
Under review as a conference paper at ICLR 2021

A APPENDIX

A.1 ERMAS ALGORITHM PSEUDOCODE

Algorithm 1: ERMAS outer loop: Planner-OPT.
Result: Robust planner policy πp.
Input: Initial planner policy πp and agent policies π
for (i = 1, . . . , n) {

Update parameters of agent policies π: θ ← Agent-Adv-Search(θ);
Update planner policy πp ← πp +∇πp

Jp(πp,π);
}

Algorithm 2: ERMAS inner loop: Agent-Adv-Search.
Result: Parameters θ of agent policies.
Input: Planner policy πp, reward slack ε, trust region radius η, Lagrange multiplier λ, learning

rate αλ, number of warm-up steps k, number of overall training steps ntrain, and number of
inner learning steps ntrain;

Warm up agent policies θ with k steps of vanilla policy-gradients on −Jp(θ) +
∑N
i=1 λiJi(θ);

Copy agent parameters into placeholder parameters θ′ ← θ;
for (j = 1, . . . , ntrain) {

Execute πθ to accumulate batch of experiences B0 with mean rewards µ0;

Apply standard policy gradient: θ′ ← θ′ +∇θ

(
−Jp(θ) +

∑N
i=1 λiJi(θ)

)
;

for (i = 1, . . . , N) {
Initialize parameters: θ∗i ← θi # agent i will unilaterally deviate from πθ;
for (k = 1, . . . , ninner) {

Update θ∗i ← θ∗i + TRPO
(
θ∗i , θ−i, πp,

η
ninner

, Bk−1

)
to increase Ji(θ∗i , θ−i);

Execute πθ∗i , πθ−i
to accumulate batch of experiences Bk with mean rewards µk;

}
Approximate meta-learning correction to parameters: θ′i ← θ′i − λiθ∗i ;
Update multiplier λi ← λi − αλ (µninner,i − εi − µ0,i);

}
Copy θ ← θ′.

}

A.2 ADDITIONAL RELATED WORK

Robust Mechanism Design Mechanism design aims to design reward functions that have desir-
able equilibrium features, such as stability (Nash equilibria), truthfulness (second-price auctions),
and others (Myerson, 2016). Two-level RL can be seen as designing a mechanism (reward function
set by a planner) with adaptive agents. As such, in the two-level RL setting ERMAS learns a robust
mechanism. Robust mechanism design (Bergemann & Morris, 2005) has studied how mechanisms
can be effective even when the environment is imperfectly known. However, it is often very hard to
derive analytical solutions for (robust) mechanisms. Instead, Dütting et al. (2019) used deep learn-
ing to learn (close to) optimal auctions, while learning optimal taxes by the AI Economist (Zheng
et al., 2020) can be seen as adaptive mechanism design using two-level RL. In this sense, ERMAS
learns a robust adaptive mechanism.

Behavioral Economics Behavioral economics has studied human reward functions and how hu-
man behavior differs from that of idealized agents optimizing simple utility functions (Pesendorfer,
2006). Simon (1976) decomposed bounded rationality into substantive and procedural rational-
ity. Substantively rational agents have incorrectly reward function estimates (e.g., humans might
be more risk-averse than a simulated agent) or who require richer games to describe their them.
Procedurally rational agents are irrational agents which violate rationality assumptions or do not
maximize for their reward function (Simon & Schaeffer, 1990).

13

Under review as a conference paper at ICLR 2021

A.3 ADDITIONAL ERMAS MOTIVATION

Many behavioral models, e.g., for self-driving cars or economic policymaking, are trained using RL
in simulated environments, because real-world experiments are too expensive, infeasible, or unsafe.
However, many RL policies need to interact with other agents whose real-world behavior might
differ from that in the simulation. For example, a self-driving car trained in simulation needs to
drive in traffic with human drivers.

Often, the “reality gap” between simulated and real-world agents can be described as a difference
in reward functions, e.g., humans might be more risk-averse than AI agents. However, these reality
gaps can be hard to precisely quantify, as it is hard to learn the exact reward function of humans.
Therefore, robust agents should be robust to uncertainty about the objectives of other agents.

ERMAS is an adversarial robustness solution. ERMAS uses uncertainty sets that describe all “re-
alistic” perturbations of agent reward functions (and hence their resulting behaviors). Consider a
self-driving car in traffic. Suppose a Nash equilibrium is for all agents to drive at 70 mph, and a
self-driving car has learned in simulation all rational agents would drive at 70 mph. A robust self-
driving car needs to account for a situation where a more risk-averse human driver drives at 60 mph,
whose ‘irrational’ behavior is optimal for a reward function that is different from that used in the
simulation.

ERMAS’s uncertainty set is bounded by the requirement that the simulation’s optimal policy be
close to optimal even under a perturbed reward function. In our previous example, a “realistic”
perturbation of the driver’s risk aversion is one where driving at 70mph is not preferable but also not
unthinkable. Formally, this upper-bounds the statistical regret of driving at 70mph by some value
‘epsilon’, where the regret of a policy is defined by subtracting the policy’s reward from the optimal
policy’s reward.

The primary technical challenge of ERMAS is efficiently solving for the worst-case perturbation in
this bounded uncertainty set. It does this by dualizing the robustness objective, yielding an optimiza-
tion objective similar to constrained reinforcement learning. However, optimizing for this objective
is difficult as it requires knowing whether a given agent policy is in the uncertainty set. Following
the definitions, this requires us to estimate the statistical regret of agent policies which ERMAS
avoids by instead estimating regret only within a local region of the policy space. In our previous
example, ERMAS estimates the “realism” of a perturbation by only comparing driving at 70mph
with the options of driving between 65-75mph, rather than all possible values from 0-100mph.

14

