
A Linear regression for impulse response433

In this section we prove Theorem 4.2: under iid gaussian inputs, we can obtain high-probability434

error bounds for the transfer function of the learned impulse response inℋ∞ norm. Moreover, these435

bounds kick in as soon as we have ̃︀Ω(𝐿) samples from a single rollout. We note that analyzing the436

multiple-rollout setting as in [SOF20] is more straightforward, so we will not consider it here.437

The main difficulty for analyzing linear regression is that the inputs are correlated. The most chal-438

lenging step is to lower-bound the sample covariance matrix of inputs to the linear regression.439

In the SISO setting, [DMR19] give concentration bounds for the covariance matrix with 𝑇 = ̃︀Ω(𝐿)440

timesteps. First, we extend this to the MIMO case in Theorem A.2 (Note that [OO19] consider the441

MIMO case but have extra log factors.) Then, we use Gaussian suprema arguments as in [TBPR17]442

to obtain bounds for the transfer function inℋ∞ norm (Lemma A.6).443

We suppose the inputs 𝑢(0), . . . , 𝑢(𝑇 − 1) ∼ 𝑁(0, 𝐼𝑑𝑢) are iid, observe 𝑦(0), . . . , 𝑦(𝑇 − 1) ∈ R𝑑𝑦 ,444

and perform linear regression on the finite impulse response 𝐹 : {0, 1, . . . , 𝐿} → R𝑑𝑦×𝑑𝑢 (which445

we will also treat as an element of R(𝐿+1)×𝑑𝑦×𝑑𝑢 without further comment).446

Recall that given a sequence (𝐹 (𝑡))𝑎−1
𝑡=0 where each 𝐹 (𝑡) ∈ C𝑚×𝑛, the Toeplitz matrix is given by447

Toep𝑎×𝑏(𝐹 ) =

⎡⎢⎢⎣
𝐹 (0) 0 · · · 0
𝐹 (1) 𝐹 (0) · · · 0
...

...
. . .

...
𝐹 (𝑎− 1) 𝐹 (𝑎− 2) · · ·

⎤⎥⎥⎦ ∈ C𝑎𝑚×𝑏𝑛.

SISO setting. For simplicity, first consider the SISO setting: 𝑑𝑢 = 𝑑𝑦 = 1 and 𝜂(𝑡) ∼ 𝑁(0, 1).448

In this case, we learn a finite impulse response 𝑓 ∈ R𝐿+1 by minimizing the loss function449

‖𝑦 − 𝑢 * 𝑓‖2[0,𝑇−1] =

𝑇−1∑︁
𝑡=0

⃦⃦⃦
𝑦(𝑡)− 𝑢⊤

𝑡:𝑡−𝐿𝑓
⃦⃦⃦2

= ‖𝑦0:𝑇−1 − 𝑈𝑓‖2 (9)

where we let 𝑦0:𝑇−1 denote the vertical concatenation of 𝑦(0), . . . , 𝑦(𝑇−1) and similarly for 𝑢𝑡:𝑡−𝐿,450

and let 𝑈 = Toep𝑇×(𝐿+1)((𝑢(𝑡))𝑡≥0). We set 𝑢(𝑡) = 0 for 𝑡 < 0. Solving the least-squares451

problem gives452

𝑓 = (𝑈⊤𝑈)−1𝑈⊤𝑦0:𝑇−1.

Suppose that the data is generated as 𝑦 = 𝑓* * 𝑢 + 𝜂 where 𝜂(𝑡) ∼ 𝑁(0, 1) are independent and 𝑓*453

is supported on [0, 𝐿]. Later, we will consider the effect of truncating an infinite response. We abuse454

notation by considering 𝑓, 𝑓* both as functions Z→ R and as vectors in R𝐿+1, as they are supported455

in [0, 𝐿]. Similarly, we consider 𝑦, 𝜂 as vectors in R𝑇 . Then as vectors in R𝑇 , 𝑦 = 𝑈𝑓* + 𝜂. Hence456

the error is457

𝑓 − 𝑓* = (𝑈⊤𝑈)−1𝑈⊤(𝑈𝑓* + 𝜂)− 𝑓* = (𝑈⊤𝑈)−1𝑈⊤𝜂

Because 𝜂 has iid Gaussian entries,458

𝑓 − 𝑓* ∼ 𝑁(0, (𝑈⊤𝑈)−1).

To bound this, we need to bound
⃦⃦
(𝑈⊤𝑈)−1

⃦⃦
, and hence bound the smallest singular value of 𝑈⊤𝑈 .459

Notation for MIMO setting. For a vector or matrix-valued function 𝐹 : {𝑎, 𝑎 + 1, . . . , 𝑏} →460

C𝑑1×𝑑2 , define461

𝑀𝐹,𝑎:𝑏 =

Ö
𝐹 (𝑎)⊤

...
𝐹 (𝑏)⊤

è
∈ C(𝑏−𝑎+1)𝑑2×𝑑1

with the indices omitted if they are clear from context.462

14



MIMO setting. In the general case, we would like to learn 𝐹 = (𝐹 (𝑡) ∈ R𝑑𝑦×𝑑𝑢)𝐿𝑡=0 ∈463

R(𝐿+1)×𝑑𝑦×𝑑𝑢 . Now suppose the data is generated as464

𝑦 = 𝐹 * * 𝑢 + 𝐺* * 𝜉 + 𝜂

where 𝐹 *, 𝐺* are supported on [0,∞) and 𝜂(𝑡) ∼ 𝑁(0,Σ𝑦), 𝜉(𝑡) ∼ 𝑁(0,Σ𝑥), 𝑡 ≥ 0 are indepen-465

dent. Let 𝑈 = Toep𝑇×(𝐿+1)((𝑢(𝑡)⊤)𝑇−1
𝑡=0 ) as before. Truncating 𝐹 * and 𝐺*, we have466

𝑦 = (𝐹 *
1[0,𝐿]) * 𝑢 + (𝐺*

1[0,𝐿]) * 𝜉 + 𝜂 + 𝑒

where 𝑒(𝑡) = (𝐹 *
1[𝐿+1,∞)) * 𝑢 + (𝐺*

1[𝐿+1,∞)) * 𝜉.

Thus, by taking the transpose and stacking vectors,467

𝑀𝑦,0:𝑇−1 = 𝑈𝑀𝐹*,0:𝐿−1 + 𝑊𝑀𝐺*,0:𝐿−1 + 𝑀𝜂,0:𝑇−1 + 𝑀𝑒,0:𝑇−1

where 𝑊 = Toep𝑇×(𝐿+1)((𝜉(𝑡))⊤).

The least squares solution 𝐹 minimizes ‖𝑌 − 𝑈𝑀𝐹 ‖2F, so and the error is468

𝑀𝐹 −𝑀𝐹* = (𝑈⊤𝑈)−1𝑈⊤𝑀𝜂 + (𝑈⊤𝑈)−1𝑈⊤𝑊𝑀𝐺* + (𝑈⊤𝑈)−1𝑀𝑒. (10)

A.1 Lower bounding sample covariance matrix469

In this subsection we lower bound the sample covariance matrix.470

Lemma A.1. There is a constant 𝐶 such that the following holds. Let 𝑢(𝑡) ∼ 𝑁(0, 𝐼𝑑𝑢) and471

𝑈 = Toep𝑇×(𝐿+1)((𝑢(𝑡)⊤)𝑡≥0). Then for 0 < 𝛿 ≤ 1
2 , 𝑇 ≥ 𝐶1𝐿𝑑𝑢 log

(︀
𝐿𝑑𝑢
𝛿

)︀
,472

P
Å
𝜎min(𝑈⊤𝑈) ≥ 𝑇

2

ã
≥ 1− 𝛿.

This is a corollary of the following concentration bound, which generalizes Theorem 3.4473

of [DMR19] to the MIMO setting. The main additional ingredient is an 𝜀-net argument to reduce to474

the analysis of the SISO case. We also swap out the chaining argument with a use of Lemma A.4,475

which allows a shorter proof.476

Theorem A.2. There is 𝐶 such that the following holds. Suppose 𝑢(𝑡), 0 ≤ 𝑡 < 𝑇 are independent,477

zero-mean, and 𝐾-sub-gaussian (see Definition C.1), and let 𝑈 = Toep𝑇×(𝐿+1)((𝑢(𝑡)⊤)𝑡≥0). Then478

for 0 < 𝛿 ≤ 1
2 , 𝑇 ≥ 𝐿,479 ⃦⃦⃦

𝑈⊤𝑈 − 𝑇𝐼𝑑𝑢

⃦⃦⃦
≤ 𝐶𝐾2

Ç
𝐿𝑑𝑢 log

Å
𝑇

𝛿

ã
+

 
𝑇𝐿𝑑𝑢 log

Å
𝑇

𝛿

ãå
with probability ≥ 1− 𝛿.480

We first note the fact that infinite Toeplitz matrices become diagonal in the Fourier basis.481

Lemma A.3. Consider the infinite block Toeplitz matrix (𝑍(𝑗− 𝑘))𝑗,𝑘∈Z ∈ C(Z×𝑑1)×(Z×𝑑2), where482

𝑍 is a function Z → C𝑑1×𝑑2 . In the Fourier basis, it is given by the kernel ̂︀𝑍(𝜔1)1𝜔1=𝜔2 . That is,483

if 𝑣 : Z→ R𝑑2 , ‖𝑍‖1 , ‖𝑣‖1 <∞, then letting484

𝑤(𝑗) =
∑︁
𝑘

𝑍(𝑗 − 𝑘)𝑣(𝑘),

we have485

̂︀𝑤(𝜔) = ̂︀𝑍(𝜔)̂︀𝑣(𝜔).

Here, ̂︀𝑍(𝜔) is called the multiplication polynomial of the matrix.486

Proof. Simply note that 𝑤 = 𝑍 * 𝑣 and so ̂︀𝑤 = ̂︀𝑍̂︀𝑣.487
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We will use the following lemma in order to bound the maximum of the Fourier transform by the488

maximum at a finite number of points.489

Lemma A.4 ([BTR13]). Let 𝑄(𝑧) :=
∑︀𝑟−1
𝑘=0 𝑎𝑘𝑧

𝑘, where 𝑎𝑘 ∈ C. For any 𝑁 ≥ 4𝜋𝑟, ‖𝑄‖ℋ∞
≤490 (︀

1 + 4𝜋𝑟
𝑁

)︀
max𝑗=0,...,𝑁−1 |𝑄(𝑒

2𝜋𝑖𝑗
𝑁 )|.491

Proof of Theorem A.2. By rescaling we may suppose 𝐾 = 1. Decompose492

𝑈 = 𝑈1 + 𝑈2 where (11)

𝑈1 =

à
𝑢(0)⊤ 0

...
. . . 𝑢(0)⊤

𝑢(𝑇 − 𝐿− 1)⊤
. . .

...
0 𝑢(𝑇 − 𝐿− 1)⊤

í

𝑈2 =

à
0 · · · · · · 0

𝑢(𝑇 − 𝐿)⊤
...

...
. . .

...
𝑢(𝑇 − 1)⊤ · · · 𝑢(𝑇 − 𝐿)⊤ 0

í
.

Then493

𝑈⊤𝑈 = (𝑇 − 𝐿)𝐼𝐿𝑑𝑢 + (𝑈⊤
1 𝑈1 − (𝑇 − 𝐿)𝐼𝐿𝑑𝑢) + 𝑈⊤

1 𝑈2 + 𝑈⊤
2 𝑈1 + 𝑈⊤

2 𝑈2. (12)

Let T be the shift operator on functions: T𝑓(𝑡) = 𝑓(𝑡−1). Let 𝑇 ′ = 𝑇−𝐿 and let 𝑢(1) = 𝑢1[0,𝑇 ′−1].494

Then the (𝑗, 𝑘)th block of 𝑈⊤
1 𝑈1 is495

(𝑈⊤
1 𝑈1)𝑗𝑘 =

∑︁
𝑡∈Z

(T𝑗𝑢(1))(𝑡)(T𝑘𝑢(1))(𝑡)⊤

Define the infinite block Toeplitz matrix in R(Z×𝑑𝑢)×(Z×𝑑𝑢) by

𝑍𝑗𝑘 =

𝑇∑︁
𝑡=1

(T𝑗𝑢(1))(𝑡)(T𝑘𝑢(1))(𝑡)⊤1|𝑗−𝑘|≤𝐿 − 𝑇 ′𝐼Z×𝑑𝑢 .

By Lemma A.3, the multiplication polynomial of this matrix is496

𝑃𝑢(𝜔) =

𝐿∑︁
ℓ=−𝐿

∑︁
𝑡∈Z

(Tℓ𝑢(1))(𝑡)𝑢(1)(𝑡)⊤𝑒−2𝜋𝑖ℓ𝜔 − 𝑇 ′𝐼𝑑𝑢

=
∑︁

𝑗, 𝑘 ∈ Z
|𝑗 − 𝑘| ≤ 𝐿

𝑢(𝑗)𝑢(𝑘)⊤𝑒2𝜋𝑖(𝑗−𝑘)𝜔 − 𝑇 ′𝐼𝑑𝑢

= (𝑢(0) · · · 𝑢(𝑇 ′ − 1))𝑀

Ñ
𝑢(0)⊤

· · ·
𝑢(𝑇 ′ − 1)⊤

é
− 𝑇 ′𝐼𝑑𝑢 (13)

where 𝑀 ∈ CZ×Z is the matrix with 𝑀𝑗𝑘 = 𝑒2𝜋𝑖(𝑗−𝑘)𝜔1|𝑗−𝑘|≤𝐿. In order to work with a scalar-497

valued function, we consider for ‖𝑣‖ = 1498

𝑣⊤𝑃𝑢(𝜔)𝑣 =
∑︁

𝑗,𝑘∈{0,...,𝑇 ′−1}

⟨𝑣, 𝑢(𝑗)⟩ ⟨𝑣, 𝑢(𝑘)⟩ 𝑒2𝜋𝑖𝜔(𝑗−𝑘)1|𝑗−𝑘|≤𝐿 − 𝑇 ′ ‖𝑣‖2 .

By Lemma A.3,499 ⃦⃦⃦
𝑈⊤
1 𝑈1 − 𝑇 ′𝐼𝑇𝑑𝑢

⃦⃦⃦
≤ ‖𝑍 − 𝑇 ′𝐼Z‖ ≤ ‖𝑃𝑢(𝜔)‖ℋ∞

.
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Taking 𝑁 = ⌈8𝜋𝐿⌉ and noting 𝑒2𝜋𝑖𝜔𝐿𝑃 (𝜔) is a polynomial of degree at most 2𝐿 in 𝑒2𝜋𝑖𝜔 , we have500

‖𝑃𝑢(𝜔)‖ℋ∞
= sup
𝜔∈[0,1]

‖𝑃𝑢(𝜔)‖ = sup
‖𝑣‖=1

sup
𝜔∈[0,1]

|𝑣⊤𝑃𝑢(𝜔)𝑣|

= sup
‖𝑣‖=1

2 max
𝜔∈{0, 1

𝑁 ,··· }
|𝑣⊤𝑃𝑢(𝜔)𝑣| by Lemma A.4

= 2 max
𝜔∈{0, 1

𝑁 ,··· }

Ç
sup
𝑣∈𝒩𝜀

|𝑣⊤𝑃𝑢(𝜔)𝑣|+ 3𝜀 ‖𝑃𝑢(𝜔)‖
å

(14)

where 𝒩𝜀 is an 𝜀-net of the unit sphere in R𝑑. (For arbitrary 𝑣′ with ‖𝑣′‖ = 1, write 𝑣 = 𝑣 + ∆𝑣501

where 𝑣 ∈ 𝒩𝜀 and ‖∆𝑣‖ ≤ 𝜀.) We first bound 𝑣⊤𝑃 (𝜔)𝑣. Letting 𝑤 ∈ R𝑇 ′
be the vector with502

entries 𝑤(𝑗) = ⟨𝑣, 𝑢(𝑗)⟩, we have503

𝑣⊤𝑃𝑢(𝜔)𝑣 = 𝑤⊤𝑀𝑤 − 𝑇 ′ ‖𝑣‖2 .

Fix 𝑣. Because each 𝑢(𝑡) is independent 1-subgaussian, each entry of 𝑤 is 1-subgaussian. By the504

Hanson-Wright inequality (Theorem C.3), for some constant 𝑐 > 0,505

P(|𝑣⊤𝑃𝑢(𝜔)𝑣| > 𝑠) ≤ 2 exp

ñ
−𝑐 ·min

®
𝑠2

‖𝑀‖2F
,

𝑠

‖𝑀‖

´ô
.

We calculate that ‖𝑀‖2F ≤ (2𝐿 + 1)𝑇 and the Fourier transform of the function 𝑒2𝜋𝑖𝜔𝑡1|𝑗−𝑘|≤𝐿506

satisfies
⃦⃦⃦ ̂︀𝑓 ⃦⃦⃦

∞
≤ ‖𝑓‖1 ≤ 2𝐿 + 1, so by Lemma A.3, ‖𝑀‖ ≤ 2𝐿 + 1. Then for appropriate 𝐶,507

P
Ç
|𝑣⊤𝑃𝑢(𝜔)𝑣| > 𝐶

Ç 
𝑇𝐿 log

Å
1

𝛿1

ã
+ 𝐿 log

Å
1

𝛿1

ãåå
≤ 𝛿1.

Next we bound ‖𝑃𝑢(𝜔)‖ and choose 𝜀 appropriately. A crude bound with Markov’s inequality508

suffices to bound ‖𝑃𝑢(𝜔)‖. We have (because the second moment is at most the sub-gaussian509

constant)510

E ‖(𝑢(0) · · · 𝑢(𝑇 ′ − 1))‖2F ≤ E
𝑑𝑢∑︁
𝑗=1

𝑇 ′−1∑︁
𝑡=0

⟨𝑒𝑗 , 𝑢(𝑡)⟩2 ≤ 𝑑𝑢𝑇
′

so with probability ≥ 1 − 𝛿2, ‖(𝑢(0) · · · 𝑢(𝑇 ′ − 1))‖2F ≤
𝑑𝑢𝑇

′

𝛿2
. Hence, for every 𝜔 ∈ [0, 1],511

by (13),512

‖𝑃𝑢(𝜔) + 𝑇 ′𝐼𝑑𝑢‖ ≤ ‖(𝑢(0) · · · 𝑢(𝑇 ′ − 1))‖2F ‖𝑀‖ ≤
𝑑𝑢𝑇

′

𝛿2
2𝐿.

Choose 𝜀 = 𝛿2
2𝑑𝑢𝐿𝑇

. Then with probability ≥ 1− 𝛿2, we have513

sup
𝜔∈[0,1]

3𝜀 ‖𝑃𝑢(𝜔)‖ ≤ 3 · 𝛿2
2𝑑𝑢𝐿𝑇

·
Å
𝑑𝑢𝑇

′

𝛿2
2𝐿 + 𝑇 ′

ã
≤ 4.5.

Now take 𝛿1 = 𝛿
2 . By Cor. 4.2.13 of [Ver18], there is an 𝜀-net of size |𝒩𝜀| ≤

(︀
1 + 2

𝜀

)︀𝑑𝑢 =514

exp
(︀
𝑑𝑢 log

(︀
1 + 2

𝜀

)︀)︀
= exp

(︀
𝑑𝑢 log

(︀
1 + 8𝑑𝑢𝐿𝑇

𝛿

)︀)︀
. Letting 𝛿1 = 𝛿

2|𝒩𝜀| and taking a union bound,515

with probability 1− 𝛿 we get516

(14) ≤ 𝐶

Ç 
𝑇𝐿𝑑 log

Å
𝑇

𝛿

ã
+ 𝐿𝑑 log

Å
𝑇

𝛿

ãå
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Next consider the term 𝑈⊤
1 𝑈2. Let 𝑢(1) = 𝑢1[0,𝑇 ′−1], 𝑢(2) = 𝑢1[𝑇 ′,𝑇−1]. This is part of the infinite517

Toeplitz matrix with 𝑍𝑗𝑘 =
∑︀
𝑡∈Z(T𝑗𝑢(1))(𝑡)(𝑇 𝑘𝑢(2))(𝑡)⊤1|𝑗−𝑘|≤𝐿−1. In the Fourier basis,518

𝑃𝑢,12(𝜔) =
∑︁

𝑗, 𝑘 ∈ Z
|𝑗 − 𝑘| ≤ 𝐿

∑︁
𝑡∈Z

𝑒−2𝜋𝑖𝑗𝜔(T𝑗𝑢(1))(𝑡)(T𝑘𝑢(2))(𝑡)⊤𝑒2𝜋𝑖𝑘𝜔

∑︁
𝑗, 𝑘 ∈ Z

|𝑗 − 𝑘| ≤ 𝐿

1[0,𝑇 ′−1](𝑗)1[𝑇−𝐿,𝑇−1](𝑘)𝑒2𝜋𝑖(𝑗−𝑘)𝜔𝑢(𝑗)𝑢(𝑘)

= (𝑢(0) · · · 𝑢(𝑇 ′ − 1))𝑀

Ñ
𝑢(0)⊤

· · ·
𝑢(𝑇 ′ − 1)⊤

é
where 𝑀𝑗𝑘 = 1[0,𝑇 ′−1](𝑗)1[𝑇−𝐿,𝑇−1](𝑘)1|𝑗−𝑘|≤𝐿𝑒

2𝜋𝑖(𝑗−𝑘)𝜔 . As before, we have519 ⃦⃦⃦
𝑈⊤
1 𝑈2

⃦⃦⃦
≤ 2 max

𝜔∈{0, 1
𝑁 ,··· }

sup
𝑣∈𝒩𝜀

|𝑣⊤𝑃𝑢,12(𝜔)𝑣|+ 3𝜀 ‖𝑃𝑢,12(𝜔)‖ .

We calculate ‖𝑀‖2F ≤ (𝑇−𝐿)(2𝐿+1) and each block in 𝑀 is part of a Toeplitz matrix, so similarly520

to before ‖𝑀‖ ≤ 2𝐿 + 1. Hence, with probability at least 1− 𝛿,521 ⃦⃦⃦
𝑈⊤
1 𝑈2

⃦⃦⃦
≤ 𝐶

Ç 
𝑇𝐿 log

Å
1

𝛿

ã
+ 𝐿 log

Å
1

𝛿

ãå
Note

⃦⃦
𝑈⊤
1 𝑈2

⃦⃦
=
⃦⃦
𝑈⊤
2 𝑈1

⃦⃦
. Finally, we bound 𝑈⊤

2 𝑈2. Note 𝑈2 is part of an infinite Hankel matrix522

with entries 𝑢(𝑇 ′ + 1)⊤, . . . , 𝑢(𝑇 ′ + 𝐿)⊤. The multiplication polynomial is523

𝑃𝑢,2(𝜔) = 𝑒−2𝜋𝑖(𝑇−𝐿)𝜔
𝐿−1∑︁
𝑡=0

𝑢(𝑇 − 𝐿 + 𝑡)⊤𝑒−2𝜋𝑖𝑡𝜔.

The real part is 𝐶
Ä∑︀𝑇−1

𝑡=𝑇−𝐿 cos2(−2𝜋𝑡𝜔)
ä1/2

-sub-gaussian and the imaginary part is524

𝐶
Ä∑︀𝑇−1

𝑡=𝑇−𝐿 sin2(−2𝜋𝑡𝜔)
ä1/2

-sub-gaussian for some constant 𝐶. Hence525

P
Å
⟨𝑒𝑗 , 𝑃𝑢,2(𝜔)⟩2 ≤ 𝐶𝐿 log

Å
1

𝛿

ãã
≥ 1− 𝛿.

Using this for 𝑗 = 1, . . . , 𝑑𝑢, replacing 𝛿 ← [ 𝛿𝑑𝑢 , and using a union bound gives526

P
Å
‖𝑃𝑢,2(𝜔)‖2 ≤ 𝐶𝐿𝑑𝑢 log

Å
𝑑

𝛿

ãã
≥ 1− 𝛿.

Now for 𝑁 ≥ 4𝜋𝐿, using another union bound gives527 ⃦⃦⃦
𝑈⊤
2 𝑈2

⃦⃦⃦
≤
Ç

sup
𝜔∈[0,1]

‖𝑃𝑢,2(𝜔)‖
å2

≤
Ç

2 max
𝜔∈{0, 1

𝑁 ,...}
‖𝑃𝑢,2(𝜔)‖

å2

≤ 𝐶𝐿𝑑𝑢 log

Å
𝑑𝑢𝐿

𝛿

ã
.

with probability ≥ 1− 𝛿. Putting all the bounds together with (12) gives the theorem.528

Proof of Lemma A.1. For large enough 𝐶2, for 𝑇 ≥ 𝐶2𝐿𝑑𝑢 log
(︀
𝑇
𝛿

)︀
, we have that by Theorem A.2529

that
⃦⃦
𝑈⊤𝑈 − 𝑇𝐼𝑑𝑢

⃦⃦
≤ 𝑇

2 , so 𝜎min(𝑈⊤𝑈) ≥ 𝑇
2 .530

Finally, note that for large enough 𝐶1, 𝑇 ≥ 𝐶1𝐿𝑑𝑢 log
(︀
𝐿𝑑𝑢
𝛿

)︀
implies 𝑇 ≥ 𝐶2𝐿𝑑𝑢 log

(︀
𝑇
𝛿

)︀
.531
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We show here a bound similar to Theorem A.2 that will be useful to us later.532

Lemma A.5. There is a constant 𝐶 such that the following holds. Suppose 𝑢(𝑡), 0 ≤ 𝑡 < 𝑇533

are independent, zero-mean, and 𝐾𝑢-sub-gaussian, and similarly for 𝑤(𝑡) with constant 𝐾𝑤. Let534

𝑈 = Toep𝑇×(𝐿+1)((𝑢(𝑡)⊤)𝑡≥0), 𝑊 = Toep𝑇×(𝐿+1)((𝑤(𝑡)⊤)𝑡≥0). Then for 0 < 𝛿 ≤ 1
2 , 𝑇 ≥535

𝐶1𝐿𝑑𝑢 log
(︀
𝐿𝑑𝑢
𝛿

)︀
,536 ⃦⃦⃦
𝑈⊤𝑊

⃦⃦⃦
≤ 𝐶𝐾𝑢𝐾𝑤

Ç
𝐿𝑑𝑢 log

Å
𝑇

𝛿

ã
+

 
𝑇𝐿𝑑𝑢 log

Å
𝑇

𝛿

ãå
with probability at least 1− 𝛿.537

Proof. By scaling we may assume 𝐾𝑢 = 𝐾𝑤 = 1. Decompose 𝑈 = 𝑈1 + 𝑈2 and 𝑊 = 𝑊1 + 𝑊2538

as in (11). Let 𝑆𝑎 = {0, . . . , 𝑇 − 𝐿− 1} and 𝑆𝑏 = {𝑇 − 𝐿, . . . , 𝑇 − 1}. We have539

𝑈⊤𝑊 =
∑︁

𝑎,𝑏∈{0,1}

𝑈⊤
𝑎 𝑊𝑏.

Let 𝑢(𝑎) = 𝑢1𝑆𝑎
and similarly define 𝑤(𝑏) = 𝑤1𝑆𝑏

. Then the (𝑗, 𝑘)th block of 𝑈⊤
𝑎 𝑊𝑏 is540

(𝑈⊤
𝑎 𝑊𝑏)𝑗𝑘 =

∑︁
𝑡∈Z

(T𝑗𝑢(𝑎))(𝑡)(T𝑘𝑤(𝑏))(𝑡)⊤.

This is part of the infinite block Toeplitz matrix in R(Z×𝑑𝑢)×(Z×𝑑𝑢) defined by541

𝑍𝑗𝑘 =
∑︁
𝑡∈Z

(T𝑗𝑢(𝑎))(𝑡)(T𝑘𝑤(𝑏))(𝑡)⊤1|𝑗−𝑘|≤𝐿,

with multiplication polynomial542

𝑃𝑢,𝑎𝑏(𝜔) =
∑︁

|𝑗−𝑘|≤𝐿

𝑢(𝑎)(𝑗)𝑤(𝑏)(𝑘)𝑒2𝜋𝑖(𝑗−𝑘)𝜔

= (𝑢(0) · · · 𝑢(𝑇 − 1))𝑀

Ñ
𝑤(0)⊤

· · ·
𝑤(𝑇 − 1)⊤

é
where 𝑀𝑗𝑘 = 𝑒2𝜋𝑖(𝑗−𝑘)1𝑗∈𝑆𝑎

1𝑘∈𝑆𝑏
1|𝑗−𝑘|≤𝐿.

We calculate that ‖𝑀‖2𝐹 ≤ 𝑇 (2𝐿+1) and ‖𝑀‖ ≤ 2𝐿+1 so the same argument as in Theorem A.2543

(but using the version of Hanson-Wright given by Corollary C.4) gives that544 ⃦⃦⃦
𝑈⊤𝑊

⃦⃦⃦
≤ 𝐶𝐾𝑢𝐾𝑤

Ç
𝐿𝑑𝑢 log

Å
𝑇

𝛿

ã
+

 
𝑇𝐿𝑑𝑢 log

Å
𝑇

𝛿

ãå
.

545

A.2 Upper bound inℋ∞ norm546

The following Lemma A.6 generalizes the results of [TBPR17] to the MIMO setting. To get the right547

dimension dependence, we will use the concentration bound for covariance given by Theorem C.2.548

Lemma A.6. There is a constant 𝐶 such that the following holds. Suppose that 𝜂(0), . . . , 𝜂(𝑇−1) ∼549

𝑁(0,Σ) are iid, Φ ∈ R(𝐿+1)𝑑𝑢×𝑇 , and 𝐸(0), . . . , 𝐸(𝐿) ∈ R𝑑𝑦×𝑑𝑢 are such that550 Ö
𝐸(0)⊤

...
𝐸(𝐿)⊤

è
= 𝑀𝐸 = Φ𝑀𝜂 ∈ R(𝐿+1)𝑑𝑢×𝑑𝑦

For any 0 < 𝛿 ≤ 1
2 and −1 ≤ 𝑎 < 𝐿− 𝐿′,551

P
Ç⃦⃦

𝐸1[𝑎+1,𝑎+𝐿′]

⃦⃦
ℋ∞
≤ 𝐶
√
𝐿′ ‖Σ‖

1
2 ‖Φ‖

 
𝑑𝑦 + 𝑑𝑢 + log

Å
𝐿′

𝛿

ãå
≥ 1− 𝛿.
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Proof. First, by considering552

𝑀𝐸Σ−1/2 = Φ(𝑀𝜂Σ−1/2),

we may reduce to the case where 𝜂(𝑡) ∼ 𝑁(0, 𝐼𝑑𝑢) are iid, i.e., all entries of 𝑀𝜂 are iid standard553

gaussian.554

Let 𝑀𝜔 = (𝐸1[𝑎+1,𝑎+𝐿′])
∧(𝜔) ∈ C𝑑𝑦×𝑑𝑢 . Note that555

𝑀𝜔 = (𝜑𝐻𝜔 ⊗ 𝐼𝑑𝑢)𝑀𝐸

where 𝜑𝜔 = (𝑒2𝜋𝑖𝑘𝜔1𝑎+1≤𝑘≤𝑎+𝐿′)0≤𝑘≤𝐿 ∈ R𝐿+1

as a column vector. Because the columns of 𝑀𝜂 are independent and distributed as 𝑁(0, 𝐼𝑇 ), the556

columns 𝑚𝑗 of 𝑀𝜔 are independent. To bound 𝑀𝜔 , it suffices to bound 𝑀𝜔𝑀
𝐻
𝜔 =

∑︀𝑑𝑦
𝑗=1 𝑚𝑗𝑚

𝐻
𝑗 .557

Note that558 ⃦⃦
E𝑚𝑗𝑚

𝐻
𝑗

⃦⃦
=
⃦⃦⃦

(𝜑𝐻𝜔 ⊗ 𝐼𝑑𝑢)ΦΦ⊤(𝜑𝜔 ⊗ 𝐼𝑑𝑢)
⃦⃦⃦
≤ 𝐿′ ‖Φ‖2 .

Let Φ′ = (𝜑𝐻𝜔 ⊗ 𝐼𝑑𝑢)ΦΦ⊤(𝜑𝜔 ⊗ 𝐼𝑑𝑢). By Theorem C.21,559

P

Ñ⃦⃦⃦⃦
⃦⃦ 1

𝑑𝑦

𝑑𝑦∑︁
𝑗=1

𝑚𝑗𝑚
𝐻
𝑗 − Φ′

⃦⃦⃦⃦
⃦⃦ ≤ 𝐶𝐿′ ‖Φ′‖2

Ç 
𝑑𝑢 + 𝑠

𝑑𝑦
+

𝑑𝑢 + 𝑠

𝑑𝑦

åé
≥ 1− 2𝑒−𝑠

=⇒ P

Ñ⃦⃦⃦⃦
⃦⃦ 1

𝑑𝑦

𝑑𝑦∑︁
𝑗=1

𝑚𝑗𝑚
𝐻
𝑗

⃦⃦⃦⃦
⃦⃦ ≤ 𝐶𝐿′ ‖Φ′‖2

Ç
1 +

𝑑𝑢 + log
(︀
2
𝛿

)︀
𝑑𝑦

åé
≥ 1− 𝛿

by taking 𝑢 = log
(︀
2
𝛿

)︀
. Multiplying by 𝑑𝑦 gives560

P
Å⃦⃦

𝑀𝜔𝑀
𝐻
𝜔

⃦⃦
≤ 𝐶𝐿′ ‖Φ′‖2

Å
𝑑𝑦 + 𝑑𝑢 + log

Å
2

𝛿

ããã
≥ 1− 𝛿.

Replacing 𝛿 by 𝛿
𝑁 , taking the square root, and taking a union bound gives561

P
Ç

max
𝜔∈{0, 1

𝑁 ,...,
𝑁−1
𝑁 }
‖𝑀𝜔‖ ≤ 𝐶

√
𝐿′ ‖Φ′‖

1
2

 
𝑑𝑦 + 𝑑𝑢 + log

Å
2

𝛿

ãå
≥ 1− 𝛿. (15)

Finally, we note that by Lemma A.4, for 𝑁 = ⌈4𝜋𝐿′⌉,562 ⃦⃦
𝐸1[𝑎+1,𝑎+𝐿′]

⃦⃦
ℋ∞

= sup
𝜔∈[0,1]

⃦⃦⃦¤�𝐸1[𝑎+1,𝑎+𝐿′](𝜔)
⃦⃦⃦

= sup
‖𝑣‖2=1

sup
𝜔∈[0,1]

⃦⃦⃦¤�𝐸1[𝑎+1,𝑎+𝐿′](𝜔)𝑣
⃦⃦⃦

≤ sup
‖𝑣‖2≤1

max
𝜔∈{0, 1

𝑁 ,...,
𝑁−1
𝑁 }

2
⃦⃦⃦¤�𝐸1[𝑎+1,𝑎+𝐿′](𝜔)𝑣

⃦⃦⃦
≤ 2 max

𝜔∈{0, 1
𝑁 ,...,

𝑁−1
𝑁 }

⃦⃦⃦¤�𝐸1[𝑎+1,𝑎+𝐿′](𝜔)
⃦⃦⃦
.

Combining this with (15) gives the result.563

Finally we can put everything together to obtain aℋ∞ error bound for linear regression.564

Lemma A.7. There are 𝐶1, 𝐶2 such that the following hold. Suppose 𝑦 = 𝐹 * * 𝑢 + 𝐺* *565

𝜉 + 𝜂 where 𝑢(𝑡) ∼ 𝑁(0, 𝐼𝑑𝑢), 𝜉(𝑡) ∼ 𝑁(0,Σ𝑥), 𝜂(𝑡) ∼ 𝑁(0,Σ𝑦) for 0 ≤ 𝑡 < 𝑇 ,566

and Supp(𝐹 *),Supp(𝐺*) ⊆ [0,∞). Let 𝐹 = argmin𝐹∈{0,...,𝐿}→R𝑑𝑦×𝑑𝑢

∑︀𝑇−1
𝑡=0 |𝑦(𝑡) − (𝐹 *567

𝑢)(𝑡)|2, 𝑀𝐺* = (𝐺*(0), . . . , 𝐺*(𝐿))⊤ ∈ R(𝐿+1)𝑑×𝑑𝑦 , and 𝜀trunc =
⃦⃦
𝐹 *

1[𝐿+1,∞)

⃦⃦
ℋ∞

√
𝑑𝑢 +568 ⃦⃦

𝐺*
1[𝐿+1,∞)

⃦⃦
ℋ∞

⃦⃦⃦
Σ

1/2
𝑥

⃦⃦⃦
F
. For 0 < 𝛿 ≤ 1

2 , 𝑇 ≥ 𝐶1𝐿𝑑𝑢 log
(︀
𝐿𝑑𝑢
𝛿

)︀
, −1 ≤ 𝑎 < 𝐿− 𝐿′,569 ⃦⃦

(𝐹 − 𝐹 *)1[𝑎+1,𝑎+𝐿′]

⃦⃦
ℋ∞

≤ 𝐶2

ñ…
1

𝑇

Ç 
‖Σ𝑦‖𝐿′

Å
𝑑𝑢 + 𝑑𝑦 + log

Å
𝐿′

𝛿

ãã
+

 
‖Σ𝑥‖𝐿′𝐿𝑑𝑢 log

Å
𝐿𝑑𝑢
𝛿

ã
‖𝑀𝐺*‖

å
+ 𝜀trunc

ô
with probability at least 1− 𝛿.570

1The theorem is stated for real matrices, but we can view the matrix as acting on a real vector space of twice
the dimension.
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Proof. By (10), using the notation defined there,571

𝑀𝐹 −𝑀𝐹* = (𝑈⊤𝑈)−1𝑈⊤𝑀𝜂⏟  ⏞  
=:𝐸1

+ (𝑈⊤𝑈)−1𝑈⊤𝑊𝑀𝐺*⏟  ⏞  
=:𝐸2

+ (𝑈⊤𝑈)−1𝑀𝑒⏟  ⏞  
=:𝐸3

.

We wish to bound
⃦⃦

(𝐹 − 𝐹 *)1[𝑎+1,𝑎+𝐿′]

⃦⃦
ℋ∞

= sup𝜔∈[0,1][(𝜑
𝐻
𝜔 ⊗ 𝐼𝑑𝑢)(𝑀𝐹 −𝑀𝐹*)].572

We bound the contributions from 𝐸1, 𝐸2, 𝐸3. First note that
⃦⃦

(𝑈⊤𝑈)−1𝑈⊤⃦⃦
2

=
⃦⃦

(𝑈⊤𝑈)−1
⃦⃦1/2
2

573

and by Lemma A.1, for 𝑇 ≥ 𝐶1𝐿𝑑𝑢 log
(︀
𝐿𝑑𝑢
𝛿

)︀
, with probability 1− 𝛿,

⃦⃦
(𝑈⊤𝑈)−1

⃦⃦
≤ 2

𝑇 . Call this574

event 𝒜.575

1. Under the event 𝒜, by Lemma A.6,576

P
Ç

sup
𝜔∈[0,1]

[(𝜑𝐻𝜔 ⊗ 𝐼𝑑𝑢)𝐸1] ≤ 𝐶
»
𝐿′ ‖Σ𝑦‖

…
1

𝑇

 
𝑑𝑦 + 𝑑𝑢 + log

Å
𝐿′

𝛿

ãå
≥ 1− 𝛿.

2. By Lemma A.5 and the condition on 𝑇 ,577 ⃦⃦⃦
𝑈⊤𝑊

⃦⃦⃦
≤
⃦⃦⃦
𝑈⊤(𝑊Σ−1/2

𝑥 )
⃦⃦⃦
‖Σ𝑥‖1/2 ≤

 
𝑇𝐿𝑑𝑢 log

Å
𝐿𝑑𝑢
𝛿

ã
‖Σ𝑥‖

Under 𝒜, we bound the spectral norm (for all 𝜔)578 ⃦⃦⃦
(𝜑𝐻𝜔 ⊗ 𝐼𝑑𝑢)(𝑈⊤𝑈)−1𝑈⊤𝑊𝑀𝐺*

⃦⃦⃦
≤
⃦⃦
𝜑𝐻𝜔 ⊗ 𝐼𝑑𝑢

⃦⃦ ⃦⃦⃦
(𝑈⊤𝑈)−1

⃦⃦⃦ ⃦⃦⃦
𝑈⊤𝑊

⃦⃦⃦
‖𝑀𝐺*‖

≤
√
𝐿′ 𝐶√

𝑇

 
𝑇𝐿𝑑𝑢 log

Å
𝐿𝑑𝑢
𝛿

ã
‖Σ𝑥‖ ‖𝑀𝐺*‖

≤ 𝐶

 
‖Σ𝑥‖𝐿′𝐿𝑑𝑢 log

Å
𝐿𝑑𝑢
𝛿

ã
‖𝑀𝐺*‖ .

3. Let 𝜀trunc,𝐹 =
⃦⃦
𝐹 *

1[𝐿+1,∞)

⃦⃦
ℋ∞

and similarly define 𝜀trunc,𝐺. We bound the last term579

by noting580 ⃦⃦
(𝐹 *

1[𝐿+1,∞)) * 𝑢
⃦⃦
2
≤
⃦⃦

(𝐹 *
1[𝐿+1,∞))

∧ · ̂︀𝑢⃦⃦
2
≤ 𝜀trunc,𝐹 ‖𝑢‖2

and similarly
⃦⃦

(𝐺*
1[𝐿+1,∞)) * 𝜉

⃦⃦
2

≤ 𝜀trunc,𝐺 ‖𝜉‖2. We581

have P
(︁
‖𝜂0:𝑇−1‖ >

√
𝑇𝑑𝑢 + 𝐶

»
log
(︀
1
𝛿

)︀)︁
≤ 𝛿 and582

P
(︁
‖𝜉0:𝑇−1‖ >

√
𝑇
⃦⃦⃦

Σ
1/2
𝑥

⃦⃦⃦
F

+ 𝐶
»
‖Σ𝑥‖ log

(︀
1
𝛿

)︀)︁
≤ 𝛿 by Theorem C.5, so condi-583

tioned on event 𝒜,584

sup
𝜔∈[0,1]

[(𝜑𝐻𝜔 ⊗ 𝐼𝑑𝑢)𝐸3] ≤ 𝐶

…
1

𝑇

(︃
𝜀trunc,𝐹

Ç√︀
𝑇𝑑𝑢 +

 
log

Å
1

𝛿

ãå
+ 𝜀trunc,𝐺

Ç√
𝑇
⃦⃦⃦

Σ1/2
𝑥

⃦⃦⃦
F

+

 
‖Σ𝑥‖ log

Å
1

𝛿

ãå)︃
with probability at least 1− 𝛿. By the condition on 𝑇 , the first terms are dominant.585

Finish by replacing 𝛿 by 𝛿
4 and using the triangle inequality and a union bound.586

B Improved rates for learning system matrices587

In this section, we combine Lemma 4.2 and Lemma 4.3 with bounds in [OO19] to give improved588

bounds for learning the system matrices.2589

2References to [OO19] are for the arXiv version https://arxiv.org/abs/1806.05722.
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As 𝐿 can be chosen to make 𝜀trunc negligible, this gives
»

𝐿𝑑
𝑇 rates, however, with factors depending590

on the minimum eigenvalue of 𝐻 .591

We first re-do some of the bounds in [OO19] more carefully, using their notation.592

Lemma B.1 ([OO19, Lemma B.1]). Suppose 𝜎min(𝐿) ≥ 2
⃦⃦⃦
𝐿− ̂︀𝐿⃦⃦⃦ where 𝜎min(𝐿) is the smallest593

nonzero singular value of 𝐿. Let rank-𝑑 matrices 𝐿, ̂︀𝐿 have singular value decompositions 𝑈Σ𝑉 *594

and “𝑈 ̂︀Σ“𝑉 *. There exists a 𝑛× 𝑛 unitary matrix 𝑊 so that595

⃦⃦⃦
𝑈Σ1/2 − “𝑈 ̂︀Σ1/2𝑊

⃦⃦⃦2
𝐹

+
⃦⃦⃦
𝑉 Σ1/2 − “𝑉 ̂︀Σ1/2𝑊

⃦⃦⃦2
𝐹
≤

4(
√

2 + 1)𝑑
⃦⃦⃦
𝐿− ̂︀𝐿⃦⃦⃦2

𝜎min(𝐿)
.

Proof. This inequality is given as an intermediate inequality in the proof of Lemma B.1 in [OO19].596

The first line gives that the LHS is ≤ 2√
2−1

‖𝐿−“𝐿‖2
𝐹

𝜎min(𝐿)
. Then use the fact that rank(𝐿 − ̂︀𝐿) ≤ 2𝑑, so597 ⃦⃦⃦

𝐿− ̂︀𝐿⃦⃦⃦2
𝐹
≤ 2𝑑

⃦⃦⃦
𝐿− ̂︀𝐿⃦⃦⃦2.598

Using this instead of Lemma B.1 gives the following for Theorem 4.3 of [OO19].599

Lemma B.2. Let ̂︀𝐴, “𝐵, “𝐶 be the state-space realization corresponding to the output of Ho-Kalman600

with input “𝐺. Suppose the system is observable and controllable. Let 𝐿 = Hankel𝐿×(𝐿−1)(𝐹
*).601

Suppose 𝜎min(𝐿) > 0 and the low-rank approximation from Ho-Kalman satisfies
⃦⃦⃦
𝐿− ̂︀𝐿⃦⃦⃦ ≤602

𝜎min(𝐿)/2. Then there exists a unitary matrix 𝑊 ∈ R𝑑×𝑑 such that603 ⃦⃦⃦
𝐵 −𝑊−1“𝐵⃦⃦⃦

𝐹
,
⃦⃦⃦
𝐶 − “𝐶𝑊

⃦⃦⃦
𝐹
≤

2
»

(
√

2 + 1)𝑑
⃦⃦⃦
𝐿− ̂︀𝐿⃦⃦⃦√︀

𝜎min(𝐿)⃦⃦⃦
𝐴−𝑊−1 ̂︀𝐴𝑊

⃦⃦⃦
𝐹
≤ 2

√
𝑑

𝜎min(𝐿)

Ñ
2
√︀√

2 + 1
⃦⃦⃦
𝐿− ̂︀𝐿⃦⃦⃦

𝜎min(𝐿)

(︁
2
⃦⃦
𝐻+
⃦⃦

+
⃦⃦⃦
𝐻+ − “𝐻+

⃦⃦⃦)︁
+
⃦⃦⃦
𝐻+ − “𝐻+

⃦⃦⃦é
.

Proof. We refer the reader to [OO19] for the details and just note the differences. As in [OO19], the604

first inequality follows from taking the square root in Lemma B.1.605

For the second inequality, using Lemma B.1, the inequality for
⃦⃦
𝑂† −𝑋†⃦⃦

F
becomes instead606 ⃦⃦⃦

𝑂† −𝑋†
⃦⃦⃦
F
≤ ‖𝑂 −𝑋‖F max

ß⃦⃦⃦
𝑋†
⃦⃦⃦2

,
⃦⃦⃦
𝑂†
⃦⃦⃦2™

≤
2
»

(
√

2 + 1)𝑑
⃦⃦⃦
𝐿− ̂︀𝐿⃦⃦⃦

F

𝜎min(𝐿)1/2
· 2

𝜎min(𝐿)
≤

4
»

(
√

2 + 1)𝑑
⃦⃦⃦
𝐿− ̂︀𝐿⃦⃦⃦

𝐹

𝜎min(𝐿)3/2

so that (B.3)–(B.7) become607 ⃦⃦⃦
(𝑂† −𝑋†)𝐻+𝑄†

⃦⃦⃦
F
≤

4
»

(2 +
√

2)𝑑
⃦⃦⃦
𝐿− ̂︀𝐿⃦⃦⃦

F

𝜎min(𝐿)2
⃦⃦
𝐻+
⃦⃦

⃦⃦⃦
𝑋†“𝐻+(𝑄† − 𝑌 †)

⃦⃦⃦
F
≤

4
»

(2 +
√

2)𝑑
⃦⃦⃦
𝐿− ̂︀𝐿⃦⃦⃦

F

𝜎min(𝐿)2

(︁⃦⃦
𝐻+
⃦⃦

+
⃦⃦⃦
𝐻+ − “𝐻+

⃦⃦⃦)︁
.

Substituting in (B.2) then gives the theorem.608

Proof of Theorem 2.3. Lemma 4.2 gives a bound on
⃦⃦⃦
𝐻 − “𝐻 ⃦⃦⃦. By [OO19, Appendix B.4],609 ⃦⃦⃦

𝐻+ − “𝐻+
⃦⃦⃦
≤
⃦⃦⃦
𝐻 − “𝐻 ⃦⃦⃦ , ⃦⃦

𝐻+
⃦⃦
≤ ‖𝐻‖ ,

⃦⃦⃦
𝐿− ̂︀𝐿⃦⃦⃦ ≤ 2

⃦⃦⃦
𝐻 − “𝐻 ⃦⃦⃦ .

By Lemma 4.3, ‖𝐻‖ ≤ ‖𝐹 *‖ℋ∞
= ‖Φ𝒟‖ℋ∞

. Plugging this into Lemma B.2 gives the theorem.610

611
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C Concentration bounds612

In this section, we collect some useful concentration results.613

Definition C.1. A R-valued random variable 𝑋 is sub-gaussian with constant 𝐾 if

‖𝑋‖𝜓2
:= inf

{︀
𝑠 > 0 : E[exp((𝑥/𝑠)2)− 1] ≤ 1

}︀
≤ 𝐾,

and a R𝑛-valued random variable 𝑋 is sub-gaussian with constant 𝐾 if

‖𝑋‖𝜓2
:= sup

𝑣∈S𝑛−1

‖⟨𝑋,𝑥⟩‖𝜓2
≤ 𝐾.

Theorem C.2 ([Ver18, Ex. 4.7.3]). There is a constant 𝐶 such that the following holds. Let614

𝑋1, . . . , 𝑋𝑚 be iid copies of a random vector 𝑋 in R𝑛 satisfying the sub-gaussian bound for any 𝑥,615

‖⟨𝑋,𝑥⟩‖𝜓2
≤ 𝐾E[⟨𝑋,𝑥⟩2].

Let Σ𝑚 = 1
𝑚

∑︀𝑚
𝑖=1 𝑋𝑖𝑋

⊤
𝑖 . Then for any 𝑠 ≥ 0,616

P
Ç
‖Σ𝑚 − Σ‖ ≤ 𝐶𝐾2

Ç…
𝑛 + 𝑠

𝑚
+

𝑛 + 𝑠

𝑚

å
‖Σ‖

å
≥ 1− 2𝑒−𝑠.

Theorem C.3 (Hanson-Wright inequality, [RV+13, Theorem 1.1]). There is a constant 𝑐 > 0 such617

that the following holds. Let 𝐴 ∈ C𝑛×𝑛 be a matrix, and let 𝑣 ∈ R𝑛 be a random vector with618

independent, mean-0, 𝐾-sub-gaussian entries. Then for every 𝑠 ≥ 0,619

P(|𝑣⊤𝐴𝑣 − E𝑣⊤𝐴𝑣| > 𝑠) ≤ 2 exp

ñ
−𝑐 ·min

®
𝑠2

𝐾4 ‖𝐴‖2F
,

𝑠

𝐾2 ‖𝐴‖

´ô
.

Corollary C.4. There is a constant 𝑐 > 0 such that the following holds. Let 𝐴 ∈ C𝑚×𝑛 be a matrix,620

and let 𝑣 ∈ R𝑚, 𝑤 ∈ R𝑛 be random vectors with independent, mean-0, 𝐾𝑣 and 𝐾𝑤 sub-gaussian621

entries, respectively. Then for every 𝑠 ≥ 0,622

P(|𝑣⊤𝐴𝑤| > 𝑠) ≤ 2 exp

ñ
−𝑐 ·min

®
𝑠2

𝐾2
𝑣𝐾

2
𝑤 ‖𝐴‖

2
F

,
𝑠

𝐾𝑣𝐾𝑤 ‖𝐴‖

´ô
.

Proof. Apply Theorem C.3 for 𝑣 ←[
Å
𝑣
𝑤

ã
and 𝐴← [

Å
𝑂 𝐴
𝑂 𝑂

ã
.623

Theorem C.5 (Sub-gaussian concentration, [RV+13, Theorem 2.1]). There is a constant 𝑐 > 0624

such that the following holds. Let 𝐴 ∈ C𝑚×𝑛 be a matrix, and let 𝑣 ∈ R𝑛 be a random vector with625

independent, mean-0, 𝐾-sub-gaussian entries. Then for every 𝑠 ≥ 0,626

P [|‖𝐴𝑣‖2 − ‖𝐴‖F| > 𝑠] ≤ 2 exp

Ç
− 𝑐𝑠2

𝐾4 ‖𝐴‖2

å
.

D Experimental details627

We generate random LDS’s as follows. For 𝐵 and 𝐶, the rows or columns are chosen to be a628

random set of orthonormal vectors (depending on whether they have more rows or columns). For629

𝐴, the entries are first chosen to be iid standard gaussians, and then 𝐴 is re-normalized so that its630

maximum eigenvalue has absolute value 𝜆max. For simplicity, we take 𝐷 = 𝑂.631

We make a slight modification of Algorithm 1 which triples the size at each iteration instead. For632

𝐿 = 3𝑎, we estimate a finite impulse response of length 4 · 3𝑎−1 − 1. Then, for the multiscale633

SVD algorithm, at the 𝑘th scale (𝑘 ≥ 1), we consider the rank-𝑑 SVD of Hankelℓ×ℓ(𝐹 ), where634

ℓ = 2 · 3𝑘−1, and use this SVD to estimate the 𝐹 (𝑡) for 3𝑘−1 < 𝑡 ≤ 2𝑘. For the single-scale SVD,635

we estimate all 𝐹 (𝑡) from the rank-𝑑 SVD of Hankelℓ×ℓ(𝐹 ), where ℓ = 2 · 3𝑎−1.636

The plots show the error
⃦⃦
𝐹 *

1[1,𝐿] − 𝐹
⃦⃦
2
, where 𝐹 is the estimated impulse response on [1, 𝐿],637

averaged over 10 randomly generated LDS’s, as a function of the time 𝑇 elapsed, for the following638

settings of parameters:639
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1. 𝑑 = 𝑑𝑢 = 𝑑𝑦 = 1, 𝐿 = 27, 𝜆max = 0.9.640

2. 𝑑 = 𝑑𝑢 = 𝑑𝑦 = 3, 𝐿 = 27, 𝜆max = 0.9.641

3. 𝑑 = 𝑑𝑢 = 𝑑𝑦 = 3, 𝐿 = 81, 𝜆max = 0.95.642

4. 𝑑 = 5, 𝑑𝑢 = 𝑑𝑦 = 3, 𝐿 = 81, 𝜆max = 0.95.643

5. 𝑑 = 10, 𝑑𝑢 = 𝑑𝑦 = 3, 𝐿 = 81, 𝜆max = 0.95.644

The code was written in Julia.645

E Open problems646

We conclude with some open problems. It would be interesting to obtain analogous rates (depending647

on system order) for the nuclear norm regularized problem [SOF20]. Spectral methods also suggest648

the possibility of obtaining regret bounds for adaptive control of partially-observed systems with649

milder dependence on 1
1−𝜌(𝐴) . We give several other problems below.650

Process noise. A natural open question is to obtain better guarantees in the presence of process651

noise 𝜉(𝑡). We note that in Theorem 2.2, the factor multiplying
√︀
‖Σ𝑥‖ is

√
𝐿 ‖𝑀𝑥→𝑦‖2, which we652

expect to be on the order of 𝐿 when 𝐿 is the minimal sufficient memory length. This term arises653

because process noise can accumulate over 𝐿 timesteps. In the case where 𝜉(𝑡) ∼ 𝑁(0,Σ𝑥) is iid654

gaussian, the Kalman filter shows that we can rewrite the system in the predictor form [Qin06]655

𝑥(𝑡)− = 𝐴KF𝑥(𝑡− 1)− + 𝐵KF

Å
𝑢(𝑡− 1)
𝑦(𝑡− 1)

ã
(16)

𝑦(𝑡) = 𝐶𝑥(𝑡)− + 𝐷𝑢(𝑡) + 𝑒(𝑡) (17)
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where 𝑒(𝑡) ∼ 𝑁(0,ΣKF) for some covariance matrix ΣKF that can be calculated in terms of656

𝐴,𝐵,𝐶,Σ𝑥,Σ𝑦 . This is now a filtering problem, where we have to regress the output on both657

previous inputs 𝑢(𝑡) and outputs 𝑦(𝑡). This is more challenging, because unlike previous 𝑢(𝑡), the658

previous 𝑦(𝑡) are highly correlated. One can perhaps treat this as a low-rank approximation in a659

different norm.660

ℋ∞ error bounds. How can we learn the system with ℋ∞ error bounds, that is, obtain error661

bounds under worst case input? This is particularly useful in control. We do not expect we can662

achieve
»

𝑑
𝑇 rates under iid inputs 𝑢(𝑡). However, it may be possible to take an active learning663

approach, by maximally exciting the system at frequencies we wish to learn, as in [WJ20].664

Input design. In this work we choose iid random inputs, but can we estimate more efficiently with665

well-designed deterministic inputs? Can we design inputs to respect constraints such as constraints666

on frequencies? [SGA20] suggests that efficient estimation is possible under general conditions on667

the inputs.668

More general noise. Do guarantees still hold if the noise satisfies weaker conditions such as sub-669

gaussianity? A key difficulty is bounding the maximum Fourier coefficient (as in Lemma A.6).670

25


