w M = O O o N o o A~ W

>

15
16
17
18
19
20
21

22
23
24
25
26

A Appendix

A.1 More experiments

Further demonstratlf)n of the ad- Niehod AT Seon Similar Novel
vantages of real-to-sim way. Our ~GSNet [1] w/o R2SRepairer | 42.53 61.19 4739 19.01
R2SRepairer can mitigate camera GSNet [1] w R2SRepairer | 43.05 61.39 48.05 19.72
noise which is beneficial for the grasp Ours 48.44 66.12 5447 2474
dete.ctor. To futher validate our real- mapje §1: Average precision comparison on real-world data
to-sim perspective, we also conduct captured by Kinect.

experiment that adding R2SRepairer

to the grasp detector [1] trained on real-world data. As shown in Table S1, after adding R2SRepairer
(see Line 2), the grasp performance shows a modest improvement, but it still lags significantly be-
hind our method that is trained on simulated data. This demonstrates that a large amount of simulated
data can train a more robust grasp detector, and by utilizing our real-to-sim method, this capability
can be effectively applied to real-world data.

After Repair Before Repair RGB

RGB

After Repair Before Repair

N o-10mm [20-20mm [20~20mm [40-80mm 80~150mm 150mm-~

Figure S1: Comparison of camera noise before and after R2SRepairer. Different colors in the noise
map represent different noise amplitude ranges, with amplitude measured in millimeters

Qualitative analysis of the Real-to-Sim Data Repairer. We futher demonstrate the effectiveness
of our Real-to-Sim Data Repairer (R2SRepairer) by presenting camera noise before and after refine-
ment. As shown in Figure S1, it is evident that the correct noise image significantly reduce noise
compared to the initial noise image. To further demonstrate the performance of R2SRepairer, we
compared the single-view point cloud before and after camera noise repair. As shown in Figure S2,
after noise repair, the positional drift and structural deformation of the point cloud are mitigated,
bridging the gap between real and simulated data.

Qualitative analysis of structural features in memory bank. Our Real-to-Sim Feature Enhancer
(R2SEnhancer) uses the precise structural features stored in the memory bank to enhance the real-
world features. To visually demonstrate the semantic information of the stored structural features,
we visualize the structures represented by these features. First, we calculate the cosine distance
between the features of each graspable point and the stored features in the memory bank, assigning

27
28
29
30
31
32
33
34
35

36
37
38
39
40

41

42
43
44

Before Repair

After Repair

Before Repair

After Repair

Figure S2: Visualization of single-view point cloud before and after repair. Zoom in better view.

each graspable point to the nearest stored structural feature. Then, we obtain a set of graspable
points for each stored structural feature. Based on cosine similarity, we select three distinct features
from the memory bank and visualize their corresponding sets of graspable points. As depicted in
Figure S3, there are obvious differences in the structure represented by the three features. The
first feature represents sharp object structures, as shown in the first row of Figure S3, which are
commonly found on toy legs and heads. The second feature represents planar object structures, as
depicted in the second row, primarily seen on square boxes. The third feature represents curved
object structures, as illustrated in the last row, appearing on various curved surfaces, with bottles
being the most prominent.

Qualitative analysis of grasping performance. To demonstrate that our R2SGrasp can adapt to
real data, we use R2SGrasp to predict grasp poses on the GraspNet-1Billion test set and visualize
the results, as shown in Figure S4. In seen and similar scenes, R2SGrasp predicts grasping poses
with a success rate close to 100%. In novel scenes, there are some failed cases, which occur due to
collisions or grasping at empty locations.

A.2 Implementation details of grasp detector.

Architecture design of grasp detector. The grasp detector in details is shown in Figure S5. We
first randomly sample N points from the single-view point clouds generated from depth map, and
then use a point cloud backbone to extract point-wise features with C'; dimension. The point cloud

45
46
47
48
49
50
51
52
53

Cyan Blue

Yellow

Figure S3: Semantic information of the stored structural features. “Blue”, “Cyan”, “Yellow” repre-
sent the structures corresponding to the three selected structural features.

Seen

Similar

Novel

Figure S4: Top-30 grasp poses predicted by R2SGrasp on the test set of GraspNet-1Billion. The red
gripper indicates successful grasp pose, while the blue gripper indicates failed grasp pose.

backbone adopt a Unet [2] architecture with a ResNetl4 [3] encoder built upon the Minkowski
Engine [4]. Followed by a MLP layer, we predict the object point mask I, and graspness heatmap
I}, to select the graspable points along with their corresponding point-wise features with the shape of
M x (C1+3), where M is the number of graspable points and 3 denotes the cartesian coordinates of
the points. We also select the grasp view of the graspable points from the predefined 300 approaching
vectors based on the grasp view scores s,, which is also predicted by a MLP layer. Then, we perform
cylinder grouping operation along the grasp view for each grasp point to aggregate the features of
G neighboring points, followed by the MLP and max pooling operations to extract local structural
features with C5 dimension. Finally, our Real-to-Sim Feature Enhancer (R2SEnhancer) refines the

54
55
56

57

58
59
60
61
62
63

64

65
66
67
68
69
70
71
72
73
74
75
76

77

78
79
80
81
82
83
84
85
86

87

88
89
90
91
92

@ Select points

MLP S
LS Rres |
pooling |= Enhancer
T Select view
\‘l_ = i oY BB
v] 4\— Cylinder grouping Local features scores & widths
A

Figure S5: Grasp detector in details

% (C; +3)
X (48x 2)

Point encoder
Point decoder

M

M x Gx (C, +3)

Point clouds

local structural features using the stored simulated features and outputs the grasp scores s, and
widths s,, shaped as M x 48, where 48 denotes the grasp candidates of the grasp points. For our
network, we set N = 20000, M = 1024, Cy = 512,C5 = 256, G = 16.

Loss Design. The grasp detector is trained with the following loss function:
Ly = Lo(Io, I5) + M Ln(In, I) + X2 Ly(50, 83) + A3Ls(8g, 55) + ALy (5w, 53,), (D)

where L, Ly, L, Ls, L,, are used to supervise the learning of object points, graspable points, grasp
views, grasp scores and grasp widths respectively. 17, I}, s7, sg, sy, is the ground truth of object
point mask, graspness heatmap, grasp view scores , grasp scores and grasp widths. L, adopts
binary classification loss, while others use regression loss. Due to the simplification of our grasp
annotations, some grasp poses may lack supervision signals. Therefore, when calculating the loss,

we ignore any predicted grasp poses that lack supervision signals.

A.3 R2Sim dataset details

The overall process of dataset construction is shown in Figure S6. We start by selecting 256 daily
household objects from the Google Scanned Objects dataset [5] and the GraspNet-1Billion training
dataset [6]. Then, we generate scenes in blenderproc [7] and simultaneously label the grasp poses of
the objects. After that, we project object-level grasp annotations into the scenes and detect the grasp
annotations that result in collisions. Finally, we adopt our proposed grasp annotation simplification
method to remove ineffective grasp poses. The remaining grasps serve as scene-level annotations.
To sum up, our R2Sim dataset comprises 500 scenes with 76,800 RGB-D images. Each scene con-
tains approximately 14.4 million grasp annotations and each frame in every scene is also annotated
with object segmentation maps, 6-DoF poses of objects and camera, graspness heatmap and view
graspness. In the graspness heatmap, brighter areas indicate a higher likelihood of successful grasps.
Similarly, higher values of view graspness also represent a greater probability of successful grasps.
Some examples of RGB, depth map, segmentation map and graspness map are shown in Figure S7.

A.3.1 Details of object level grasp annotation.

We use a sampling-evaluation approach to annotate the grasp poses of objects. Grasp poses are
determined by downsampling high-quality mesh models to ensure that the grasp points are evenly
distributed in the voxel space. For each grasp points, 300 approach directions are sampled uniformly
on a spherical space. Grasp candidates of each approach directions are explored on a grid defined
by 4 gripper depths and 12 rotation angles. To sum up, there are 48 grasp candidates along each
approach direction and 14,400 grasp candidates on each grasp point. The gripper width is adjusted
as necessary to prevent empty grasps or collisions. We adopt analytic computation method as [6, 8]
to grade the sampled grasp poses. The grasp scores range from 0 to 1, with higher scores indicating
a greater likelihood of successful grasps.

A.3.2 Details of scene level grasp annotation.

Using the object poses, the grasp pose in object coordinate system is projected onto the world coor-
dinate system. We detect collisions for the projected grasp poses in the scene and set the scores of
those that collide to zero. Assuming there are N grasp points projected into the scene, we calculate
the success rate of grasp candidates at each point, resulting in N graspness values. Using the cam-
era’s intrinsic parameters, we convert the depth map into a single-view point cloud. We then use

93
94
95
96
97

Selecting objects from Object-level grasp pose label Scene-level grasp pose label
open-source object _ e

datasets.
@40 B

}_ - A % Render desktop scenes to obtain f
g RGB, depth, and segmentation Detect collisions and Simplify

é@ f@(B[annotations
=V w
@ g ™ a&
1

| oo]
Lo &

yoofoxd

Depth RGB

Mask

RGB Heatmap

Depth

Mask

Heatmap

Figure S7: Display of RGB, depth map, segmentation mask and graspness heatmap in our simulated
dataset.

the K-NN algorithm to match the grasp points in the scene, assigning each point in the point cloud
the corresponding graspness value. This value is then back-projected into the image to create the
graspness heatmap. Similarly, we calculate the success rate of grasp candidates along each approach
direction and using this as the view-graspness. We also make further simplification of grasp pose
annotation to improve training efficiency.

98

99

101
102
103
104

106
107
108
109

110

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

A.3.3 Scene generation.

We automated the construction of cluttered desktop scenes using Blenderproc [7]. We first construct
a simple indoor scene with a table placed at the center. Textures for the table, floor, and walls are
chosen randomly from specific material categories provided on AmbientCG. The lighting setup of
the scene is randomized as well, with practical adjustments to intensity and variations in light color
to improve visual clarity and accuracy. Then, we choose a variable number of objects ranging from
7 to 10 from our object pool and place on the table. To create sufficiently cluttered scenes, we place
the objects 1.5 meters above the table and allow them to fall naturally onto the surface. Finally, we
set 128 camera poses to capture RGB-D images from multi views, where the poses are randomly
sampled on the upper hemisphere, with a radius of 1.1 meters centered on the objects’ region. Based
on the above setup, we obtain RGB-D images, object segmentation maps, object poses, and camera
poses from different angles efficiently.

A.3.4 Analysis of simplified annotation.

To demonstrate the advantage of sim-

. . . Metrics Simplified Non-Simplified
plified annotation, we compare the sim- Average Precision(%) 35.04 33.68
plified and non-simplified annotations Run Time(epoch/h) 5.64 21.17
across multiple metrics. The average = Memory Usage(GB) 7.50 48.41
precision measures the performance of ~ GPU Memory Usage(GB) 4.43 9.71

Storage Usage(GB) 15 72.44

grasp detector trained on 300 scenes
selected from R2Sim dataset. Except Table S2: Compare metircs between simplified and non-
for the average accuracy, all other met- simplified annotations.

rics are evaluated on the entire R2Sim

dataset. As shown in Table S2, following the simplification of annotations, there are a notable in-
crease of 2.26 AP. We believe that this improvement is due to the simplified annotations alleviating
the imbalance between positive and negative samples present in the original annotations, where
positive samples made up less than 2% of the total according to statistics. Moreover, after simpli-
fying the annotations, the program’s runtime, memory usage, and GPU usage decrease by 73.36%),
84.51%, and 54.66%, respectively, and the storage usage for the entire dataset annotation decrease
by 79.29%. This simplified annotation method is crucial for constructing a large-scale dataset, as it
reduces the burden of data storage and neural network training.

128

129
130
131

132
133

134
135

136
137
138

139
140
141

142
143
144

145
146
147

148
149

References

[1] C. Wang, H.-S. Fang, M. Gou, H. Fang, J. Gao, and C. Lu. Graspness discovery in clutters for
fast and accurate grasp detection. In IEEE/CVF International Conference on Computer Vision,
2021.

[2] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image
segmentation. In Medical image computing and computer-assisted intervention, 2015.

[3] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In IEEE
conference on computer vision and pattern recognition, 2016.

[4] C.Choy, J. Gwak, and S. Savarese. 4d spatio-temporal convnets: Minkowski convolutional neu-
ral networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2019.

[5] L. Downs, A. Francis, N. Koenig, B. Kinman, R. Hickman, K. Reymann, T. B. McHugh, and
V. Vanhoucke. Google scanned objects: A high-quality dataset of 3d scanned household items.
In IEEE International Conference on Robotics and Automation, 2022.

[6] H.-S. Fang, C. Wang, M. Gou, and C. Lu. Graspnet-1billion: A large-scale benchmark for
general object grasping. In IEEE/CVF conference on computer vision and pattern recognition,
2020.

[71 M. Denninger, D. Winkelbauer, M. Sundermeyer, W. Boerdijk, M. Knauer, K. H. Strobl,
M. Humt, and R. Triebel. Blenderproc2: A procedural pipeline for photorealistic rendering.
Journal of Open Source Software, 2023.

[8] V.-D. Nguyen. Constructing force-closure grasps. The International Journal of Robotics Re-
search, 1988.

	Appendix
	More experiments
	Implementation details of grasp detector.
	R2Sim dataset details
	Details of object level grasp annotation.
	Details of scene level grasp annotation.
	Scene generation.
	Analysis of simplified annotation.

