATIONAL COST

F.1 MORE RESULTS IN SENSITIVITY ANALYSIS

From Figure[I0](a), we can observe that if we gradually decline ¢ to 0, SinkhornDRL’s performance
tends to QR-DQN. Note that an overly small ¢ will lead to a trivial almost 0 /C; ; in Sinkhorn
iteration in Algorithm . and will cause % numerical instability issue for a; and b; in Line 5 of
Algorithm [2| Due to this reason, the performance of SinkhornDRL with € = 0.1 or 0.075 declines
as the training proceeds, and eventually converges to the average return that QR-DQN achieves. In
addition, we also conducted experiments on Seaquest, the similar result is also observed in Figure[T2]
The performance of SinkhornDRL is robust when ¢ = 10,100,500 and a small ¢ = 1 tends to
worsen the performance.

Moreover, for breakout, if we increase ¢, the performance of SinkhornDRL tends to that of MMD-
DRL as suggested in Figure (b). It is also noted that an overly large  will let the KC; ; explode to
oo. This also leads to numerical instability issue in Sinkhorn iteration in Algorithm[2]

In summary, the trend of SinkhornDRL to close MMDDRL and QR-DQN if we increase or decrease
€, respectively, provides strong empirical evidence to demonstrate the theoretical relationships be-
tween Sinkhorn divergence and MMD / Wasserstein distance, although an overly large or small €
will lead to numerical instability issue.

Breakout
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§ . 0.2 0.4 0.6 0.8
L Time Steps (1€7)
(a) Small ¢ in SinkrhornDRL vs QRDQN (b) Large ¢ in SinkrhornDRL vs MMDDRL

Figure 10: (Left) Sensitivity analysis w.r.t. a small level of € SinkhornDRL to compare with QR-
DQN that approximates Wasserstein distance on Breakout. (Right) Sensitivity analysis w.r.t. a large
level of € SinkhornDRL algorithm to compare with MMDDRL on Breakout. All learning curves are
reported over 2 seeds.

F.2 COMPARISON WITH THE COMPUTATIONAL COST

We evaluate the computational time every 10,000 iterations across the whole training process of
all considered distributional RL algorithms and make a comparison in Figure [I3] It suggests that
SinkhornDRL indeed increases around 50% computation cost compared with QR-DQN and C51,
but only slightly increases the the cost in contrast to MMDDRL on both Breakout and Qbert games.
We argue that this additional computational burden can be tolerant in view of the significant outper-
formance of SinkhornDRL in a large amount of environments.

In addition, we also find that the number of Sinkhorn iterations L is negligible to the computation
cost, while an overly large samples [V, e.g., 500, will lead to a large computational burden as il-
lustrated in Figure This can be intuitively explained as the computation complexity of the cost
function ¢; ; is O(NN?) in SinkhornDRL, which is particularly heavy in computation if NV is large
enough.
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Figure 11: Sensitivity analysis w.r.t. & SinkhornDRL to compare with QR-DQN and MMD on
Breakout. All learning curves are reported over 3 seeds.
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Figure 12: Sensitivity analysis w.r.t. ¢ SinkhornDRL to compare with QR-DQN and MMD on
Seaquest. All learning curves are reported over 3 seeds.
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