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Abstract

We consider a distributed learning setting where strategic users are incentivized, by1

a cost-sensitive fusion center, to train a learning model based on local data. The2

users are not obliged to provide their true gradient updates and the fusion center3

is not capable of validating the authenticity of reported updates. Thus motivated,4

we formulate the interactions between the fusion center and the users as repeated5

games, manifesting an under-explored interplay between machine learning and6

game theory. We then develop an incentive mechanism for the fusion center based7

on a joint gradient estimation and user action classification scheme, and study its8

impact on the convergence performance of distributed learning. Further, we devise9

an adaptive zero-determinant (ZD) strategy, thereby generalizing the celebrated ZD10

strategy to the repeated games with time-varying stochastic errors. Theoretical and11

empirical analysis show that the fusion center can incentivize the strategic users to12

cooperate and report informative gradient updates, thus ensuring the convergence.13

1 Introduction14

Distributed machine learning is becoming increasingly important in large-scale problems with data-15

intensive applications [18, 22, 26, 39]. Notably, federated learning has emerged as an attractive16

distributed computing paradigm that aims to learn an accurate model without collecting data from the17

owners and storing it in the cloud: The training data is kept locally on the computing devices which18

participate in the model training and report gradient updates (or its variants) based on local data [19].19

In this work, we study a distributed learning scheme in which privacy-aware users train a global model20

with a fusion center. We consider the users to be rational, self-interested and risk-neutral. The users21

are not compelled to contribute their resources unconditionally, unless they are sufficiently rewarded,22

and the system may reach a noncooperative Nash equilibrium where the users do not participate in23

training. This departs from conventional distributed learning schemes where the agents directly follow24

the lead of the fusion center (FC)1 and send their gradients. Since the users are strategic, a paramount25

objective for the FC is to design an effective reward mechanism to incentivize self-interested users to26

provide informative gradient updates. The repeated game enriches the distributed learning framework27

with the idea of many agents interacting within a common uncertain environment, and this framework28

provides a new perspective to specify how agents can strategically choose the learning updates how29

the resulting changes impact the performance of the learning efforts.30

Challenges and Contributions. There are a number of challenges in distributed learning with31

strategic users. First, the users are not obliged to entirely dedicate their resources and they may not32

fulfill their roles in the training of the algorithm if it were not for their own interest. Secondly, the33

FC cannot directly validate data driven gradient updates due to their stochastic nature. The quality34

1We refer to the fusion center as “she" and a user as “he".
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Figure 1: The fusion center (FC) trains the learning model with strategic users who are not obliged
to report their gradients. (a) The objective of the FC is to incentivize users to cooperate by giving
rewards so as to learn the model. (b) If the user is cooperative, he reports a privacy-preserved version
of his gradient signal. Otherwise, the user is defective and sends an arbitrary uninformative signal.
(c) The FC and the user each choose to cooperate or defect with respective payoffs as shown.

of the updates can vary over time and across the users since each user can control his own dataset.35

The interactions among users and the FC are repeated, and each user is capable of devising intricate36

strategies based on the past interactions. From a game-theoretic perspective, the fusion center’s ability37

to reciprocate against non-cooperative user actions is significantly restricted since she cannot directly38

observe the user actions. Finally, the FC is not allowed to impose penalties on the users and positive39

rewards are the only options at her disposal to incentivize user participation. The work proposed here40

is, to the best of our knowledge, the first distributed learning framework to consider these challenges.41

In this study, we model the interactions (in terms of gradient reporting and reward) between the42

FC and the users as repeated games, which intertwine with the updates in distributed learning. We43

propose a reward mechanism for the fusion center, based on an adaptive zero-determinant strategy,44

thereby generalizing the celebrated ZD strategy to the repeated games with time-varying stochastic45

errors. To tackle the challenge that the FC cannot directly verify the received reported gradients,46

we devise a gradient estimation and user action classification. Our findings demonstrate that, by47

employing adaptive ZD strategies, the FC can incentivize the strategic users to cooperate and report48

informative gradient updates, thus ensuing the convergence of distributed learning.49

Detailed discussion on related work is relegated to Appendix A, due to space limitation.50

2 Distributed Learning with Strategic Users as Repeated Games51

We consider a distributed learning setting with K strategic users K = {1, . . . ,K} and a fusion center52

(FC), and the optimization problem is given as follows:53

min
θ∈Rn

F (θ) :=
1

K

K∑
k=1

EZk∼D
[
L(θ;Zk)

]
, (1)

where L(·) is the loss function. In each iteration, each user gets a mini-batch of s i.i.d. sam-54

ples from an unknown distribution D, and computes the stochastic gradient signal as Xk,t :=55
1
s

∑s
i=1∇θL

(
θt; z

i
k,t

)
, where zik,t is the ith sampled data of user k at time t.56

Stage Game Formulation: Actions and Payoffs. The action and the reported signal of user k in57

iteration t are denoted with Bk,t ∈ {c, d} and Yk,t, respectively. As depicted in Fig. 1, a user is58

cooperative (Bk,t=c) if he is sending the privacy-preserved version of his gradient Xk,t. Otherwise,59

the user is defective and sends a noise signal Υk,t ∼ N (0,Ξt) independent of Xk,t:60

Yk,t =

{
Xk,t +Nk,t, if Bk,t = c (cooperative);
Υk,t, if Bk,t = d (defective).

(2)

Remark 1. Note thatNk,t is independent ofXk,t andNk,t ∼ N (~0, ν2
t I). If ‖∇θL(θ; z)‖2 ≤ ` for all61

θ and z, then this privacy-preservation mechanism enjoys εt-differential privacy, with εt = `2
/
s2ν2

t62

for mini-batch size s. The details are provided in Appendix.63
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The payoff structure of a single interplay between the fusion center and a user is depicted in Fig 1b.64

In iteration t, when a user cooperates, he provides an information gain R to the FC at his privacy65

cost VUR with 0<VU≤1. When a user defects, he does not provide any information gain and does66

not incur any privacy cost. The FC may distribute rewards at the end of each iteration to incentivize67

the users. We denote the action of the FC toward user k as Ak,t ∈{C,D}. The FC is cooperative68

(Ak,t=C) if she makes a payment r to the user at her cost rVFC with 0<VFC≤1. The FC is defective69

(Ak,t=D), if she does not make any payment to the user. The factor VFC captures the difference in the70

valuation of the reward between the FC and the user; for instance, the reward can be a coupon which71

may be redeemed in the future. Denote the FC’s payoff vector by SFC =[R−rVFC,−rVFC, R, 0]72

and that of the users by SU =[r−VUR, r,−VUR, 0]. In this paper, we only analyze the case where73

R>rVFC and r > VUR. Otherwise, the FC or users do not have any incentive to cooperate.74

The FC cannot observe the actions of the users and her realized payoffs. We assume that users do75

not communicate or collude with each other. They cannot observe the actions of other users and the76

actions of the FC toward other users. Next, we will discuss how to devise effective strategies for the77

FC to incentivize cooperative user action for the repeated game in a cost-effective manner.78

Repeated Games between Users and Fusion Center. A salient feature of 2 × 2 repeated games79

is that players with longer memories of the history of the game have no advantage over those with80

shorter ones when each stage game is identically repeated infinite times [33]. Thus, without loss of81

generality, we assume the user strategies only depend on the outcomes of the last round. Let q1, q2, q382

and q4 denote the probabilities of cooperation for the user conditioned on the joint action pair of83

the previous iteration, that is (Ak,t−1, Bk,t−1), in the order of (C, c), (C, d), (D, c) and (D, d). The84

user’s strategy vector is defined as q = [q1, q2, q3, q4].85

Analogous to the user strategies, let p1, p2, p3 and p4 denote the probabilities of cooperation for86

the FC conditioned on (Ak,t−1, Bk,t), in the order of (C, c), (C, d), (D, c) and (D, d). The fusion87

center’s strategy vector is defined as p = [p1, p2, p3, p4]. The joint action pair of the user and the88

FC is considered as the state of the game in iteration t: (Ak,t, Bk,t). The strategy vectors p and q89

imply a Markov state transition matrix as follows:90

Ω =

q1p1 (1− q1)p2 q1(1− p1) (1− q1)(1− p2)
q2p1 (1− q2)p2 q2(1− p1) (1− q2)(1− p2)
q3p3 (1− q3)p4 q3(1− p3) (1− q3)(1− p4)
q4p3 (1− q4)p4 q4(1− p3) (1− q4)(1− p4)

 . (3)

Let Λ∗ be the stationary vector of the transition matrix Ω, i.e., Λ∗ = Λ∗Ω. We can find the expected91

payoffs of the FC and the user in the stationary state as s∗FC = Λ∗S>FC and s∗U = Λ∗S>U . The FC sets92

her strategy p satisfying, for some real values ϕ0, ϕ1 and ϕ2, the equation93

[p1 − 1, p2 − 1, p3, p4] = ϕ0SFC + ϕ1SU + ϕ21. (4)

This class of strategies are called zero-determinant (ZD) strategies, which enforce a linear relation94

between the expected payoffs, given by ϕ0s
∗
FC+ϕ1s

∗
U+ϕ2 =0, regardless of the user strategy [33].95

Remark 2. The ZD strategy is a powerful tool to incentivize the users cooperation for the FC96

because she can unilaterally set s∗U or establish an extortionate linear relation between s∗U and s∗FC.97

Against such an FC strategy, the user’s best response which maximizes his payoff is full cooperation,98

q∗ = [1 1 1 1]. The details are provided in Appendix C.99

Against the FC who is equipped with the ZD strategy, the user can increase his expected payoff only100

by cooperating more often, and consequently his best response is full cooperation. Assuming that101

there are sufficiently many participating users, the FC has the absolute leverage against any single102

user who tries to negotiate with her. Nevertheless, the FC cannot directly employ the ZD strategy103

since she cannot observe the true actions of the users. In the next section, we will study the use of ZD104

strategy can be extended in the scope of distributed learning.105

3 Distributed Stochastic Gradient Descent with Strategic Users106

For the ease of exposition, in this paper we focus on an interesting variant of the classical stochastic107

gradient descent algorithm using the gradient signals reported by strategic users (SGD-SU). In each108

iteration, the FC collects the reported gradients of the users and update the model as follows:109

θt = θt−1 − ηt · m̂t(Yt), (5)
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Algorithm 1: Stochastic Gradient Descent with Strategic Users (SGD-SU)

1 for t = 1, 2, . . . , T − 1 do
2 Fusion Center: broadcast the current iterate θt−1 to all the users
3 forall k ∈ {1, 2, . . . ,K} do

4 User k: compute the gradient Xk,t and Yk,t ←
{
Xk,t +Nk,t cooperative action,
Υk,t defective action,

5 Fusion Center: form the gradient estimate m̂t(Yt)←
1

K(Λ1Ωt−1)q>

∑K
k=1 Yk,t

6 update model parameter θt ← θt−1 − ηtm̂t(Yt)

7 classify the users B̂k,t (m̂t, Yk,t)←

{
ĉ (cooperative) if Y >k,tm̂t>‖ 1

2m̂t‖22
d̂ (defective) else

(7)

8 compute the detection and false alarm probabilities using (8) and (11)
9 compute the adaptive strategies (9) and distribute the rewards accordingly

where Yt =[Y1,t . . . YK,t], ηt is the step size and m̂t is the gradient estimator. The FC cannot directly110

observe user actions and verify the reported gradients. This gives rise to two coupled challenges:111

• The gradient estimator m̂t should be resilient against the uninformative reports of defective users.112

• Although the ZD strategies are powerful tools to incentivize user cooperation, the FC cannot113

directly employ a ZD strategy because she cannot observe the users’ actions.114

To tackle these difficulties, we will first introduce a gradient estimation and user classification scheme115

and discuss the impact of user action classification errors on the dynamics of repeated games. As116

outlined in Algorithm 1. we will develop adaptive FC strategies which generalize the classical ZD117

strategies to the repeated games with time-varying stochastic errors.118

3.1 Joint Gradient Estimation and User Action Classification119

The stochastic gradients can be decomposed as Xk,t = mt+Wk,t where mt := ∇θF (θt) is the120

population gradient and Wk,t is the zero-mean noise term [31]. The unknown parameter mt is the121

mean of the reported gradient Yk,t when the user is cooperative (Bk,t = c). The defective users122

send zero-mean random noise as their reported gradients. The FC needs to classify the reported123

gradients and obtain an estimate of mt for the SGD-SU update in (5). These two problems are124

coupled with each other, and the joint scheme is, therefore, comprised of a gradient estimator m̂t,125

and a classification rule B̂k,t. To tackle this difficult problem, we first investigate gradient estimation.126

Let Λ1 be the initial state distribution of the games between the users and the FC. A modified127

empirical mean based gradient estimator can be employed as follows:128

m̂t(Yt) :=
1

K(Λ1Ωt−1)q>

∑K

k=1
Yk,t. (6)

It is easy to verify that m̂t(·) is an unbiased estimator if the FC is able to employ her strategies p129

without any errors and the state distribution of the repeated games are governed by the state transition130

matrix Ω as in (3) without any perturbations.131

Using the gradient estimator m̂t(·), the FC can form the user action classification rule as132

B̂k,t (m̂t(Yt), Yk,t) =

{
ĉ if Y >k,tm̂t >

1

2
‖m̂t‖2,

d̂ else;
(7)

where d̂ (or ĉ) is the defective (or cooperative) label. The noise in the stochastic gradients, Wk,t,133

can be approximated as a zero mean Gaussian r.v. [17, 23, 27, 38]. Recall from (2) that cooperative134

users send the privacy-preserved versions of their gradient. This implies Yk,t∼N (mt,Σt), given135

Bk,t = c, where Σt := cov[Wk,t]+ν2
t I. Thus, the detection and false alarm probabilities of the136

classifier, denoted by Φt and Ψt respectively, can be found as137

Φt = 1−Q

(
m>t m̂t −

1
2
‖m̂t‖2√

m̂>t Σtm̂t

)
and Ψt = Q

(
1
2
‖m̂t‖2√
m̂>t Ξtm̂t

)
. (8)
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Remark 3. The linear classifier (7) is an effective tool under the homoscedasticity assumption. If138

that is violated, the FC can employ different classifiers. The details are provided in Appendix for the139

Classifier Design.140

In the next subsection, we discuss how the FC can devise her strategies building on the joint gradient141

estimation and user action classification scheme.142

3.2 Adaptive Strategies for Fusion Center143

Although the ZD strategies, p, provide the FC an efficient and powerful mechanism to encourage144

the user’s cooperation; the FC cannot directly use p since they are conditioned on the user’s ac-145

tion, Bk,t, which is not observable to her. Alternatively, the FC can use the classification results146

after carefully adapting her strategies to mitigate the adverse effects of inevitable classification147

errors. Let πt,1, πt,2, πt,3 and πt,4 denote the probabilities of cooperation for the FC conditioned148

on (Ak,t−1, B̂k,t), in the order of (C, ĉ), (C, d̂), (D, ĉ) and (D, d̂). These are referred to as adaptive149

strategies and the FC sets these probabilities satisfying the following system of equations:150

p1 = πt,1Φt + πt,2(1− Φt), p2 = πt,1Ψt + πt,2(1−Ψt),

p3 = πt,3Φt + πt,4(1− Φt), p4 = πt,3Ψt + πt,4(1−Ψt).

Suppose
Φt

Ψt
≥ p1

p2
and

Φt

Ψt
≥ p3

p4
. Then the unique solution to the system above is given by151

πt,1 =
p1(1−Ψt)− p2(1− Φt)

Φt −Ψt
, πt,2 =

p2Φt − p1Ψt

Φt −Ψt
, (9a)

πt,3 =
p3(1−Ψt)− p4(1− Φt)

Φt −Ψt
, πt,4 =

p4Φt − p3Ψt

Φt −Ψt
. (9b)

Remark 4. If the FC directly employed the ZD strategies without any adaptation, i.e., she cooperates152

with probability pi conditioned on classification output; the repeated games may not converge to153

the stationary state Λ∗ and a linear relation between the expected payoffs (4) may not be enforced154

because the classification errors yield an additive disturbance on the state transition matrix as follows155

156

Ω− (p1 − p2)
{
q>[1−Φt 0 1−Φt 0] + (1− q)>[0 Ψt 0 Ψt]

}
. (10)

Adaptive strategies (9) cancel out this adverse disturbance on the dynamics of the repeated games.157

In the absence of classification errors (Φt=1 and Ψt=0), the adaptive strategies reduce to the ZD158

strategies, i.e., πt = p. Classification errors force the FC to be more retaliatory than dictated by the159

ZD strategy p, i.e., πt,1>p1, πt,3>p3, πt,2<p2 and πt,4<p4. In general, detection and false alarm160

probabilities, Φt and Ψt, are time-varying; thus the adaptive strategies also change over time.161

3.3 The Impact of Estimation Errors on Repeated Game Dynamics162

The proposed adaptive strategies (9) requires the knowledge of detection probability, Φt. However,163

the FC cannot exactly compute Φt using (8) since she does not have the knowledge of mt. Instead,164

she can form her estimate Φ̂t using m̂t:165

Φ̂t = 1−Q

(
1
2
‖m̂t‖2√
m̂>t Σtm̂t

)
(11)

Due to the inevitable gradient estimation errors, in general, we have Φ̂t 6= Φt. As a result, the FC166

cannot exactly employ the adaptive FC strategies dictated by Eq. 9. With several steps of variable167

substitutions, this yields an additive perturbation on the state transition matrix as follows:168

Ω̃t = Ω + VtΩ
⊥ with Vt :=

Φ̂t − Φt

Φ̂t −Ψt
and Ω⊥ := (p1 − p2)q>[−1 0 1 0]. (12)

Let Λ̃t be the probability distribution over the state space of the games {Cc,Cd,Dc,Dd} at the start169

of iteration t. According to (12), the state distributions follow the transition rule such that170

Λ̃t+1 = Λ̃tΩ̃t = Λ̃t
(
Ω + VtΩ

⊥) .
5



Note that Λt can be considered as the state distribution of the repeated games in the absence of171

perturbations on the state transition matrix. For the FC, Λt is the designed state distribution in which172

the ZD strategy dominates against any user strategy.173

Next, we study the time-varying perturbation terms. Using (8) and (11), Vt can be found as2:174

Vt=
Φ̂t−Φt

Φ̂t−Ψt

=

Q
(
m̂>t

(
mt− 1

2
m̂t

)
√
m̂>t Σtm̂t

)
−Q

(
1
2
‖m̂t‖2√
m̂>t Σtm̂t

)

1−Q
(

1
2
‖m̂t‖2√
m̂>t Σtm̂t

)
−Q

(
1
2
‖m̂t‖2√
m̂>t Ξtm̂t

)=

Q
(

m̂t(mt−̂mt)
‖mt‖

+ 1
2
‖m̂t‖√

Ray(Σt, m̂t)

)
−Q

(
1
2
‖m̂t‖√

Ray(Σt, m̂t)

)
1−Q

(
1
2
‖m̂t‖√

Ray(Σt, m̂t)

)
−Q

(
1
2
‖m̂t‖√

Ray(Ξt, m̂t)

) .

In the presence of these perturbations, to establish stability guarantees on the dynamics of the repeated175

games, we impose the following assumption on the norm of the gradient estimator:176

Assumption 1. Assume that ‖m̂t‖≥max
{

2
√

Ray(m̂t,Σt), 2
√

Ray(m̂t,Ξt),
√
|m̂>t (mt−m̂t)|

}
.177

Note that these conditions are primarily associated to the accuracy of the linear classifier (7) which178

operates effectively when the mean vectors of the classes are sufficiently separated. The following179

result indicates that, due to the perturbations on the state transition matrix, the real state distribution180

Λ̃t is a noisy version of Λt.181

Lemma 1. Let Λ1 denote the initial state distributions of the games between the FC and the users.182

Under Assumption 1, we have that183

Λ̃t = Λt + Λ1

∑t−1

i=1
ViΩ

i−1Ω⊥Ωt−1−i. (13)

This noise on the state distributions will manifest as a novel bias term in the gradient estimation. In184

the next subsection, we will provide the convergence analysis of SGD-SU which will mainly focus185

on the characterization of this bias term.186

3.4 Convergence Results187

In this section, we provide the convergence guarantee for SGD-SU (5). Let Ft denote the σ-algebra,188

generated by {θ1,Yi, i < t}. In particular, Ft should be interpreted as the history of SGD-SU up to189

iteration t, just before Yt is generated. Thus, conditioning on Ft can be thought of as conditioning190

on {θ1, Λ̃1,Y1, . . . , θt−1, Λ̃t−1,Yt−1, θt, Λ̃t}. For convenience, denote Et[·] := Et[·|Ft]. Observe191

that, we can decompose the gradient estimator m̂t as follows:192

m̂t(·) = mt(1 + ζt) + Et, (14)

where ζt is the estimation bias term due to the perturbations on the state transition matrix, given by193

ζt =
1

mt
(Et[m̂t]−mt) =

∑K
k=1 P(Bk,t = c|Ft)

K(Λtq>)
− 1

and Et is the estimation noise term, given by Et=m̂t−Et[m̂t]. Conditioned on Ft, the probability of194

a user taking the cooperative action, in iteration t, is given by P(Bk,t=c|Ft)=Λ̃tq
>. The bias term,195

ζt, can be found as follows:196

ζt =
Λ̃tq>

Λtq>
− 1. (15)

From Lemma 1 and (15), it is clear that the perturbations on the state transition matrix (12), directly197

translates into a bias in the gradient estimation rule.198

To establish convergence guarantees for the SGD-SU in (5), Λtq
> and Λ̃tq

> must meet the following199

criteria during the course of the algorithm:200

Assumption 2. We assume that Λtq
> > 1

2 and Λ̃tq
> > 0, for all t ∈ {1, 2, . . . , T}.201

2The Rayleigh’s quotient for a symmetric matrix M and nonzero vector x is defined as Ray(M,x) =
x>Mx

x>x
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The first condition Λtq
> ≥ 0.5 is very mild in the sense that it merely requires that the probability202

of user cooperation dictated by the memory-1 strategies p and q (1 × 4 vectors), in the absence203

of perturbations, is larger than 0.5. The second condition Λ̃tq
> > 0 states that, in the presence of204

perturbations, the probability of user cooperation is always positive3.205

By Assumption 2, there exists a positive constant HT such that206

0 < |ζt| < HT < 1, ∀t ∈ {1, . . . , T}. (16)

Further, we have the following lemma characterizing the properties of estimation noise.207

Lemma 2. Conditioned on Ft, the estimation noise in iteration t, denoted Et, is a zero-mean random208

vector with the mean square error given by209

Et[‖Et‖2] =
1

K
(
Λtq>

) ((ζt + 1)tr (Σt − Ξt) +
1

Λtq>
tr (Ξt)

)
. (17)

By (16) and (17), we have that210

Et
[
‖Et‖2

]
≤ ET

K
with ET :=

1

Λtq>

[(
HT + 1

)
tr(Σt − Ξt) +

1

Λtq>
tr(Ξt)

]
. (18)

We impose the following assumption on the objective function, which is standard for performance211

analysis of stochastic gradient-based methods [3, 29].212

Assumption 3. The objective function F and the SGD-SU satisfy the following:213

(i) F is L−smooth, that is, F is differentiable and its gradient is L−Lipschitz:214

‖∇F (θ)−∇F (θ′)‖ ≤ L‖θ − θ‖, ∀θ, θ′ ∈ Rn.

(ii) The sequence of iterates {θt} is contained in an open set over which F is bounded below by215

a scalar Finf .216

Our next result describes the behavior of the sequence of gradients of F when fixed step sizes are217

employed.218

Theorem 1. Under Assumptions 2 and 3, suppose that the SGD-SU (5) is run for T iterations with a219

fixed stepsize β̄ satisfying220

0 < η̄ ≤ 1

L(1 +HT )
. (19)

Then, the SGD algorithm with strategic users satisfies that221

E
[

1

T

∑T

t=1
‖∇F (θt)‖2

]
≤ LET

K(1−HT )
+

2(F (θ1)− Finf)

β̄T (1−HT )
.

Theorem 1 illustrates the impact of the perturbations on the state transition matrix (12) on the222

convergence rate of SGD-SU. When HT is close to 0, SGD-SU performs similar to the basic223

minibatch SGD. On the other hand, if HT is close to 1, the optimality gap may be large. Our next224

result will characterize the gradient estimation bias term ζt. First, we have the following assumption225

on the state transition matrix Ω.226

Assumption 4. The state transition matrix Ω can be diagonalized as Ω = ΓUΓ−1 with U has the227

eigenvalues of Ω in descending order of magnitude: 1≥|u2| ≥ |u3| ≥ |u4| ≥ 0.228

Denote the element of Γ−1 in the ith row and jth column as Γ−1
ij . Denote the four rows of Γ−1 by229

~γ1, . . . , ~γ4. Next, we define δ as230

δ :=

(
max

j∈{2,3,4}

∣∣Γ3j − Γ1j

∣∣)( max
j∈{2,3,4}

∣∣~γjq>∣∣2).
Further, the first order Taylor approximation of the scalar variable Vt can be found as follows:231

Vt=
m>t (m̂t−mt)

‖mt‖2
ht(mt) with ht(mt) :=

‖mt‖√
2πRay(Σt,mt)

exp

(
−

1

8

‖mt‖2

Ray(Σt,mt)

)

1−Q
(

‖mt‖
2
√

Ray(Σt,mt)

)
−Q

(
‖mt‖

2
√

Ray(Ξt,mt)

) . (20)

3A sufficient condition for this requirement is that user strategies are forgiving in nature, i.e., q1, q2, q3, q4 > 0.
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Define hmax
t := maxi∈{1,...,t} hi(mi). Our next result indicates that, the estimation bias term ζt can232

be found in terms of the past gradient estimation errors.233

Theorem 2. Under Assumptions 1, 2 and 4, the gradient estimation bias term ζt, can be found as234

ζt = (p1 − p2)
∑t−1

i=1

Λiq
>

Λtq>
m>i Ei
‖mi‖2

hi(mi)∆i,t (21a)

with235

|∆i,t| ≤ δ|u2|t−1−i + δ2hmax
t−1 |u2|t−2−i(t− i− 1). (21b)

Further, for some 0 < η < 1 we have236

P (|ζt| < η|α1, . . . , αt−1) > 1−
∑t−1
i=1 α

2
i

Kη2
(22a)

with237

α2
i =

2

∣∣∣∣(ν2
i − ξ2

i ) +
m>i Σimi

‖mi‖2

∣∣∣∣+
ξ2i

Λiq>

‖mi‖2
(
Λiq>

) [
Λiq

>

Λtq>

]2

h2
i∆

2
i,t. (22b)

Note that Eq. (21) indicates that, the estimation bias term ζt can be expanded in terms of past gradient238

estimation errors. We prove that the absolute values of the coefficients, |∆i,t|’s, are bounded as239

|∆i,t| ≤ δ|u2|t−1−i + δ2hmax
t−1 |u2|t−2−i(t− i− 1),

where u2 is the eigenvalue of Ω with the second highest absolute value. Since Ω is a row stochastic240

matrix, |u2| ≤ 1. When |u2| is strictly less than 1, ∆i,t’s decay fast as t− i grows. This can also be241

interpreted as the impact of past gradient estimation errors fade away quickly. Using this result, in242

Eq.(22), we derive a high probability upper bound on the estimation bias term ζt.243

4 Experiments244

In this section, we evaluate the performance of SGD-SU (5) using real-life datasets. All the results in245

the preceding section assert convergence for the SG method (5) under the assumption that the FC can246

access Σt and Ξt. In a real-life machine learning setting with strategic users, this information may247

not be available to the FC. For convenience, define K̂ct and K̂dt as the sets of users who are classified248

as cooperative (ĉ) and defective (d̂ ) at iteration t. Based on the user action classification, the FC can249

form her estimates for the covariance matrices under the cooperative and defective actions as follows:250

Σ̂t =
1

|K̂c
t |

∑
k∈K̂c

t

(
Yk,t−Ȳ c

t

) (
Yk,t−Ȳ c

t

)> and Ξ̂t =
1

|K̂d
t |

∑
k∈K̂d

t

(
Yk,t − Ȳ d

t

)(
Yk,t − Ȳ d

t

)>
, (23)

where Ȳ c
t = 1

|K̂c
t |

∑
k∈K̂c

t
Yk,t and Ȳ d

t = 1
|K̂d

t |

∑
k∈K̂c

t
Yk,t.251

In our first set of experiments, we consider a binary logistic classification problem and use the KDD-252

Cup 04 dataset [6]. The goal of binary logistic classification experiments is to learn a classification253

rule that differentiates between two types of particles generated in high energy collider experiments254

based on 78 attributes [6]. In our second set of experiments, we consider a neural network trained on255

the MNIST dataset. The number of users is chosen as K = 50 and mini-batch size is s = 10. In the256

experiments, we have tested the performance of two different ZD strategies, namely equalizer and257

extortion[33].258

For the logistic classification problem, Fig. 4a and 4b, depict the optimality gap under four different259

user strategies: q = [0.9 0.15 0.9 0.15] (stubborn), q = [0.9 0.9 0.15 0.15] (tit-for-tat, ), q =260

[0.9 0.15 0.15 0.9] (win-stay-lose-switch) and q = [0.9 0.9 0.9 0.9] (full cooperation). For the full261

cooperation, coin toss, tit-for-tat and stubborn user strategies, SGSU converges quickly. For Pavlov262

user strategies, SGSU can eventually approach, albeit more slowly than other cases. Fig 4c and 4d263

illustrate the probability of user cooperation, Λ̃tq
>, across different user strategies. The experimental264

results validate Lemma 1 and the empirical user cooperation probabilities match the theoretical except265

when the users are Pavlov. Unsurprisingly, when the users follow full cooperation (or coin toss)266

strategy, they cooperate with probability 0.9 (or 0.5) regardless of the actual states of the repeated267
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Figure 2: Stochastic Descent Algorithm with Strategic Users

games. For the cases with stubborn and tit-for-tat users, the games quickly converge to the steady268

state distribution. Interestingly, for the cases with Pavlov users, the probability of user cooperation269

decreases over time. This is associated to the performance of the linear classifier. For the image270

classification problem, Fig 4e-h depict the training loss and testing accuracy across iterations for271

different FC and user strategies. In all experiments, SGSU converges in the presence of strategic272

users. Further details regarding the Experimental results are relegated to Appendix.273

5 Future Directions274

In this work, we study a distributed learning framework where strategic users train a learning model275

with a fusion center. The main objective of the FC is to encourage users to be cooperative by276

distributing rewards. Based on this, we devise a reward mechanism for the FC based on the ZD-277

strategies. Further, we examine the performance of SGD algorithm in the presence of strategic users.278

Our findings reveal that the algorithm has provable convergence and our empirical results verify our279

theoretical analysis.280

We are also working on the development of robust estimation tools in distributed learning with281

strategic users. The geometric median is a reliable estimation technique when the collected data282

contain outliers of large magnitude [10, 14, 25, 28]:283

Med(Yt) := arg min
y∈Rn

∑K

k=1
‖y − Yk,t‖2. (24)

The FC can use Med as a robust gradient estimator, especially when the variance of the uninformative284

signals, ξ2
t , reported by the defective users, is very high. The geometric median (24) can be computed285

by the Weiszfeld’s algorithm [36, 37], which is a special case of iteratively reweighted least squares.286

In contrast, with the knowledge of q, the modified sample mean estimator (6) allows the FC to trade287

robustness for overall tractability of the algorithm with reduced computational complexity.288

The linear classifier is vulnerable to vanishing gradients as the stochastic gradient descent algorithm289

with strategic users (SGD-SU) converges to θ∗. This can be addressed by modifying the classifier290

to incorporate the information contained in the norm of the reported gradients. Furthermore, we291

discuss how to extend the convergence guarantee for SGSU to allow heterogeneous user strategies.292

The details are presented in Appendix.293
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A Related Work426

A.1 Game-Theoretical Approaches in Machine Learning427

There are several papers that study incentives in the context of statistical estimation and inference428

from strategic data sources [4, 5, 7, 8, 11, 12, 20, 24]. These works consider single-stage games and429

their fundamental goals differ from ours. Since we consider a federated learning setting where the430

FC only collects stochastic gradients rather than raw data or estimated models. Further, the FC and431

the users interact repeatedly and it intertwines with the stochastic gradient descent updates. Thus,432

it is crucial for us to evaluate the impact of the repeated games on the convergence performance of433

distributed learning with strategic users.434

In [34], a federated learning setting with independent and self-interested participants is considered.435

One key difference is that, their work focuses on the economics of a federated learning system at436

a single iteration rather than the impact of untruthful reporting on the overall performance of the437

learning scheme throughout the entire training process. We formulate the interactions between the438

FC and the users as repeated games, and introduce zero-determinant strategies for the FC. This is439

especially significant to analyze the impact of defective user actions on the overall convergence440

performance of the system. In [30], a multi-player game is proposed to study the reactions of strategic441

participants, in various federated learning ecosystems, for various incentive mechanisms. However,442

the scope of this study is limited to the development of an interactive user interface to collect data for443

future experimental studies.444

A.2 Repeated Games445

In a 2x2 repeated game, it is possible for a player to unilaterally impose a linear relationship between446

their and the opponent’s payoff employing “zero-determinant” (ZD) strategies [33]. In Press and447

Dyson’s work, both players can observe the action of their opponent in a perfect environment without448

any noise. In [15], the ZD strategies in noisy games is examined under the assumption that the players449

know the time-invariant error distribution. In our paper, however, the FC cannot directly receive any450

(noisy or noiseless) observation of the user action. In order to address this key difficulty, using the451

collected reported gradients of the users, she forms a user action classifier and assigns cooperative or452

defective labels to the users. Due to the nature of the data driven gradient updates, the user action453

classification incurs time-varying stochastic errors, which adds another non-trivial complexity.454

A.3 Byzantine-Resilient Machine Learning455

In the presence of malicious devices, the robustness issues in distributed learning has received much456

attention. In these studies, it is assumed that good devices dominate the entire set of devices and it is457

proposed that fault-tolerant algorithms can trim the outliers from the candidates [1, 2, 9, 35]. The458

basic goal of these studies differs from ours, since we consider a game-theoretic setting in which the459

users are utility-driven who have the ability to formulate strategies to choose their actions, cooperative460

or defective, which can depend on the outcome of previous interactions with the FC.461

B Remark 1 on Differential Privacy462

When a user is cooperative, he sends a privacy-protected version of his stochastic gradient Xk,t with463

noise injection to preserve differential privacy. The privacy parameter ε quantifies privacy loss; and464

the lower ε the stronger privacy protection.465

Definition 1. [13] A randomized function A is ε-differentially private if for all data sets Z and Z′466

that differ in the value of a single sample, and all S ⊆ Range(A),467

P (A(Z) ∈ S) ≤ eεP (A(Z ′) ∈ S) ,

where the probability is over the coin flips of A.468

Formally, when a user is cooperative, he forms his report through an oracle G. Given the current iterate469

θt, the user draws s independent samples Zk,t := {z1
k,t, . . . , z

s
k,t} from the unknown underlying data470
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distribution D, and outputs a perturbed version of local stochastic gradient:471

G(θt) = Nk,t +
1

s

s∑
i=1

∇θL
(
θ; zik,t

)∣∣∣
θ=θt

,

where Nk,t ∼ N (~0, ν2
t I). For any t, and any Zk,t, Z′k,t that differ in the value of a single sample, it472

follows that473

f (G(θt) = y|Zt)
f (G(θt) = y|Z′t)

=
f
(
Nk,t = y − 1

s

∑
z∈Zk,t

∇L(θ; z)
)

f
(
Nk,t = y − 1

s

∑
z∈Z′k,t

∇L(θt; z)
)

=

exp

{
− 1

2ν2
t

∥∥∥y − 1
s

∑
z∈Zk,t

∇L(θ; z)
∥∥∥2

2

}
exp

{
− 1

2ν2
t

∥∥∥y − 1
s

∑
z∈Zk,t

∇L(θ; z)
∥∥∥2

2

}
≤ exp

{
1

2ν2
t

∥∥∥∥1

s
[∇L(θt; z)−∇L(θt; z

′)]

∥∥∥∥2

2

}
≤ exp

{
`2

ν2
t s

2

}
.

C Remark 2 on Zero-Determinant Strategies474

If the FC sets her strategy p satisfying, for some real values ϕ0, ϕ1 and ϕ2, the equation475

[p1−1, p2−1, p3 p4] = ϕ0SFC + ϕ1SU + ϕ2
~1,

then a linear relation between the expected payoffs, given by476

ϕ0s
∗
FC + ϕ1s

∗
U + ϕ2 = 0 (25)

is enforced, regardless of q [33]. This is called the zero-determinant (ZD) strategy. In this study, we477

focus on two important specializations of ZD strategies: equalizers and extortioners. An important478

subclass of ZD strategies, extortionate strategies, enable the ZD player to guarantee that an increase479

in the player’s own payoff exceeds the increase in the opponent’s payoff. Equalizer strategies, another480

subset of ZD strategies, allow the ZD player to set the opponent player’s expected long term payoff.481

Equalizers are those ZD strategies for which ϕ0 =0 6= ϕ1 and p̃ = ϕ1SU + ϕ2
~1. With the adoption482

of equalizers, in the stationary state, the FC can assign the expected payoff of the user to a fixed value483

between 0 (mutual defection) and r − VUR (mutual cooperation):484

s∗U = −ϕ2

ϕ1
= (r − VUR)

p4

1− p1 + p4
.

Extortioners are those ZD strategies for which ϕ2 =0, with χ := −ϕ1/ϕ0 >
R− rVFC

r −RVU
. Then, the485

FC can enforce486

s∗FC = χs∗U.

In this case, s∗FC and s∗U are maximized when q = [1 1 1 1], ergo full cooperation is the best response487

strategy for the user. If the user does not accept full cooperation, by employing equalizer strategies,488

the FC may claim a unilateral control on the user’s expected payoff.489

Next, we show that p1 > p2 and p3 > p4 with p1 − p2 = p3 − p4 when the FC adopts equalizer or490

extortion strategies. This property is useful in Section 3.3 when we discuss the impact of gradient491

estimation errors on the dynamics of the repeated games. First, consider the case where the FC492

employs equalizer strategies. We have that493

p2 =
p1r − (1 + p4)VUR

r − VUR
and p3 =

(1− p1)VUR+ p4r

r − VUR
.

It follows that494

p1 − p2 = p3 − p4 =
VUR

r − VUR
(1 + p4 − p1) > 0.
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Furthermore, for sufficiently small γ and where χ ≥ 1 is the extortion factor, the extortionate495

strategies of the FC satisfy that496

p1 = 1− γ
[

r

1 + χVU
− R

VFC + χ

]
, p2 = 1− γ r

1 + χVU
, p3 = γ

R

VFC + χ
, p4 = 0,

implying that497

p1 − p2 = p3 − p4 = γ
R

VFC + χ
> 0.

D Details on Time Varying State Transition Matrix in Section 3498

In Section 3.2, we propose the adaptive strategies (9) which use the detection probability Φt and499

false alarm rate Ψt of the linear classifier. The FC does not have the knowledge of true detection500

probability, which is a function of mt. Instead, she forms her estimate Φ̂t using m̂t. Under the501

assumption that Φ̂t/Ψ̂t ≥ max {p1/p2, p3/p4}, we can write the probability that the FC takes the502

cooperative action conditioned on the joint action pair of (Ak,t−1, Bk,t), as follows:503

P(Ak,t=C|Ak,t−1 =C,Bk,t=c) = Φtπt,1 +
(
1− Φt

)
πt,2

= Φt
p1(1−Ψt)− p2(1− Φ̂t)

Φ̂t −Ψt

+ (1− Φt)
p2Φ̂t − p1Ψt

Φ̂t −Ψt

,

P(Ak,t=C|Ak,t−1 =C,Bk,t=d) = Ψtπt,2 +
(
1−Ψt

)
πt,2

= Ψt
p1(1−Ψt)− p2(1− Φ̂t)

Φ̂t −Ψt

+ (1−Ψt)
p2Φ̂t − p1Ψt

Φ̂t −Ψt

,

504

P(Ak,t=C|Ak,t−1 =D,Bk,t=c) = Φtπt,3 +
(
1− Φt

)
πt,4

= Φt
p3(1−Ψt)− p4(1− Φ̂t)

Φ̂t −Ψt

+ (1− Φt)
p4Φ̂t − p3Ψt

Φ̂t −Ψt

,

P(Ak,t=C|Ak,t−1 =D,Bk,t=d) = Ψtπt,3 +
(
1−Ψt

)
πt,4

= Ψt
p3(1−Ψt)− p4(1− Φ̂t)

Φ̂t −Ψt

+ (1−Ψt)
p4Φ̂t − p3Ψt

Φ̂t −Ψt

.

After some algebra, it follows that505

P(Ak,t = C|Ak,t−1 = C,Bk,t = c) = p1 − (p1 − p2)
Φ̂t − Φt

Φ̂t −Ψt

,

P(Ak,t = C|Ak,t−1 = C,Bk,t = d) = p2 − (p1 − p2)
Ψ̂t −Ψt

Φ̂t −Ψt

,

506

P(Ak,t = C|Ak,t−1 = D,Bk,t = c) = p3 − (p3 − p4)
Φ̂t − Φt

Φ̂t −Ψt

,

P(Ak,t = C|Ak,t−1 = D,Bk,t = d) = p4 − (p3 − p4)
Ψ̂t −Ψt

Φ̂t −Ψt

.

This is to say, memory-one user strategies q and adaptive FC strategies πt imply a time-varying507

Markov state transition matrix given by508

Ω̃t = Ω + VtΩ
⊥ with Vt :=

Φ̂t − Φt

Φ̂t −Ψt

and Ω⊥ :=

−q1 (p1 − p2) 0 q1 (p1 − p2) 0
−q2 (p1 − p2) 0 q2 (p1 − p2) 0
−q3 (p3 − p4) 0 q3 (p3 − p4) 0
−q4 (p3 − p4) 0 q4 (p3 − p4) 0

 . (26)
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Recall from Remark 2, when the memory-one FC strategies p are in the form of extortioners or509

equalizers, we have that510

p1 − p2 = p3 − p4.

Thus, Ω⊥ is a rank-one matrix and can be decomposed as511

Ω⊥ = (p1 − p2)q>[−1 0 1 0]1. (27)

Using (8) and (11), we can express Vt as follows:512

Vt =
Φ̂t − Φt

Φ̂t −Ψt

=

Q

(
m̂>t

(
mt − 1

2
m̂t
)√

m̂>t Σtm̂t

)
−Q

(
1
2
‖m̂t‖2√
m̂>t Σtm̂t

)

1−Q

(
1
2
‖m̂t‖2√
m̂>t Σtm̂t

)
−Q

(
1
2
‖m̂t‖2√
m̂>t Ξtm̂t

) .
For ‖m̂t‖2 > 0, Vt is a differentiable function of m̂t and the first order Taylor approximation of Vt at513

m̂t = mt is given by514

Vt ≈ V ⊥t |m̂t=mt
+ (m̂t −mt)

>∇m̂t
Vt|m̂t=mt

.

Observe that515

Vt|m̂t=mt
= 0,

∇m̂t
V ⊥t |m̂t=mt

= mt

1√
2πm>t Σtmt

exp

(
−
‖mt‖4

8m>t Σtmt

)

1−Q

(
1
2
‖mt‖2√
m>t Σtmt

)
−Q

(
1
2
‖mt‖2√
m>t Ξtmt

) .
It follows that516

Vt=
m>t (m̂t−mt)

‖mt‖2
ht(mt) with ht(mt) :=

‖mt‖2√
2πm>t Σtmt

exp

(
−
‖mt‖4

8m>t Σtmt

)

1−Q

(
1
2
‖mt‖2√
m>t Σtmt

)
−Q

(
1
2
‖mt‖2√
m>t Ξtmt

) .
In Linear Algebra, the Rayleigh’s quotient for a given symmetric matrix M and nonzero column517

vector x is defined as:518

Ray(M,x) =
x>Mx

x>x
. (28)

It can be shown that λmin(M) ≤ Ray(M,x) ≤ λmax(M), where λmin(M) and λmax(M) are519

respectively the smallest and the largest eigenvalues of M [16]. Further, Ray(M,x) reaches its520

maximum (or minimum) when x is the eigenvector corresponding to λmax(M) (or λmin(M)). After521

some algebra, we can rewrite ht(mt) as follows:522

Vt=
m>t (m̂t−mt)

‖mt‖2
ht(mt) with ht(mt) :=

‖mt‖√
2πRay(Σt,mt)

exp

(
−

1

8

‖mt‖2

Ray(Σt,mt)

)

1−Q
(

‖mt‖
2
√

Ray(Σt,mt)

)
−Q

(
‖mt‖

2
√

Ray(Ξt,mt)

) .

E Proof of Lemma 1523

Lemma 1. Let Λ1 denote the initial state distributions of the games between the FC and the users.524

Under Assumption 1, we have that525

Λ̃t = Λt + Λ1

∑t−1

i=1
ViΩ

i−1Ω⊥Ωt−1−i.
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Proof. Recall that Vt can be found as526

Vt =

Q

(
m̂t(mt − m̂t) + 0.5‖m̂t‖2

‖mt‖
√

Ray(Σt, m̂t)

)
−Q

(
0.5‖m̂t‖√

Ray(Σt, m̂t)

)

1−Q

(
0.5‖m̂t‖√

Ray(Σt, m̂t)

)
−Q

(
0.5‖m̂t‖√

Ray(Ξt, m̂t)

) .

Under Assumption 1, it follows that527 ∣∣∣∣Q( m̂t(mt − m̂t) + 0.5‖m̂t‖2

‖mt‖
√

Ray(Σt, m̂t)

)
−Q

(
0.5‖m̂t‖√

Ray(Σt, m̂t)

)∣∣∣∣ ≤ 0.1499,

1−Q
(

0.5‖m̂t‖√
Ray(Σt, m̂t)

)
−Q

(
0.5‖m̂t‖√

Ray(Ξt, m̂t)

)
≥ 0.6826.

Consequently, |Vt| ≤ 0.2196. Recall that, given the initial state distributions of the repeated games528

as Λ̃1 = Λ1, we define the deterministic process: Λt = Λ1Ωt−1. For t = 2, we have529

Λ̃2 = Λ̃1

(
Ω + V1Ω⊥

)
= Λ̃1Ω + V1Λ̃1Ω⊥ = Λ2 + V1Λ⊥2 , with Λ⊥2 := Λ1Ω⊥.

For t = 3,530

Λ̃3 = Λ̃2

(
Ω + V2Ω⊥

)
=
(
Λ2 + V1Λ⊥2

) (
Ω + V2Ω⊥

)
,

= Λ3 + V1Λ⊥3 + V2Λ2Ω⊥ + V1V2Λ⊥2 Ω⊥, with Λ⊥3 := Λ2Ω,

≈ Λ3 + V1Λ⊥3 + V2Λ2Ω⊥,

where the approximation follows since |V1V2| << |V1|, |V2|. Further, suppose (13) is true. Then,531

Λ̃t+1 = Λ̃t
(
Ω + VtΩ

⊥) =

[
Λt + Λ1

∑t−1

i=1
ViΩ

i−1Ω⊥Ωt−1−i
] (

Ω + VtΩ
⊥) ,

= Λt+1 + VtΛtΩ
⊥ + Λt

∑t−1

i=1
ViΩ

i−1Ω⊥Ωt−i + Λ1

∑t−1

i=1
ViVtΩ

i−1Ω⊥Ωt−1−iΩ⊥,

≈ Λt+1 + VtΛtΩ
⊥ + Λt

∑t−1

i=1
ViΩ

i−1Ω⊥Ωt−i = Λt+1 + Λ1

∑t

i=1
ViΩ

i−1Ω⊥Ωt−i,

where the approximation follows since the higher order terms of Vt are negligible under Assumption 1.532

533

F Proof of Lemma 2534

Lemma 2. Conditioned on Ft, the estimation noise in iteration t, denoted Et, is a zero-mean random535

vector with the mean square error given by536

Et[‖Et‖2] =
1

K (Λtq>)

(
(ζt + 1)tr (Σt − Ξt) +

1

Λtq>
tr (Ξt)

)
.

Proof. Conditioned on Ft, the user reports Y1,t, . . . , YK,t which are independent random vectors537

following a 2-component multivariate Gaussian mixture distribution4538

fYk,t
(y) = Λ̃tq

>φ
(
y,mt,Σt

)
+
[
1− Λ̃tq

>
]
φ
(
y,~0,ΞtI

)
.

According to the definition of gradient estimator, m̂t (6), we can find the distribution of m̂t as follows:539

m̂t(Yt) ∼
K∑
`=0

(
K

`

)(
Λ̃tq

>
)` (

1− Λ̃tq
>
)K−`

N
(
`

mt

KΛtq>
,
`Σt + (K − `)ΞtI
K2
(
Λtq>

)2
)
.

4We denote the multivariate Gaussian distribution of an N−dimensional random vector with mean vector µ and
covariance matrix Σ as follows:

φ(x, µ,Σ) =
1√

(2π)Ndet(Σ)
exp

(
− 1

2
(x− µ>)Σ−1(x− µ)

)
.
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Recall that in (14), we decompose the gradient estimator as m̂t = mt(1 + ζt) + Et = mt
Λ̃tq
>

Λtq>
. After540

minor rearranging, it is easy to show that541

fEt(ε)=

K∑
`=0

(
K

`

)(
Λ̃tq

>
)̀ (

1−Λ̃tq
>
)K−̀

φ

(
ε,

mt

Λtq>

(
`

K
−Λ̃tq

>
)
,
`Σt+(K−`)Ξt
K2
(
Λtq>

)2
)
.

Then, we have542

Et[Et] =
∑K

`=0

(
K

`

)(
Λ̃tq

>
)` (

1− Λ̃tq
>
)K−` mt

Λtq>

(
`

K
− Λ̃tq

>
)
,

=
mt

Λtq>

(
KΛ̃tq>

K
− Λ̃tq

>
)

= ~0

and5543

Et
[
‖Et‖22

]
= tr

(
K∑
`=0

(
K

`

)(
Λ̃tq

>
)` (

1− Λ̃tq
>
)K−` `Σt + (K − `)ΞtI

K2 (Λtq>)
2

)
,

= tr

(
1

K (Λtq>)

(
Λ̃tq

>

Λtq>
Σt +

1− Λ̃tq
>

Λtq>
Ξt

))
,

=
1

K (Λtq>)

(
Λ̃tq

>

Λtq>
tr (Σt − Ξt) +

tr (Ξt)

Λtq>

)
,

=
1

K (Λtq>)

(
(ζt + 1)tr (Σt − Ξt) +

1

Λtq>
tr (Ξt)

)
.

544

G Proof of Theorem 1545

Theorem 1. Under Assumptions 2 and 3, suppose that the SGSU (5) is run for T iterations with a546

fixed stepsize β̄ satisfying547

0 < β̄ ≤ 1

L(1 +HT )
.

Then, the SGD algorithm with strategic users satisfies that548

E

[
1

T

T∑
t=1

‖∇F (θt)‖2
]
≤ LET
K(1−HT )

+
2(F (θ1)− Finf)

β̄T (1−HT )
.

Proof. By Lemma 4.2 in [3], under Assumption 3(i), the iterates generated by SGSU satisfy549

F (θt+1)− F (θt) ≤ m>t (θt+1 − θt) + 1
2L‖θt+1 − θt‖22

≤ −β̄m>t m̂t(Yt) + 1
2 β̄

2L‖m̂t(Yt)‖22.

Taking the expectation of this inequality conditioned on Ft, and noting that θt is Ft-measurable, we550

obtain551

Et[F (θt+1)]− F (θt) ≤ −β̄m>t Et[m̂t(Yt)] + 1
2 β̄

2LEt
[
‖m̂t(Yt)‖2

]
. (29)

Recall that in (14), we decompose the gradient estimator as m̂t = mt(1 + ζt) + Et. Note that mt552

and ζt are Ft−measurable. Further, by Lemma 2, we have Et[Et] = ~0. Consequently, it follows that553

m>t Et[m̂t(Yt)] = m>t Et [mt(1 + ζt)] = ‖mt‖22(1 + ζt) (30)

5The trace of an n × n square matrix A, where aii denotes the entry on the ith row and ith column of A, is
defined as

tr(A) =
∑n

i=1
a11 + a22 + · · ·+ ann.
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and554

Et
[
‖m̂t(Yt)‖22

]
= ‖mt‖22(1 + ζt)

2 + Et
[
‖Et‖22

]
. (31)

Using (30) and (31) in (29), we have555

Et[F (θt+1)]− F (θt) ≤
1

2
β̄2LEt

[
‖Et‖22

]
− β̄‖mt‖22(1 + ζt)

(
1− 1

2 β̄L(1 + ζt)
)
.

From (16) and (19), it follows that556

(1 + ζt)
[
1− 1

2
β̄L(1 + ζt)

]
≥ (1 + ζt)

[
1− 1

2
β̄L(1 +HT )

]
≥ 1

2
(1 + ζt)

and557

Et[F (θt+1)]− F (θt) ≤
1

2
β̄2LEt

[
‖Et‖22

]
− 1

2
β̄‖mt‖22(1 + ζt),

≤ 1

2
β̄2LEt

[
‖Et‖22

]
− 1

2
β̄‖mt‖22(1−HT ).

Using (18) in the above inequality, we obtain558

Et[F (θt+1)]− F (θt) ≤ −
1

2
β̄‖mt‖2(1−HT ) +

1

2
β̄2L

ET

K
.

Taking the total expectation of this inequality yields that559

E[F (θt+1)]− E[F (θt)] ≤ −
1

2
β̄E
[
‖mt‖2

]
(1−HT ) +

1

2
β̄2L

ET

K
.

Summing both sides of this inequality for t ∈ {1, . . . , T} and by Assumption 3(ii), it follows that560

Finf − F (θ1) ≤ E[F (θT+1)]− F (θ1) ≤ −1

2
β̄(1−HT )

∑T

t=1
Et
[
‖mt‖22

]
+

1

2
T β̄2L

ET

K
.

Rearranging the terms in the above inequality, we conclude that561

E

[
T∑
t=1

‖mt‖22

]
≤ T β̄LET

K(1−HT )
+

2(Finf − F (θ1))

β̄(1−HT )
.

562

H Proof of Theorem 2563

Theorem 2. Under Assumption 2 and 4, the gradient estimation bias term ζt, has the following form:564

ζt = (p1 − p2)
∑t−1

i=1

Λiq
>

Λtq>
m>i Ei
‖mi‖2

hi(mi)∆i,t

with565

|∆i,t| ≤ δ|u2|t−1−i + δ2hmax
t−1 |u2|t−2−i(t− i− 1).

Further, for some 0 < η < 1 we have566

P (|ζt| < η|α1, . . . , αt−1) > 1−
∑t−1
i=1 α

2
i

Kη2

with567

α2
i =

2

∣∣∣∣(ν2
i − ξ2

i ) +
m>i Σimi

‖mi‖2

∣∣∣∣+
ξ2
i

Λiq>

‖mi‖2 (Λiq>)

[
Λiq

>

Λtq>

]2

h2
i∆

2
i,t.

Proof. Recall that, in (14), the gradient estimator can be decomposed as568

m̂t = mt(1 + ζt) + Et, with ζt =
Λ̃tq

>

Λtq>
− 1. (32)
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For convenience, define ρt as ρt := Λ̃t − Λt and note that569

ζt =
ρtq
>

Λtq>
. (33)

From Lemma 2.1, it follows that570

ρt = Λ̃t − Λt = Λ1

t−1∑
i=1

ViΩ
i−1Ω⊥Ωt−1−i,

= Λ1

(
t−2∑
i=1

ViΩ
i−1Ω⊥Ωt−2−i

)
Ω + Vt−1Λ1Ωt−2Ω⊥,

= ρt−1Ω + Vt−1Λt−1Ω⊥. (34)

Use (32) and (33) in the linear approximation of Vt in (20). It follows that571

Vt =
m>t (m̂t −mt)

‖mt‖22
ht(mt) =

[
m>t Et
‖mt‖22

+ ζt

]
ht(mt),

= ht(mt)
m>t Et
‖mt‖22

+ ht(mt)
ρtq
>

Λtq>
. (35)

Recall that in (12), we define Ω⊥ and ω⊥ as572

Ω⊥ = q>ω⊥, with ω⊥ := (p1 − p2)[−1 0 1 0]. (36)

For the purpose of brevity, we may simply write ht instead of ht(mt). Use (35) and (36) in (34), and573

it follows that574

ρt = ρt−1Ω + Vt−1Λt−1Ω⊥ = ρt−1Ω +

(
ht−1

m>t−1Et−1

‖mt−1‖22
+ ht−1

ρt−1q
>

Λt−1q>

)
Λt−1q

>ω⊥.

Recall that q and Λt’s are 1× 4 row-vectors, whereas mt and Et are n× 1 column-vectors. After575

minor rearrangements, we have576

ρt = Λt−1q
>m

>
t−1Et−1

‖mt−1‖22
ht−1ω

⊥ + ρt−1

(
Ω + ht−1q

>ω⊥
)
. (37)

Repeat (37) and we obtain577

ρt = Λt−2q
>m

>
t−2Et−2

‖mt−2‖22
ht−2ω

⊥ (Ω + ht−1q
>ω⊥

)
+ Λt−1q

>m
>
t−1Et−1

‖mt−1‖22
ht−1ω

⊥

+ ρt−2

(
Ω + ht−2q

>ω⊥
) (

Ω + ht−1q
>ω⊥

)
.

For convenience, we defineWt,t′ as follows:578

Wt,t′ :=

{(
Ω + htΩ

⊥)× · · · × (Ω + ht′Ω
⊥) if t ≤ t′,

I if t > t′.

Applying (37) repeatedly through iteration t ∈ N, we can obtain that579

ρt = ρ1W1,t−1 +

t−1∑
i=1

Λiq
> m

>
i Ei

‖mi‖22
hi ω

⊥Wi+1,t−1 (38a)

and580

ζt =
ρtq
>

Λtq>
=
ρ1W1,t−1q

>

Λtq>
+

t−1∑
i=1

Λiq
>

Λtq>
m>i Ei
‖mi‖22

hi ω
⊥Wi+1,t−1q

>. (38b)

Since ht’s are small positive values, along the same line as in the proof of Lemma 1, we have conclude581

that for i < t− 2,582

Wi+1,t−1 ≈ Ωt−i−1 +

t−i−2∑
j=0

hi+j+1ΩjΩ⊥Ωt−2−i−j . (39)
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By Approximation 2.3, Ω can be diagonalized as Ω = ΓUΓ−1 with U has the eigenvalues of Ω in583

descending order of magnitude. Writing Γ (and Γ−1) as a block matrix of its column (and row)584

vectors~b` (and ~γ`), ω⊥Ωjq> can be expressed as585

ω⊥Ωjq> =

4∑
`=1

uj`
(
ω⊥~b`

)(
~γ`q
>).

Since Ω is row stochastic, u1 = 1 and 1 ≥ |u2| ≥ |u3| ≥ |u4| ≥ 0. Further, the column eigenvector586

associated to the eigenvalue 1 is~b1 = [1 1 1 1]>. Thus, ω⊥~b1 = 0. It follows that587

ω⊥Ωj1Ω⊥Ωj2q> = ω⊥Γ U j1Γ−1q>ω⊥Γ U j2Γ−1q>,

=
∑4

`1,`2=2
uj1`1u

j2
`2
ω⊥~b`1ω

⊥~b`2~γ`1q
>~γ`2q

>.

Thus,588 ∣∣ω⊥Ωj1Ω⊥Ωj2q>
∣∣ ≤ δ2|u2|j1+j2 , δ :=

(
max

`∈{2,3,4}

∣∣ω⊥~b`∣∣)( max
`∈{2,3,4}

∣∣~γ`q>∣∣2). (40)

Recall that we define hmax
t as hmax

t := maxi∈{1,...,t} hi(mi). By using (40) in (39), we obtain that589 ∣∣ω⊥Wi+1,t−1q
>∣∣ ≤ |ω⊥Ωt−i−1q>|+

∑t−i−2

j=0
hi+j+1

∣∣ω⊥ΩjΩ⊥Ωt−2−i−jq>
∣∣ ,

≤ δ|u2|t−1−i + δ2|u2|t−2−i
∑t−1

j=i+1
hj ,

≤ δ|u2|t−1−i + δ2|u2|t−2−i(t− i− 1)hmax
t−1 . (41)

Use (41) in (38), and we obtain590

ζt =
ρ1W1,t−1q

>

Λtq>
+

t−1∑
i=1

Λiq
>

Λtq>
m>i Ei
‖mi‖22

hi ∆i,t, (42)

with |∆i,t| ≤ δ|u2|t−1−i + δ2|u2|t−2−i(t− i− 1)hmax
t−1 . We assume the FC has the knowledge of591

the initial state distribution of the repeated games between, i.e., Λ1 = Λ̃1. Thus, ρ1 = [0 0 0 0] and592

we obtain593

ζt =

t−1∑
i=1

Λiq
>

Λtq>
m>i Ei
‖mi‖22

hi ∆i,t, with |∆i,t| ≤ δ|u2|t−1−i + δ2|u2|t−2−i(t− i− 1)hmax
t−1 . (43)

Now, we are going to show that, for some 0 < η < 1, we have594

P (|ζt| < η|α1, . . . , αt−1) > 1−
∑t−1
i=1 α

2
i

Kη2
,

with595

α2
i =

2

∣∣∣∣(ν2
i − ξ2

i ) +
m>i Σimi

‖mi‖22

∣∣∣∣+
ξ2
i

Λiq>

‖mi‖22 (Λiq>)

(
Λiq

>

Λtq>

)2

h2
i (mi)∆

2
i,t.

In the proof of Lemma 3.2, noting that mt is F -measurable, we derive the conditional distribution of596

Et given Ft as597

fEt(ε)=

K∑
`=0

(
K

`

)(
Λ̃tq

>
)̀ (

1−Λ̃tq
>
)K−̀

φ

(
ε,

mt

Λtq>

(
`

K
−Λ̃tq

>
)
,
`
(
Σt+ν2

t I
)
+(K−`)ξ2

t I

K2
(
Λtq>

)2
)
.

Thus, for i ∈ {1, 2, . . . , t}, conditioned on Fi, we obtain598

m>i Ei ∼
K∑
`=0

(
K

`

)(
Λ̃iq

>
)̀(

1−Λ̃iq
>
)K−̀
N
(
‖mi‖22`
KΛtq>

,
`
(
m>i Σtmi+ν

2
t ‖mi‖22

)
+(K−`)ξ2

t ‖mi‖22
K2
(
Λtq>

)2
)
.
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After some algebra599

E
[
m>i Ei|Ft

]
= 0

and600

Var
[
m>i Ei|Ft

]
=

(ζi + 1)
(
‖mi‖22(ν2

i − ξ2
i ) +m>i Σimi

)
+
‖mi‖22ξ2

i

Λiq>

K (Λiq>)
.

Under Assumption 1, for t ∈ {1, 2, . . . , T}, we have that |ζt| ≤ 1. Thus,601

Var
[
m>i Ei|Ft

]
≤ α̃2

i

K
with α̃2

i :=

2
(
‖mi‖22(ν2

i − ξ2
i ) +m>i Σimi

)
+
‖mi‖2ξ2

i

Λiq>

Λiq>
.

For convenience, we define ϕi,t as602

ϕi,t :=
Λiq

>

Λtq>
hi∆i,t

‖mi‖22
.

From (43), it is clear that603

ζt =

t−1∑
i=1

ϕi,tm
>
i Ei.

Further,604

E
[
ζt

∣∣∣α̃2
1ϕ

2
1,t, . . . , α̃

2
t−1ϕ

2
t−1,t

]
= 0,

Var
[
ζt

∣∣∣α̃2
1ϕ

2
1,t, . . . , α̃

2
t−1ϕ

2
t−1,t

]
≤

t−1∑
i=1

ϕ2
i,t

α̃2
i

K
.

Noting that α2
i = α̃2

iϕ
2
i,t, via Chebyshev’s inequality, we obtain the desired result605

P (|ζt| < η|α1, . . . , αt−1) > 1−
∑t−1
i=1 ϕ

2
i,tα

2
i

Kη2
,

> 1−
∑t−1
i=1 α

2
i

Kη2
.

606

I Experiments607

In this section, we provide additional details and results of our empirical studies. In our first set of608

experiments, we consider a binary logistic classification problem and use the KDD-Cup 04 dataset [6].609

The goal of binary logistic classification experiments is to learn a classification rule that differentiates610

between two types of particles generated in high energy collider experiments based on 78 attributes611

[6]. The dataset is of 50000 samples and it is publicly available. The learning rate is chosen as612

η̄ = 0.01. When the users take the defective action, they send zero-mean Gaussian noise, Yk,t = Υk,t613

and Υk,t ∼ N (0,Ξt), where the covariance matrix is Ξt = ξ2
t I and ξt = 0.5. When the users614

take the cooperative action, they send a privacy-preserved version of their stochastic gradients,615

Yk,t = Xk,t + Nk,t and Nk,t ∼ N (0, ν2
t I) with νt = 0.1. The number of iterations is 2000. The616

number of users is chosen as K = 50 and mini-batch size is s = 10. Each experiment is repeated617

250 times and their average is taken.618

In our second set of experiments, we consider a three layer neural network trained on the MNIST619

dataset. We conduct image classification experiments on MNIST image classification dataset, which620

is composed of 50K images for training and 10K images for testing. All experiments are conducted621

in PyTorch on a server. We use convolutional neural network (CNN) with 2 convolutional layers622

followed by 1 fully connected layer, with a total of 5142 parameters. We repeat each experiment623

10 times and take the average. Training loss is cross-entropy loss and testing accuracy is true624
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Equalizer Fusion Center Strategy (p = [0.8 0.5 0.4 0.1])

User Strategy Steady State Distribution Prob. of Coop.

Full Coop.: q= [0.90 0.90 0.90 0.90] Λ∗ = [0.58 0.03 0.32 0.07] Λ∗q> = 0.90

Stubborn: q= [0.90 0.15 0.90 0.15] Λ∗ = [0.38 0.08 0.22 0.32] Λ∗q> = 0.60

Tit-for-tat: q= [0.90 0.90 0.15 0.15] Λ∗ = [0.32 0.07 0.12 0.49] Λ∗q> = 0.44

Pavlov: q= [0.90 0.15 0.15 0.90] Λ∗ = [0.42 0.08 0.24 0.26] Λ∗q> = 0.67

Coin Toss: q= [0.50 0.50 0.50 0.50] Λ∗ = [0.28 0.13 0.22 0.37] Λ∗q> = 0.50

Extortion Fusion Center Strategy (p = [0.95 0.75 0.2 0])

User Strategy Steady State Distribution Prob. of Coop.

Full Coop.: q= [0.90 0.90 0.90 0.09] Λ∗ = [0.67 0.05 0.23 0.05] Λ∗q> = 0.90

Stubborn: q= [0.90 0.15 0.90 0.15] Λ∗ = [0.40 0.08 0.20 0.32] Λ∗q> = 0.60

Tit-for-tat: q= [0.90 0.90 0.15 0.15] Λ∗ = [0.28 0.02 0.10 0.60] Λ∗q> = 0.38

Pavlov: q= [0.90 0.15 0.15 0.90] Λ∗ = [0.44 0.09 0.22 0.25] Λ∗q> = 0.67

Coin Toss: q= [0.50 0.50 0.50 0.50] Λ∗ = [0.25 0.15 0.25 0.35] Λ∗q> = 0.50

Table 1: The steady state distribution Λ∗ without perturbations for different FC and user strategies.

classification rate. The learning rate is chosen as, η̄ = 0.1. For the image classification problem,625

Ξt = ξ2
t I with ξt = 0.071 and νt = 0.032.626

In all experiments, the payoff parameters are set as R = r = 1 and VFC = VU = 0.5. Recall that, the627

FC can set the expected payoff of the user to a fixed value between 0 (mutual defection payoff) and628

r − VUR (mutual cooperation payoff) with the adoption of equalizers. In the experiments, we have629

tested the performance of an equalizer strategy p = [0.8 0.5 0.4 0.1] (ϕ1 = −0.6 and ϕ2 = 0.1).630

With these choices, the expected payoff of the users can be found as:631

s∗U = −ϕ2

ϕ1
= (r − VUR)

p4

1− p1 + p4
=

1

6
≈ 0.167. (44)

Alternatively, the FC can enforce an extortionate share of payoffs in the steady state of the game632

with the adoption of extortioners. In the experiments, we have also tested the performance of an633

extortioner strategy p = [0.95 0.75 0.2 0] (χ = 2 and γ = 0.5). With these choices, the ratio of the634

expected payoffs can be found as:635

s∗FC

s∗U
= χ = 2. (45)

We consider how ZD strategies fare against the stochastic versions of some of the most important636

memory-one strategies:637

1. Full cooperation: q> = [0.9 0.9 0.9 0.9],638

2. Stubborn: q> = [0.9 0.15 0.9 0.15],639

3. Tit-for-tat: q> = [0.9 0.9 0.15 0.15],640

4. Pavlov: q> = [0.9 0.15 0.15 0.9],641

5. Coin Toss: q> = [0.5 0.5 0.5 0.5].642

In Table 1, the steady state distribution Λ∗ of the Markov transition matrix Ω and the probability of643

user cooperation at the steady state are listed. As Lemma 1 indicates, due to the perturbations on644

the state transition matrix, the real state distribution at the steady state will be a noisy version of Λ∗.645

Thus, in the experiments, we expect the probability of user cooperation Λ̃tq
> converge to Λ∗q>.646

Fig. 3a and Fig. 3b depict the optimality gap of the optimization problem across iterations. For the647

full cooperation, coin toss, tit-for-tat and stubborn user strategies, SGSU converges quickly. For648
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Figure 3: SGD with strategic users (logistic classification problem)

Pavlov user strategies, SGSU can eventually approach, albeit more slowly than other cases. Fig. 3c649

shows average user payoff across iterations when the FC employs the equalizer strategy. For coin650

toss and tit-for-tat user strategies, the average user payoffs are very close to 0.167 as expected from651

(44). For full cooperation and stubborn strategies, the average user payoffs are observed to be slightly652

lower than 0.167. One unanticipated finding is that the average user payoffs are significantly higher653

than 0.167 when the users employ Pavlov strategies. Fig. 3d shows the ratio of average FC and user654

payoffs across iterations when the FC employs the extortion strategy. For coin toss and tit-for-tat655

user strategies, the ratio is very close to 2. This is consistent with (45). Contrary to expectations, the656

payoff ratio for the Pavlov strategies is almost 1.657

This discrepancy could be attributed to that Pavlov users are very sensitive to both type I (B̂k,t = d̂658

given that Bk,t = c) and type II (B̂k,t = ĉ given that Bk,t = d) classification errors. When the users659

employ the Pavlov strategy, they are trusting avengers who is exploiting yet repentant [21], i.e., they660

cooperate if rewarded for cooperating or punished for defecting. In contrast, stubborn users are not661

sensitive to the classification errors and they repeat their last action with a high probabilily. Tit-for-tat662

users are retaliatory players and they cooperate if rewarded and they are not sensitive to Type II663

errors.664

Fig. 4a and 4b illustrate the probability of user cooperation, Λ̃tq
>, across different user strategies.665

The experimental results validate Lemma 1 and the empirical user cooperation probabilities match666

the values in Table 1, except when the users are Pavlov. Unsurprisingly, when the users follow full667

cooperation (or coin toss) strategy, they cooperate with probability 0.9 (or 0.5) regardless of the actual668

states of the repeated games. For the cases with stubborn and tit-for-tat users, the games quickly669

converge to the steady state distribution. Interestingly, for the cases with Pavlov users, the probability670

of user cooperation decreases over time. This is associated to the performance of the linear classifier.671

24



0 500 1000 1500 2000
0.4

0.5

0.6

0.7

0.8

0.9

1

Stubborn

Tit-For-Tat

Pavlov

Coin Toss

Full Coop

(a) Λ̃tq
> (Equalizer)

0 500 1000 1500 2000
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stubborn

Tit-For-Tat

Pavlov

Coin Toss

Full Coop

(b) Λ̃tq
> (Extortion)

0 500 1000 1500 2000
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Stubborn

Tit-For-Tat

Pavlov

Coin Toss

Full Coop

(c) ‖mt‖ (Equalizer)

0 500 1000 1500 2000
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Stubborn

Tit-For-Tat

Pavlov

Coin Toss

Full Coop

(d) ‖mt‖ (Extortion)

Figure 4: Dynamics of the repeated games (logistic classification problem)

Fig. 4c and 4d illustrate that the gradients vanish as the algorithm converges to θ∗. Thus, the linear672

classifier cannot differentiate between the cooperative and defective hypothesis.673

Fig. 5(a) and Fig. 5(b) plot the training loss and the testing accuracy for the image classification ex-674

periments. As expected, the best performance is achieved when the users employ the full cooperation675

strategy. For the cases with Pavlov or stubborn users, the convergence rate is similar to the case with676

full cooperation. When the users employ tit-for-tat strategy, the convergence rate is slower.677

Fig. 6 plots further experiments for different scenarios. Fig. 6(a) depicts the optimality gap (TFT users)678

for different mini-batch sizes and number of users for the logistic class. problem. Fig 6(b) illustrates679

an intriguing case where the strategy vector of user k is qk = [0.9+∆k, 0.9+∆k, 0.1−∆k, 0.1−∆k]680

s.t. ∆k ∼ Unif[−0.1, 0.1] and ξk ∼ N (0.5, 0.1). The FC knows the means of qk and ξk; however,681

she does not have the knowledge of exact realizations. In these experiments, the imperfect knowledge682

of qk and ξk does not make a significant impact on the convergence rate. As we discuss in Section 5,683

we are trying to extend our work using the robust statistics. Fig 7(a) shows that the performance of684

the proposed sample mean based gradient estimator diminishes as the noise level of the defective685

user signals increase. The FC can overcome this problem by employing a geometric median based686

gradient estimator.687

J Classifier Design for the User Action Classification Problem688

In Section 3, we study the joint gradient estimation and user action classification problem. Recall that689

a user is cooperative (Bk,t= c) if he is sending the privacy-preserved version of his gradient Xk,t.690
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Figure 5: SGD with strategic users (image classification experiments on MNIST)
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Figure 7: SGD with strategic users (image classification experiments on MNIST - Tit-For-Tat Users)
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Otherwise, the user is defective and sends a noise signal Υk,t ∼ N (0,Ξt) independent of Xk,t:691

Yk,t =

{
Xk,t +Nk,t, if Bk,t = c (cooperative);
Υk,t, if Bk,t = d (defective).

Since the stochastic gradient in any iteration (at each user) is computed using many i.i.d. samples,692

the noise in the stochastic gradient can be approximated by a zero-mean Gaussian random vector693

[27, 17, 38, 23]:694

Xk,t = mt +Wk,t (46)
where mt is the population gradient, mt = ∇θF (θt), and Wk,t is the noise in the stochastic gradients.695

This implies Yk,t ∼ N (mt,Σt), given Bk,t = c, where Σt := cov[Wk,t] + ν2
t I. Thus, the user696

action classification problem may be cast as follows:697

Hc : Yk,t ∼ N
(
mt,Σt

)
vs. Hd : Yk,t ∼ N

(
0,Ξt

)
, (47)

where the hypothesis Hc (or Hd) is that the user is cooperative (or defective). The maximum a698

posteriori decision rule, given Yk,t, for the binary hypothesis testing problem (47) is of the form [32]:699

δt(Yk,t) =

{
Hc if Lt(Yk,t) > ln

P(Hd)

P(Hc)
Hd else

where Lt(y) is the log-likelihood ratio betweenHc andHd:700

Lt(Yk,t) =
1

2
Y >k,t

(
Ξ−1
t − Σ−1

t

)
Yk,t +m>t Σ−1

t

(
Yk,t −

1

2
mt

)
+

1

2
ln
|Ξt|
|Σt|

.

Note that Lt(Yk,t) here consists of a quadratic term, a linear term and a constant. The resulting701

classifier structure is known as a linear-quadratic (LQ) classifier. In general, we cannot evaluate702

the detection probability Φt and false alarm rate Ψt associated to the LQ classifier. Recall that703

the adaptive strategies for fusion center (9) use the knowledge of Φt and Ψt. Therefore, direct704

employment of LQ detector introduces formidable technical difficulties and is not practical. To get705

a more concrete sense, in what follows we study two special cases where the LQ detector can be706

further simplified.707

J.1 Linear Classifier vs. Quadratic Classifier708

If the two covariance matrices have roughly the same energy level under the cooperative and defective709

hypotheses; i.e., Σt ≈ Ξt, then the quadratic term in the log-likelihood ratio disappears710

Lt(Yk,t) = m>t Σ−1
t

(
Yk,t −

1

2
mt

)
+

1

2
ln
|Ξt|
|Σt|

.

and we have a linear test statistic:711

δL
t (Yk,t) =

{
Hc if m>t Σ−1

t Yk,t >
1
2m
>
t Σ−1

t mt + ln
P(Hd)

P(Hc)
Hd else.

This yields a linear classifier which has the structure of a matched filer or a correlation detector. The712

associated detection and false alarm probabilities can be found in terms of Gaussian Q-functions.713

Remark 5. In practice, the FC does not have the knowledge of mt and Σt; therefore, she cannot714

directly employ δL
t . Under the homoscedasticity assumption (Σt = σ2

t I), δL
t reduces to the proposed715

user action classification rule in (7). The proposed classifier uses the gradient estimator m̂t (6)716

instead of mt. Following the same rationale, it may be argued that Σt can also be estimated in717

a similar manner and employed in the user action classification. In practice, this poses the risk718

of introducing matrix estimation errors into the user action classification scheme. In contrast, the719

proposed classifier is more robust and tractable with reduced computational complexity.720

In general, the linear classifier allows us to trade accuracy for overall tractability of the algorithm by721

“neglecting" the information contained in the average energy of the reported gradients compared to722

the LQ classifier. This may be reasonable in the early stages of the SGD algorithm when the reported723

gradients still significantly differ under the cooperative and defective hypotheses in terms of their724
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means. Nevertheless, when the iterates of SGD are confined to a small enough region around a local725

optimum of the loss, the gradients vanish and the linear classifier starts to fail differentiatingHc and726

Hd. To tackle this challenge, in the late stages of the training, the classifier can be altered to utilize727

the information contained in the statistical energies of the reported gradients.728

For the ease of exposition, we will first consider the case where Ξt = ξ2
t I. If the (statistical) average729

amplitude and energy of the population gradient is very small, i.e., mt ≈ 0 and Cov[Wk,t] ≈ 0, then730

the structure of log-likelihood ratio is quadratic:731

Lt(Yk,t) =
1

2

(
1

ξ2
t

− 1

ν2
t

)
‖Yk,t‖2 +

n

2
ln
ξ2
t

ν2
t

where n is the dimension of the optimization problem (1). The quadratic classifier can be found as:732

δt(Yk,t) =

Hc if ‖Yk,t‖2 < Tt :=

(
n ln

ξ2
t

ν2
t

− 2 ln
P(Hd)

P(Hc)

)
ξ2
t ν

2
t

ξ2
t − ν2

t

Hd else.
(48)

Remark 6. If Cov[Wk,t] = σ2
t I and Ξt = ξ2

t I, then the false alarm rate, ΨQ
t , and the detection733

probability, ΦQ
t , associated to the quadratic classifier (48) can be found as 6:734

ΨQ
t = P

(
‖Yk,t‖2 < Tt|Bk,t = d

)
=

1

Γ(n/2)
γ

(
n

2
,
Tt
2ξ2
t

)
, (49a)

ΦQ
t = P(‖Yk,t‖2 < Tt|Bk,t = c) = 1−Qn

2

(
‖mt‖2√
σ2
t + ν2

t

,

√
Tt

σ2
t + ν2

t

)
. (49b)

Proof. Under the defective action hypothesis, ‖Yk,t‖2 is the sum of independent and zero-mean735

Gaussian random variables with variance ξ2
t . Thus, it follows that736

ΨQ
t = P

(
‖Yk,t‖2 < Tt|Bk,t = d

)
=

1

Γ(n/2)
γ

(
n

2
,
Tt
2ξ2
t

)
. (50)

Under the cooperative action hypothesis, we have Yk,t ∼ N (mt,Σt). Assuming Σt is invertible,737

Σ−1 is a positive semi-definite matrix and it can be decomposed into Σ−1
t = Σ

−1/2
t Σ

−1/2
t where738

Σ
−1/2
t is also positive semi-definite. Use the spectral theorem and write Σt = S>t EtSt where St is739

an orthogonal matrix (i.e., S>t St = StS
>
t = I) and Et is diagonal with positive elements. It follows740

that741

Y >k,tYk,t = Y >k,tΣ
−1/2
t ΣtΣ

−1/2
t Yk,t =

(
Σ
−1/2
t Yk,t

)>
Σt

(
Σ
−1/2
t Yk,t

)
,

=
(

Σ
−1/2
t Yk,t

)>
S>t EtSt

(
Σ
−1/2
t Yk,t

)
=
(
StΣ

−1/2
t Yk,t

)>
Et

(
StΣ

−1/2
t Yk,t

)
,

= (Uk,t + µt)
>Et(Uk,t + µt)

6For complex numbers, the gamma function is defined as

Γ(z) =

∫ ∞
0

xz−1e−xdx, R(z) > 0.

For any positive integer z, Γ(z) = (z − 1)!. The lower incomplete gamma function is defined as

γ(s, x) =

∫ x

0

ts−1e−tdt, with s > 0.

The Marcum-Q-function QM is defined as

QM (a, b) =

∫ ∞
b

x
(x
a

)M−1

exp

(
−x

2 + a2

2

)
IM−1(ax) dx,

with modified Bessel function IM−1 of order M − 1.
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where Uk,t := StΣ
−1/2
t (Yk,t −mt) and µt = StΣ

−1/2
t mt.742

Note that Uk,t is multivariate normal with identity covariance matrix and expectation zero. In general,743

there is no known analytical expression for the PDF and CDF of Y >k,tYk,t. We can find the closed744

form expression of ΦQt for the special case of cov[Wk,t] = σ2
t I. In this case, Σt = (σ2

t + ν2
t )I and745

‖Yk,t‖2/
(
σ2
t + ν2

t

)
is distributed according to the noncentral chi-square distribution with n degrees746

of freedom and the noncentrality parameter
1

σ2
t + ν2

t

‖mt‖22. Consequently,747

ΦQt = P(‖Yk,t‖2 < Tt|Bk,t = c) = P

(
‖Uk,t + µt‖22 <

Tt
σ2
t + ν2

t

)
,

= 1−Qn
2

(
‖mt‖√
σ2
t + ν2

t

,

√
Tt

σ2
t + ν2

t

)
.

748

In the next subsection, we discuss how the FC can employ the quadratic classifier in practice.749

Furthermore, we compare the performances of linear and quadratic classifiers using real-life datasets.750

J.2 Numerical Results751

The proposed adaptive strategies (9) require the knowledge of the detection probability Φt and752

the false alarm rate Ψt of the classifier employed by the fusion center. For the quadratic detector,753

in general, ΦQ
t does not have a closed form expression. Instead, the fusion center can form her754

approximated estimate Φ̂Qt under the assumptions that mt ≈ ~0 and Σt ≈ ν2
t I:755

Φ̂Qt =
1

Γ(n/2)
γ

(
n

2
,
Tt

2ν2
t

)
.

We repeat the experiments for the binary logistic classification problem with the same parameters756

(recall that the noise parameters are set as νt = 0.1 and ξt = 0.5). Fig 8a and Fig 8b depict the757

optimality gap of the optimization problem across iterations. We observe that SGSU converges758

quickly for all cases. Fig 8c shows average user payoff across iterations when the FC employs the759

equalizer strategy. For all case, the average user payoffs are very close to the theoretic result 0.167 in760

(44). Fig 8d shows the ratio of average FC and user payoffs across iterations when the FC employs the761

extortion strategy, and it is very close to 2. This is consistent with (45). Further, Fig. 8e and Fig. 8f762

illustrate the probability of user cooperation Λ̃tqt for different user strategies. The experimental763

results validate Lemma 1 and the empirical user cooperation probabilities match the values in Table764

1. The improvement in the experimental results is due to the performance of the user classification765

scheme.766

Next, we consider another set of experiments where the noise parameters are set as ξt = 0.4 and767

νt = 0.2. In these experiments, we test the performance of an equalizer strategy p = [0.8 0.5 0.4 0.1]768

against probabilistic Pavlov strategies q = [0.9 0.15 0.15 0.9]. Fig. 9a depicts the detection probabil-769

ity of the linear and quadratic classifiers. We observe that, in the early stages of the optimization,770

the linear classifier outperforms the quadratic classifier because the average energy of the reported771

gradients under cooperative and defective hypotheses are close to each other. As the gradients vanish,772

the performance of the quadratic classifier improves. Fig. 9b illustrates the optimality gap of the773

optimization problem across iterations. We also include a third option where the fusion center starts774

with the linear classifier and switches to the quadratic classifier during the run of the optimization.775

The results indicate that this third option outperforms the cases where the FC only employs the776

quadratic classifier or the linear classifier.777

We also repeat the experiments for the image classification problem using the quadratic classifier778

with threshold Tt = 200, and ξ2
t = 0.71 and ν2

t = 0.032. Note that the noise level of the defective779

user signals is significantly increased in contrast to the experiments with the linear classifier. Fig 10780

plots the training loss and the testing accuracy for different scenarios.781
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Figure 8: SGSU with quadratic classifier (logistic classification problem)
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Figure 9: SGSU with linear and quadratic classifier (logistic classification problem)
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Figure 10: SGSU with quadratic classifier (image classification problem)

K Heterogeneous User Strategies782

In this section, we generalize the adaptive FC strategies for the case where the users employ783

different strategies. Let qk,1, qk,2, qk,3 and qk,4 denote the probabilities of cooperation for the784

user conditioned on the joint action pair of the previous iteration, that is (Ak,t−1, Bk,t−1), in the785

order of (C, c), (C, d), (D, c) and (D, d). Furthermore, the user’s strategy vector is defined as786

qk = [qk,1 qk,2 qk,3 qk,4]. The FC takes her action after collecting the user reports and her strategies787

are conditioned on the user action, Bk,t. In the repeated game against user k, analogous to the user788

strategies, let pk,1, pk,2, pk,3 and pk,4 denote the probabilities of cooperation for the FC conditioned789

on (Ak,t−1, Bk,t), in the order of (C, c), (C, d), (D, c) and (D, d). The fusion center’s strategy vector790

is defined as pk = [pk,1 pk,2 pk,3 pk,4].791
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In any iteration round, we treat the two actions of the user and the FC as the state of the game in792

iteration t: (Ak,t, Bk,t). The strategy vectors p and q imply a Markov state transition matrix as793

Ωk =

qk,1pk,1 (1− qk,1)pk,2 qk,1(1− pk,1) (1− qk,1)(1− pk,2)
qk,2pk,1 (1− qk,2)pk,2 qk,2(1− pk,1) (1− qk,2)(1− pk,2)
qk,3pk,3 (1− qk,3)pk,4 qk,3(1− pk,3) (1− qk,3)(1− pk,4)
qk,4pk,3 (1− qk,4)pk,4 qk,4(1− pk,3) (1− qk,4)(1− pk,4)

 . (51)

Let Λk,1 be the initial state distribution of the game between the FC and user k. Analogous to the794

case with homogeneous user strategies, we define the deterministic process Λk,t as follows:795

Λk,t := Λk,1Ωt−1
k . (52)

Given Yt = yt, we use the following modified sample mean estimator:796

m̂t(yt) =
1∑K

k=1 Λk,tq>k

K∑
k=1

yk,t =
1∑K

k=1 Λk,1Ωt−1
k q>k

K∑
k=1

yk,t. (53)

The FC can form her prediction about the user’s action using the following linear classifier:797

B̂k,t (m̂t(yt), yk,t) =

{
ĉ if y>k,tm̂t >

1
2m̂
>
t m̂t + τk,t,

d̂ if y>k,tm̂t ≤ 1
2m̂
>
t m̂t + τk,t.

(54)

The detection probabilities and the false alarm rates associated to the linear classifiers can be found798

as follows:799

Φk,t := P
(
B̂k,t = ĉ

∣∣Bk,t = c
)

= 1−Q

m̂>t
(
mt −

1

2
m̂t

)
− τk,t√

m̂>t Σtm̂t

 , (55a)

Ψk,t := P
(
B̂k,t = ĉ

∣∣Bk,t = d
)

= Q

(
1
2m̂
>
t m̂t + τk,t√
ξ2
t m̂
>
t m̂t

)
. (55b)

The FC forms her estimate Φ̂k,t using m̂t:800

Φ̂k,t = 1−Q

 1
2m̂
>
t m̂t − τk,t√

m̂>t (Σt + ν2
t I) m̂t

 . (56)

Due to the errors in gradient estimations, the state transition matrices are time-varying, given by:801

Ω̃k,t = Ωk + Vk,tΩ
⊥
k with Vk,t :=

Φ̂k,t − Φk,t

Φ̂k,t −Ψk,t

(57a)

and802

Ω⊥k :=

−qk,1 (pk,1 − pk,2) 0 qk,1 (pk,1 − pk,2) 0
−qk,2 (pk,1 − pk,2) 0 qk,2 (pk,1 − pk,2) 0
−qk,3 (pk,3 − pk,4) 0 qk,3 (pk,3 − pk,4) 0
−qk,4 (pk,3 − pk,4) 0 qk,4 (pk,3 − pk,4) 0

 . (57b)

Due to the perturbations on the state transition matrix, the real state distribution Λ̃k,t is a noisy version803

of Λk,t:804

Λ̃k,t = Λk,t + Λk,1

t−1∑
i=1

ViΩ
i−1
k Ω⊥k Ωt−1−i

k . (58)

For convenience, we define Λ̃t := {Λ̃1,t, Λ̃2,t, . . . , Λ̃K,t}. Let Ft denote the σ-algebra, generated by805

{θ1, Λ̃1,Y1, . . . , θt−1, Λ̃t−1,Yt−1, θt, Λ̃t}. Observe that, we can decompose the gradient estimator806

m̂t as follows:807

m̂t(·) = mt(1 + ζt) + Et, (59)
where ζt is the estimation bias term due to the perturbations on the state transition matrices, given by808

ζt =
1

mt
(Et [m̂t]−mt) =

1

K

∑K
k=1 P(Bk,t = c|Ft)

1

K

∑K
k=1 Λk,tq>k

− 1 =

1

K

∑K
k=1 Λ̃k,tq

>
k

1

K

∑K
k=1 Λk,tq>k

− 1
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and Et is the estimation noise, given by809

Et = m̂t − Et[m̂t].

To establish convergence guarantees for the SGSU under heterogeneous user strategies in (53),810 ∑K
k=1 Λ̃k,tq

>
k and

∑K
k=1 Λk,tq

>
k must meet the following criteria during the course of the algorithm:811

Assumption 5. We assume that
1

K

∑K
k=1 Λk,tq

>
k >

1

2
and

∑K
k=1 Λ̃k,tq

>
k > 0, for all t ∈812

{1, 2, . . . , T}.813

Assumption 5 is a counterpart of Assumption 2 for the case with heterogeneous user strategies. The814

first condition requires that the average probability of user cooperation dictated by the memory-1815

strategies, in the absence of perturbations, is larger than 0.5. The second condition states that, in816

the presence of perturbations, the average probability of user cooperation always stays positive. By817

Assumption 5, there exists a positive constant HT such that818

0 < |ζt| < HT < 1, ∀t ∈ {1, . . . , T}. (60)

We have the following lemma characterizing the properties of estimation noise.819

Lemma 3. Conditioned on Ft, the estimation noise in iteration t, denoted820

Et[‖Et‖2] =
1∑K

k=1 Λk,tq>k

(
(ζt + 1)[tr(Σt) + n(ν2

t − ξ2
t )] +

nξ2
t

1
K

∑K
k=1 Λk,tq>k

)
. (61)

Proof. Conditioned on Ft, the user reports Y1,t, . . . , YK,t which are independent random vectors821

following a 2-component multivariate Gaussian mixture distribution822

fYk,t
(y) = Λ̃k,tq

>
k φ
(
y,mt,Σt + ν2

t I
)

+
[
1− Λ̃k,tq

>
]
φ
(
y,~0, ξ2

t I
)
.

According to the definition of gradient estimator, m̂t (53), we can find the distribution of m̂t as the823

following:824

m̂t(Yt) ∼
1∑

`1=0

· · ·
1∑

`K=0

[
Λ̃1,tq

>
1

]`1 [
1−Λ̃1,tq

>
1

]1−`1
· · ·
[
Λ̃K,tq

>
K

]`K [
1−Λ̃K,tq

>
K

]1−`K

×N

 mt

∑K
k=1 `k∑K

k=1 Λk,1Ωt−1q>k
,
Kξ2

t I +
(
Σt + (ν2

t − ξ2
t )I
)∑K

k=1 `k(∑K
k=1 Λk,1Ωt−1q>k

)2

 .

Thus,825

fEt(ε) =

1∑
`1=0

· · ·
1∑

`K=0

[
Λ̃1,tq

>
1

]`1 [
1−Λ̃1,tq

>
1

]1−`1
· · ·
[
Λ̃K,tq

>
K

]`K [
1−Λ̃K,tq

>
K

]1−`K

×φ

ε,mt

∑K
k=1 `k − Λ̃k,tq

>
k∑K

k=1 Λk,tq>k
,
Kξ2

t I +
(
Σt + (ν2

t − ξ2
t )I
)∑K

k=1 `k(∑K
k=1 Λk,1Ωt−1q>k

)2

 .

It follows that826

Et[Et] =

1∑
`1=0

· · ·
1∑

`K=0

[
Λ̃1,tq

>
1

]`1 [
1−Λ̃1,tq

>
1

]1−`1
· · ·
[
Λ̃K,tq

>
K

]`K [
1−Λ̃K,tq

>
K

]1−`K
×mt

∑K
k=1 `k − Λ̃k,tq

>
k∑K

k=1 Λk,tq>k
=

mt∑K
k=1 Λk,tq>k

(
K∑
k=1

Λ̃k,tq
>
k −

K∑
k=1

Λ̃k,tq
>
k

)
= ~0
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and827

Et
[
‖Et‖22

]
=tr

(
1∑

`1=0

· · ·
1∑

`K=0

[
Λ̃1,tq

>
1

]`1[
1−Λ̃1,tq

>
1

]1−̀ 1

· · ·
[
Λ̃K,tq

>
K

]`K[
1−Λ̃K,tq

>
K

]1−̀ K

× Kξ2
t I +

(
Σt + (ν2

t − ξ2
t )I
)∑K

k=1 `k(∑K
k=1 Λk,1Ωt−1q>k

)2

)
=

tr
(
Kξ2

t I +
(
Σt + (ν2

t − ξ2
t )I
)∑K

k=1 Λ̃k,tq
>
k

)
(∑K

k=1 Λk,tq>k

)2 ,

=
nKξ2

t + [tr(Σt) + n(ν2
t − ξ2

t )]
∑K
k=1 Λ̃k,tq

>
k(∑K

k=1 Λk,tq>k

)2 ,

=
1∑K

k=1 Λk,tq>k

(∑K
k=1 Λ̃k,tq

>
k∑K

k=1 Λk,tq>k
[tr(Σt) + n(ν2

t − ξ2
t )] +

nKξ2
t∑K

k=1 Λk,tq>k

)
,

=
1∑K

k=1 Λk,tq>k

(
(ζt + 1)[tr(Σt) + n(ν2

t − ξ2
t )] +

nξ2
t

1
K

∑K
k=1 Λk,tq>k

)
.

828

By (60) and (61), we have that829

Et
[
‖Et‖2

]
≤ ET

K
(62)

with830

ET :=
1∑K

k=1 Λk,tq>k

(
(HT + 1)[tr(Σt) + n(ν2

t − ξ2
t )] +

nξ2
t

1
K

∑K
k=1 Λk,tq>k

)
.
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