
A Appendix1

A.1 More experiments2

Method All Seen Similar Novel
GSNet [1] w/o R2SRepairer 42.53 61.19 47.39 19.01
GSNet [1] w R2SRepairer 43.05 61.39 48.05 19.72

Ours 48.44 66.12 54.47 24.74

Table S1: Average precision comparison on real-world data
captured by Kinect.

Further demonstration of the ad-3

vantages of real-to-sim way. Our4

R2SRepairer can mitigate camera5

noise which is beneficial for the grasp6

detector. To further validate our real-7

to-sim perspective, we also conduct8

experiment that adding R2SRepairer9

to the grasp detector [1] trained on real-world data. As shown in Table S1, after adding R2SRepairer10

(see Line 2), the grasp performance shows a modest improvement, but it still lags significantly be-11

hind our method that is trained on simulated data. This demonstrates that a large amount of simulated12

data can train a more robust grasp detector, and by utilizing our real-to-sim method, this capability13

can be effectively applied to real-world data.14
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Figure S1: Comparison of camera noise before and after R2SRepairer. Different colors in the noise
map represent different noise amplitude ranges, with amplitude measured in millimeters

Qualitative analysis of the Real-to-Sim Data Repairer. We futher demonstrate the effectiveness15

of our Real-to-Sim Data Repairer (R2SRepairer) by presenting camera noise before and after refine-16

ment. As shown in Figure S1, it is evident that the correct noise image significantly reduce noise17

compared to the initial noise image. To further demonstrate the performance of R2SRepairer, we18

compared the single-view point cloud before and after camera noise repair. As shown in Figure S2,19

after noise repair, the positional drift and structural deformation of the point cloud are mitigated,20

bridging the gap between real and simulated data.21

Qualitative analysis of structural features in memory bank. Our Real-to-Sim Feature Enhancer22

(R2SEnhancer) uses the precise structural features stored in the memory bank to enhance the real-23

world features. To visually demonstrate the semantic information of the stored structural features,24

we visualize the structures represented by these features. First, we calculate the cosine distance25

between the features of each graspable point and the stored features in the memory bank, assigning26
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Figure S2: Visualization of single-view point cloud before and after repair. Zoom in better view.

each graspable point to the nearest stored structural feature. Then, we obtain a set of graspable27

points for each stored structural feature. Based on cosine similarity, we select three distinct features28

from the memory bank and visualize their corresponding sets of graspable points. As depicted in29

Figure S3, there are obvious differences in the structure represented by the three features. The30

first feature represents sharp object structures, as shown in the first row of Figure S3, which are31

commonly found on toy legs and heads. The second feature represents planar object structures, as32

depicted in the second row, primarily seen on square boxes. The third feature represents curved33

object structures, as illustrated in the last row, appearing on various curved surfaces, with bottles34

being the most prominent.35

Qualitative analysis of grasping performance. To demonstrate that our R2SGrasp can adapt to36

real data, we use R2SGrasp to predict grasp poses on the GraspNet-1Billion test set and visualize37

the results, as shown in Figure S4. In seen and similar scenes, R2SGrasp predicts grasping poses38

with a success rate close to 100%. In novel scenes, there are some failed cases, which occur due to39

collisions or grasping at empty locations.40

A.2 Implementation details of grasp detector.41

Architecture design of grasp detector. The grasp detector in details is shown in Figure S5. We42

first randomly sample N points from the single-view point clouds generated from depth map, and43

then use a point cloud backbone to extract point-wise features with C1 dimension. The point cloud44
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Figure S3: Semantic information of the stored structural features. “Blue”, “Cyan”, “Yellow” repre-
sent the structures corresponding to the three selected structural features.
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Figure S4: Top-30 grasp poses predicted by R2SGrasp on the test set of GraspNet-1Billion. The red
gripper indicates successful grasp pose, while the blue gripper indicates failed grasp pose.

backbone adopt a Unet [2] architecture with a ResNet14 [3] encoder built upon the Minkowski45

Engine [4]. Followed by a MLP layer, we predict the object point mask Io and graspness heatmap46

Ih to select the graspable points along with their corresponding point-wise features with the shape of47

M× (C1+3), where M is the number of graspable points and 3 denotes the cartesian coordinates of48

the points. We also select the grasp view of the graspable points from the predefined 300 approaching49

vectors based on the grasp view scores sv which is also predicted by a MLP layer. Then, we perform50

cylinder grouping operation along the grasp view for each grasp point to aggregate the features of51

G neighboring points, followed by the MLP and max pooling operations to extract local structural52

features with C2 dimension. Finally, our Real-to-Sim Feature Enhancer (R2SEnhancer) refines the53
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Figure S5: Grasp detector in details

local structural features using the stored simulated features and outputs the grasp scores sg and54

widths sw shaped as M × 48, where 48 denotes the grasp candidates of the grasp points. For our55

network, we set N = 20000,M = 1024, C1 = 512, C2 = 256, G = 16.56

Loss Design. The grasp detector is trained with the following loss function:57

Lg = Lo(Io, I
∗
o ) + λ1Lh(Ih, I

∗
h) + λ2Lv(sv, s

∗
v) + λ3Ls(sg, s

∗
g) + λ4Lw(sw, s

∗
w), (1)

where Lo, Lh, Lv, Ls, Lw are used to supervise the learning of object points, graspable points, grasp58

views, grasp scores and grasp widths respectively. I∗o , I
∗
h, s

∗
v, s

∗
g, s

∗
w is the ground truth of object59

point mask, graspness heatmap, grasp view scores , grasp scores and grasp widths. Lo adopts60

binary classification loss, while others use regression loss. Due to the simplification of our grasp61

annotations, some grasp poses may lack supervision signals. Therefore, when calculating the loss,62

we ignore any predicted grasp poses that lack supervision signals.63

A.3 R2Sim dataset details64

The overall process of dataset construction is shown in Figure S6. We start by selecting 256 daily65

household objects from the Google Scanned Objects dataset [5] and the GraspNet-1Billion training66

dataset [6]. Then, we generate scenes in blenderproc [7] and simultaneously label the grasp poses of67

the objects. After that, we project object-level grasp annotations into the scenes and detect the grasp68

annotations that result in collisions. Finally, we adopt our proposed grasp annotation simplification69

method to remove ineffective grasp poses. The remaining grasps serve as scene-level annotations.70

To sum up, our R2Sim dataset comprises 500 scenes with 76,800 RGB-D images. Each scene con-71

tains approximately 14.4 million grasp annotations and each frame in every scene is also annotated72

with object segmentation maps, 6-DoF poses of objects and camera, graspness heatmap and view73

graspness. In the graspness heatmap, brighter areas indicate a higher likelihood of successful grasps.74

Similarly, higher values of view graspness also represent a greater probability of successful grasps.75

Some examples of RGB, depth map, segmentation map and graspness map are shown in Figure S7.76

A.3.1 Details of object level grasp annotation.77

We use a sampling-evaluation approach to annotate the grasp poses of objects. Grasp poses are78

determined by downsampling high-quality mesh models to ensure that the grasp points are evenly79

distributed in the voxel space. For each grasp points, 300 approach directions are sampled uniformly80

on a spherical space. Grasp candidates of each approach directions are explored on a grid defined81

by 4 gripper depths and 12 rotation angles. To sum up, there are 48 grasp candidates along each82

approach direction and 14,400 grasp candidates on each grasp point. The gripper width is adjusted83

as necessary to prevent empty grasps or collisions. We adopt analytic computation method as [6, 8]84

to grade the sampled grasp poses. The grasp scores range from 0 to 1, with higher scores indicating85

a greater likelihood of successful grasps.86

A.3.2 Details of scene level grasp annotation.87

Using the object poses, the grasp pose in object coordinate system is projected onto the world coor-88

dinate system. We detect collisions for the projected grasp poses in the scene and set the scores of89

those that collide to zero. Assuming there are N grasp points projected into the scene, we calculate90

the success rate of grasp candidates at each point, resulting in N graspness values. Using the cam-91

era’s intrinsic parameters, we convert the depth map into a single-view point cloud. We then use92

4



Selecting objects from 

open-source object 

datasets.

…

Object-level grasp pose label

Render desktop scenes to obtain 

RGB, depth, and segmentation  

in simulation

surface

inner

outer
surface

inner

outer

Detect collisions and Simplify 

annotations 
Point

filter

Vector

filter

Scene-level grasp pose label

Figure S6: Overview of data generation pipline.
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Figure S7: Display of RGB, depth map, segmentation mask and graspness heatmap in our simulated
dataset.

the K-NN algorithm to match the grasp points in the scene, assigning each point in the point cloud93

the corresponding graspness value. This value is then back-projected into the image to create the94

graspness heatmap. Similarly, we calculate the success rate of grasp candidates along each approach95

direction and using this as the view-graspness. We also make further simplification of grasp pose96

annotation to improve training efficiency.97
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A.3.3 Scene generation.98

We automated the construction of cluttered desktop scenes using Blenderproc [7]. We first construct99

a simple indoor scene with a table placed at the center. Textures for the table, floor, and walls are100

chosen randomly from specific material categories provided on AmbientCG. The lighting setup of101

the scene is randomized as well, with practical adjustments to intensity and variations in light color102

to improve visual clarity and accuracy. Then, we choose a variable number of objects ranging from103

7 to 10 from our object pool and place on the table. To create sufficiently cluttered scenes, we place104

the objects 1.5 meters above the table and allow them to fall naturally onto the surface. Finally, we105

set 128 camera poses to capture RGB-D images from multi views, where the poses are randomly106

sampled on the upper hemisphere, with a radius of 1.1 meters centered on the objects’ region. Based107

on the above setup, we obtain RGB-D images, object segmentation maps, object poses, and camera108

poses from different angles efficiently.109

A.3.4 Analysis of simplified annotation.110

Metrics Simplified Non-Simplified
Average Precision(%) 35.94 33.68
Run Time(epoch/h) 5.64 21.17
Memory Usage(GB) 7.50 48.41
GPU Memory Usage(GB) 4.43 9.77
Storage Usage(GB) 15 72.44

Table S2: Compare metircs between simplified and non-
simplified annotations.

To demonstrate the advantage of sim-111

plified annotation, we compare the sim-112

plified and non-simplified annotations113

across multiple metrics. The average114

precision measures the performance of115

grasp detector trained on 300 scenes116

selected from R2Sim dataset. Except117

for the average accuracy, all other met-118

rics are evaluated on the entire R2Sim119

dataset. As shown in Table S2, following the simplification of annotations, there are a notable in-120

crease of 2.26 AP. We believe that this improvement is due to the simplified annotations alleviating121

the imbalance between positive and negative samples present in the original annotations, where122

positive samples made up less than 2% of the total according to statistics. Moreover, after simpli-123

fying the annotations, the program’s runtime, memory usage, and GPU usage decrease by 73.36%,124

84.51%, and 54.66%, respectively, and the storage usage for the entire dataset annotation decrease125

by 79.29%. This simplified annotation method is crucial for constructing a large-scale dataset, as it126

reduces the burden of data storage and neural network training.127
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