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A Linear regression for impulse response

In this section we prove Theorem .2} under iid gaussian inputs, we can obtain high-probability
error bounds for the transfer function of the learned impulse response in H, norm. Moreover, these
bounds kick in as soon as we have (L) samples from a single rollout. We note that analyzing the
multiple-rollout setting as in [SOF20] is more straightforward, so we will not consider it here.

The main difficulty for analyzing linear regression is that the inputs are correlated. The most chal-
lenging step is to lower-bound the sample covariance matrix of inputs to the linear regression.

In the SISO setting, [DMR19] give concentration bounds for the covariance matrix with T = Q(L)
timesteps. First, we extend this to the MIMO case in Theorem (Note that [OO19] consider the
MIMO case but have extra log factors.) Then, we use Gaussian suprema arguments as in [ITBPR17]]
to obtain bounds for the transfer function in H, norm (Lemma[A6).

We suppose the inputs 4(0), ..., u(T — 1) ~ N(0, I, ) are iid, observe y(0), ..., y(T — 1) € R,
and perform linear regression on the finite impulse response F' : {0,1,...,L} — R *du (which
we will also treat as an element of R(Z+1)*dyXdu without further comment).

Recall that given a sequence (F(t))—) where each F(t) € C™*™, the Toeplitz matrix is given by
F(0) 0 0
F(1) F(0) - 0
Toep, ., (F) = ) ) . | e camxbn,
Fla—1) F(a—2)

SISO setting. For simplicity, first consider the SISO setting: d,, = d,, = 1 and n(¢t) ~ N(0,1).
In this case, we learn a finite impulse response f € R“*! by minimizing the loss function

T-1
2 2 2
ly = flif oy = D |98 —ufoesd|| = lvor— = U] ©)
t=0
where we let yo.7—1 denote the vertical concatenation of y(0), . .., y(7T—1) and similarly for w;.;—p,,

and let U = Toepry r41)((u(t))i>0). We set u(t) = 0 for t < 0. Solving the least-squares
problem gives

f=U0TU)" U yor—1.

Suppose that the data is generated as y = f* % u + n where n(t) ~ N(0, 1) are independent and f*
is supported on [0, L]. Later, we will consider the effect of truncating an infinite response. We abuse
notation by considering f, f* both as functions Z — R and as vectors in RE*1, as they are supported
in [0, L]. Similarly, we consider y, 7 as vectors in R”. Then as vectors in R, y = U f* + 1. Hence
the error is

F=f=OTO)TUTUS ) - f=UTU) Uy
Because 7 has iid Gaussian entries,
f= [ ~N@O,UTU)™.
To bound this, we need to bound ||(U TU)~*

{, and hence bound the smallest singular value of U TU.

Notation for MIMO setting. For a vector or matrix-valued function F' : {a,a + 1,...,b} —
C% x4 define
Fa)"
MF b = : c C(b7a+1)d2><d1
Fb)T

with the indices omitted if they are clear from context.
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MIMO setting. In the general case, we would like to learn F' = (F(t) € Ré>d)L = ¢
R(E+Dxdyxdu  Now suppose the data is generated as

y=F'sxu+G x{+n

where F™*, G* are supported on [0, o) and 1(t) ~ N(0,%,), £(t) ~ N(0,%;), t > 0 are indepen-

dent. Let U = ToepTX(L+1)((u(t)T)tT:7)1) as before. Truncating F™* and G*, we have

y=F"Tpr)xu+ (G lpr)«{+n+e
where e(t) = (F* 11 41,00)) * U+ (G L[p41,00)) *&-
Thus, by taking the transpose and stacking vectors,
Myor—1=UMpo.1—1 +WDMg-o.p—1+ Myor—1+ McoT-1
where W = Toepy, (41 ((£(8)) 7).
The least squares solution F' minimizes ||Y — UMp Hi, so and the error is

Mp — Mp- = (UTU)'U™M, + (UTU)'UTWMg- + (UTU) "' M,. (10)
A.1 Lower bounding sample covariance matrix

In this subsection we lower bound the sample covariance matrix.

Lemma A.1. There is a constant C such that the following holds. Let u(t) ~ N(0,1;,) and
U= ToepTX(LH)((u(t)T)tZO). Thenfor0 < 6 < 4, T > C1Ld, log (%),

P (amin(UTU) > %) >1-06.

This is a corollary of the following concentration bound, which generalizes Theorem 3.4
of [DMR19] to the MIMO setting. The main additional ingredient is an e-net argument to reduce to
the analysis of the SISO case. We also swap out the chaining argument with a use of Lemma [A.4]
which allows a shorter proof.

Theorem A.2. There is C such that the following holds. Suppose u(t), 0 < t < T are independent,
zero-mean, and K -sub-gaussian (see Deﬁnition, andletU = Toeprp (1,4 1y((u(t) ")i>0). Then
for0< 6 <3 T>L,

HUTU ~TI,, H < CK? (Ldu log (%) n \/W)

with probability > 1 — 6.

We first note the fact that infinite Toeplitz matrices become diagonal in the Fourier basis.

Lemma A.3. Consider the infinite block Toeplitz matrix (Z(j — k)) ez € CE*d1)x(2xd2) yyhere

Z is a function Z — CH %42 Iy the Fourier basis, it is given by the kernel Z(wy) 1y, —,. That is,
ifv:Z—R% || Z||,,|lv|l, < oo, then letting

w(i) = Z(j — k) (k),
k

we have

Here, Z(w) is called the multiplication polynomial of the matrix.

Proof. Simply note that w = Z * v and so @ = Z7. O
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We will use the following lemma in order to bound the maximum of the Fourier transform by the
maximum at a finite number of points.

Lemma A4 ([BTRI13]). Let Q(z) := E;;(l) apz*, where aj, € C. For any N > 4, QHHOO <
(1 + %) max;—o,....N—1 |Q(€2?V” |-
Proof of Theorem[A.2] By rescaling we may suppose K = 1. Decompose
U = U; + Us where (11)
u(0)T 0
: , .
o 0
w(T—-L—-1)" :
0 Wl —L—1)7T
0 0
_\T
Uy — u(T . L)
wT—-1)" - w(T-L)"T 0

Then
U'U=(T—-L)Ia, + (U U — (T — L)Ipa,) + Uy Us + Uy Uy + U, Us. (12)
Let T be the shift operator on functions: Tf(t) = f(t—1). LetT' = T—L and letu(") = uljo, 1 —1]-
Then the (j, k)th block of U}' Uy is
(U Un)je = D (T7uD) (@) (THatD) () T
tez

Define the infinite block Toeplitz matrix in R(Z*du)x(Zxdw) 1y

T
Zik = Z(Tju(l))(t)(Tku(l))(t)Tﬂu—k\gL —T'Izxa,.

t=1

By Lemma[A3] the multiplication polynomial of this matrix is

L
P,(w) = Z Z(Teu(l))(t)u(l)(t)Te—Qm'éw - T/Idu

{=—L teZ
— Z u(j)u(k,)'l'e%ri(j—k)w _ Tl]du
k€L
li—kl <L
u(0)"
= (u(0) - wT' —1)M — T, (13)
u(T —1)7

where M € C%*Z is the matrix with Mj, = eg’ri(j’k)“lu_k‘gb In order to work with a scalar-
valued function, we consider for |[v|| =1

v Py (w)v = Z (v,u(g)) (v,u(k)) eQ”i“(j_k)]l‘j,kKL . HU||2 .
j,ke{0,....T" =1}

By Lemma[A3]

o701 = T'tra,|| <112 = T'E2 )l < | Pu@)ll -
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s00 Taking N = [87L] and noting e*™*% P(w) is a polynomial of degree at most 2L in €™, we have

1Pu(@)llg. = sup [[Pu(w)] = sup sup |v' Py(w)o]

wel0,1] [lv||=1 welo0,1]
= sup 2 max |v' P,(w)v by Lemmal[A 4]
Joll=1 w&{0,5,+}
=2 max sup |v' Py(w)v| + 3¢ || Pu(w)]| (14)
we{0, 7.} \veN:
sot where M. is an e-net of the unit sphere in RY. (For arbitrary v’ with ||[v|| = 1, write v = v + Av

so2 where v € N- and ||Av| < e.) We first bound v P(w)v. Letting w € R be the vector with
s03  entries w(j) = (v, u(j)), we have

v Py(w)v =w' Mw—T" |jv||*.

s04 Fix v. Because each u(¢) is independent 1-subgaussian, each entry of w is 1-subgaussian. By the
s05 Hanson-Wright inequality (Theorem [C.3)), for some constant ¢ > 0,

52 s
P(jv" Py(w)v] > s) < 2exp {—c - min {, }} .
Il 1M1

s06  We calculate that || M Hi < (2L + 1)T and the Fourier transform of the function e*™“*1;_; <1,
s07  satisfies HfH <|Ifll; £2L+1,soby Lemma |[M]|| < 2L + 1. Then for appropriate C,

]P’<|UTPu(w)v > C( TLlog<51 ) +Llog(611))> < d1.

sos  Next we bound || P, (w)|| and choose & appropriately. A crude bound with Markov’s inequality
s09  suffices to bound || P,(w)|. We have (because the second moment is at most the sub-gaussian
510 constant)

dy T'—1
E||(uw(0) -+ w(T'— ||F_E (ej,u 2<q,T
j=1 t=0
511 so with probability > 1 — &g, ||(w(0) --- w(T' — 1))Hi < ngT/. Hence, for every w € [0,1],
sz by (T3),
/ / 2 duT/
IPuw) + T'La, | < w(0) - (= D) M| < 2,
513 Choose ¢ = ﬁ. Then with probability > 1 — o, we have
02 (duT’ ,)
sup 3¢ ||P,(w)|| <3 - . 2L +T" ) <4.5.
s sel Pl <3 g (%

s14 Now take §; = g. By Cor. 4.2.13 of [Verl8], there is an e-net of size |N.| < (1+ %)d“ =

515 exp (dy log (1+ 2)) = exp (d, log (1 + &dulL LT . Letting §; = 52— and taking a union bound,
E 2INE] &
516 with probability 1 — § we get

(14) < C< T Ldlog (%) + Ldlog <§>>
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517 Next consider the term U, Us. Let u™) = uljg 7v_1j, u® = ul g p_q). This is part of the infinite
s18 Toeplitz matrix with Zjj, = Y, ., (T9uM) () (T*u®)(t) "1 ;_g/<.—1. In the Fourier basis,

P, 12(w) = Z Z e—27rijw(-|-ju(1))(t)(Tku(Q))(t)‘regmkw
j, k€L teZ
li—kl <L

> Loy -z k)™ UG u(k)
j k€L
i~k < L
u(0) "
@O T -ym( -
uw(T' —1)7
2mi(j—k)w

sto where My = 1o, 7/—1) () Lr—r,7—1) (k)1 j_g)<re . As before, we have

HUITUQH <2 max sup |vTPu712(w)v| + 3¢ HPUJQ(W)H .
we{0, 3, Y veN:

s20  We calculate || M ||i < (T—L)(2L+1) and each block in M is part of a Toeplitz matrix, so similarly
521 to before || M|| < 2L + 1. Hence, with probability at least 1 — 4,

HUITUQH < c< TLlog (%) + Llog <;)>

s22 Note ||U) U || = ||U; U1]|. Finally, we bound U, U. Note Uy is part of an infinite Hankel matrix
se3  with entries u(7” + 1)7, ..., u(T’ + L) ". The multiplication polynomial is
L-1
Pu72(w) _ 6727rz(T7L)w Z U(T — L+ t)T672mtw.
t=0

1/2
s24 The real part is C (ZtT:_Tlf I cosz(—27rtw)) / -sub-gaussian and the imaginary part is
1/2
55 C (E;":j}f L sin2(—27rtw)> / -sub-gaussian for some constant C'. Hence
1
P (e Pus(w))? < CLiog (1)) =14

526 Using this for j = 1,...,d,, replacing ¢ <~ d%, and using a union bound gives

P <||Pu72(w)|\2 < CLd, log <§)> >1-34.

527 Now for N > 4n L, using another union bound gives

2
(v < ( sup ||Pu,2<w>||)
wel0,1]
2
< (2 max IPu,z(w))
we{0,5,--}
duL>
5 )
s28  with probability > 1 — §. Putting all the bounds together with (12)) gives the theorem. [

< CLd,log (

529 Proof of Lemma@ For large enough Cy, for T' > C5Ld,, log (%) , we have that by Theorem
ss0 that |UTU —Tlg,|| < Z.s00min(UTU) > L.

531 Finally, note that for large enough C1, T" > C1 Ld,, log (%) implies T' > C5 Ld,, log (%) O
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We show here a bound similar to Theorem [A.2] that will be useful to us later.

Lemma A.5. There is a constant C such that the following holds. Suppose u(t), 0 < t < T
are independent, zero-mean, and K, -sub-gaussian, and similarly for w(t) with constant K,,. Let
U = ToepTX(LH)((u(t)T)tzo), W = ToepTX(L+1)((w(t)T)t20). Then for 0 < § < % T >
C,Ld, log (%),

HUTWH < CK Ky (Ldu log (%) +4/TLd, log (?))

with probability at least 1 — 0.

Proof. By scaling we may assume K, = K,, = 1. Decompose U = U; + Uy and W = W; + W,
as in (II). Let S, ={0,..., 7 —L—1}and S, ={T' — L,...,T — 1}. We have
v'w= Y U/w,.
a,be{0,1}
Let u(*) = ulg, and similarly define w(®) = w1g,. Then the (4, k)th block of U] W}, is
(U W) = Y (THu) () (T @) (1)
teZ

This is part of the infinite block Toeplitz matrix in R(2*du)x(2xdu) defined by

Zik = Z(Tju(a))(t)(Tkw(b))(t)T]l\j—lqu,

teZ
with multiplication polynomial
Puap(w)= Y u(j)w® (k)e*mi-e
li—k|<L

w(0)T
@O - ow@-mm(
w(T—-1)7

2mi(j—k
where M, = e iy )]ljesalkesbl\ijSL'

We calculate that HM||% <T(2L+1) and || M| < 2L+ 1 so the same argument as in Theorem
(but using the version of Hanson-Wright given by Corollary [C.4) gives that

HUTWH < OKo K (Ldu log (%) +/TLd, log (?)) :

A.2 Upper bound in H ., norm
The following Lemmal[A-6|generalizes the results of [TBPR17] to the MIMO setting. To get the right
dimension dependence, we will use the concentration bound for covariance given by Theorem|[C.2]

Lemma A.6. There is a constant C' such that the following holds. Suppose thatn(0), ..., n(T—1) ~
N(0,%) are iid, ® € RETDWXT and E(0), ..., E(L) € R%*% are such that

E(©0)"
= Mg = &M, € RUEFDduxdy
E(L)"

Forany0<6§%and—1§a<L—L’,

1 L
< VL ||5|? <1>||\/dy +d, +log ()) >1-34.

I

P <||E]]-[a+1,a+L’] 5 =
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ss2  Proof. First, by considering
Mpx~1? = o(M,x71/?),

553 we may reduce to the case where 7(t) ~ N(0, I, ) are iid, i.e., all entries of M,, are iid standard
554  gaussian.

ss5 Let My, = (Eljgi1,041,)" (w) € C4*?. Note that

My = (6 ® 14,)Mg

(627rikw 1 RL+1

where ¢, = at+1<k<a+L')o<k<L €

556 as a column vector. Because the columns of M,, are independent and distributed as N (0, I'), the

H

557 columns m; of M, are independent. To bound M,,, it suffices to bound Mwa = Z?i1 m;my.

ss8  Note that
[Bmgmtt|| = || (@2 @ 10,)00T (6 @ 1,)|| < L' 2],

ss9 Let ®' = (¢ @ I,,)0®7 (¢, ® Iy,). By Theorem [C.2]

d,
RN H / ! 112 dy+s  dy+s s
P d—yijmj -9 <CL" ||| , + d, >1-—2e

d,
Re H 2 dy +log (3)
Jj=1
se0 by taking u = log (2). Multiplying by d,, gives
2
P (||MwaH <or o)’ (dy +dy +log (5))) >1-4.

561 Replacing § by %, taking the square root, and taking a union bound gives

IP( max IIMw||<C@||<I>’|5\/dy+du+log(§)>>1—5. (15)
1}

w€{07N7 ) N

sz Finally, we note that by Lemma|A.4] for N = [4n L],

|ELas1,a+2 |5, = Sup HE]l a+1,a+L7]( H = sup sup ’ E]l[a+1,a+L'](W)UH
e €[0,1] lv]l,=1 we[0,1]
< sup max 2 HE]I[Q_H at+17]( H <2 max HE]]-[G-‘:-L!I-‘:-L'] (w)” .
lo]l,<1we{0, ... we{0,&,.... Y1)
s63 Combining this with (T3) gives the result. O

s64 Finally we can put everything together to obtain a ‘H, error bound for linear regression.

s6s Lemma A.7. There are C1,Cs such that the following hold. Suppose y = F* x u + G* *
se6 & + n where u(t) ~ N(0,1q,), £(t) ~ N(0,%;), n(t) ~ N(0,%,) for 0 < t < T,
se7 and Supp(F™),Supp(G*) C [0,00). Let F' = argminpcry 1y pdyxdu ) — (F «

e u)(t)|%, Mg = (G*(0),...,G*(L)T € READIXdy gnd gy e = ||F*]1[L+1,oo)||7{oo T+

9 [ G Uit ool [B5°], Foro <0< 7> CiLdutog (B), -1 <a< LT

[(F' = F*)ar1,a11]] 5

(\/Hz |z (d 1 d, +log \/||z | L' Ld, 1og( Ay )||MG*

570 with probability at least 1 — 4.

< Cqy

) + 5truncj|

!"The theorem is stated for real matrices, but we can view the matrix as acting on a real vector space of twice
the dimension.
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Proof. By (10), using the notation defined there,
Mp — Mp- = (UTU)'U™M, +(UTU)'UTWMeg- +(UTU) M, .
=B =B, =iy
e = SWPucio (6 © 1a,)(Mp — Mp-)).
We bound the contributions from Ei, Ey, Es. First note that ||[(UTU)*UT||, = [|[(UTU) 7|

and by Lemma forT > C1Ld, log (L;i“ ), with probability 1 — 4,
event A.

We wish to bound ||(F — F*) 141,041/

1/2
2
(UTU)7| < 2. Call this

1. Under the event A, by Lemmal[A.6]

1 L
IP’( sup [((ZSE@Idu)El] < C\/L’Zy||\/T\/dy+du+log (6)) >1-06.

w€el0,1]

2. By Lemma[A.5|and the condition on 7',

Ld,
loTw| < |loT vz isa < \/TLdu log (T) IS,
Under A, we bound the spectral norm (for all w)

(@2 @ 1)@ V) 0T W M-

< |loff @ Lo, || |@WT0)7 | oW 1826

C (Ldu)
< VL' —|TLd,log | — ) ||Xz|| | Ma~
< VI g\ =5 ) %l IMe-|
Ld,
< CV 191 1 Lo (234 ) 015
3. Let €¢runc,Fr = ||F*11[L+1_,DQ) HH and similarly define €;ync,g. We bound the last term
by noting -
[(F Lzs1,00) * ully < [[(F Liza1.00)" - 8, < Etrune,r [[ull
and  similarly  ||(G*L{p41,00)) * €] < Etrunc,& ||€]lo- We
have P (||n0;T,1|| > Td, + Cy/log (%)) < 5 and

P<||§0:T—1H > \/THEimHF+C'\/||Eleog(%)) < § by Theorem so condi-

tioned on event A,

/1 1
sup [((bf & Idu)EB] S C\ = €trunc,F Tdu + 1Og (7)
wel0,1] T \/ )

evanes (VI 4 it (7))

with probability at least 1 — §. By the condition on 7', the first terms are dominant.

Finish by replacing J by % and using the triangle inequality and a union bound. O

B Improved rates for learning system matrices

In this section, we combine Lemma and Lemma [4.3| with bounds in [OO19] to give improved
bounds for learning the system matrices

ZReferences to [OO19] are for the arXiv version https://arxiv.org/abs/1806.05722,
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As L can be chosen to make e,y negligible, this gives 4/ % rates, however, with factors depending
on the minimum eigenvalue of H.

We first re-do some of the bounds in [OO19] more carefully, using their notation.

Lemma B.1 (JOOT9, Lemma B.1]). Suppose omin(L) > 2

‘L — ZH where omin (L) is the smallest

nonzero singular value of L. Let rank-d matrices L, L have singular value decompositions UXV*
and UXV'*. There exists an X n unitary matrix W so that

A(VZ +1)d HL - EH2
Omin (L) ’

HUzl/2 _ ﬁil/ZWHz i HVZW — vngH? <
F F

Proof. This inequality is given as an intermediate inequality in the proof of Lemma B.1 in [OO19].

L-Z|? ~
\/52_1 HU _ (ﬂf Then use the fact that rank(L — L) < 2d, so

~12 ~112
& =2 < 2a e -2 .

The first line gives that the LHS is <

Using this instead of Lemma B.1 gives the following for Theorem 4.3 of [OO19].

Lemma B.2. Let 121\, B , C be the state-space realization corresponding to the output of Ho-Kalman
with input G. Suppose the system is observable and controllable. Let L = Hankely, (;,_1)(F™).

Suppose omin(L) > 0 and the low-rank approximation from Ho-Kalman satisfies ||L — ZH <
Omin(L)/2. Then there exists a unitary matrix W € R4 such that
N _ 2 (\/§+1)dHL—fH
s ws], o], <
F F Umin(L)
il < 2va (2/VErI[L-I] -
J4-waw], < 25 el =) + e
F Umin(L) Umin(L)

Proof. We refer the reader to [OO19] for the details and just note the differences. As in [OO19], the
first inequality follows from taking the square root in Lemma [B.T]

For the second inequality, using Lemma the inequality for ||OT — X || becomes instead

Jor - ], <10 - Xemas [ o'}

< 2/(V2 + 1)dHL—ZHF 2 1/ (V2+ 1)dHL—EHF
= /2 ’ = /2

Omin (L)* Omin (L) Omin(L)3
so that (B.3)—(B.7) become
H(OT _ XT)H+QTHF < AR \/i)dHf _ LHF [V
Omin (L)
_ V@+V2)d|[L-L _
ity < V¢ +Gmi)(ﬂ)’f e ey o - ae]).
Substituting in (B.2) then gives the theorem. O

Proof of Theorem 2.3] Lemmagives a bound on HH — H\H By [OO019, Appendix B.4],

e e L

N LU T P

By Lemma[d.3] || H| < [[F*[l, = [[®pll;.. . Plugging this into Lemma [B.2| gives the theorem.
O
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C Concentration bounds

In this section, we collect some useful concentration results.
Definition C.1. A R-valued random variable X is sub-gaussian with constant K if
X1, = inf {s>0:E[exp((z/s)?) — 1] <1} < K,
and a R"-valued random variable X is sub-gaussian with constant K if
XNy, = sup [(X,z}],, < K.
vesSn—1
Theorem C.2 ([Verl8, Ex. 4.7.3]). There is a constant C such that the following holds. Let
X1,..., Xy, beiid copies of a random vector X in R™ satisfying the sub-gaussian bound for any z,
2
1, 2)]l,,, < KE[(X,)?).
Let ¥y = 25" X, X1 Then for any s > 0,

P (nzm ~ 3| < CK? ( nEs, ”“) zn) >1- 2.
m m

Theorem C.3 (Hanson-Wright inequality, [RV™ 13| Theorem 1.1]). There is a constant ¢ > 0 such
that the following holds. Let A € C"*™ be a matrix, and let v € R™ be a random vector with
independent, mean-0, K -sub-gaussian entries. Then for every s > 0,

52 s
P(jv" Av — Ev" Av| > s) < 2exp {c - min { ) }} .
K4 A" K2 || A]

Corollary C4. There is a constant ¢ > 0 such that the following holds. Let A € C™*™ be a matrix,
and let v € R™,w € R™ be random vectors with independent, mean-0, K, and K,, sub-gaussian
entries, respectively. Then for every s > (),

52 S
P(jv" Aw| > s) < 2exp {—c - min { ) }} .
K2K2 ||A|]2" KoKy A

@) A). L)

v
Proof. Apply Theorem for v < (w) and A < ( 0 O
Theorem C.5 (Sub-gaussian concentration, [RV"13, Theorem 2.1]). There is a constant ¢ > 0

such that the following holds. Let A € C™*™ be a matrix, and let v € R™ be a random vector with
independent, mean-0, K-sub-gaussian entries. Then for every s > 0,

P (/| Av] ||A|>s]<2exp( )
2~ [1Alle] > 8] < e )
KA

D Experimental details

We generate random LDS’s as follows. For B and C, the rows or columns are chosen to be a
random set of orthonormal vectors (depending on whether they have more rows or columns). For
A, the entries are first chosen to be iid standard gaussians, and then A is re-normalized so that its
maximum eigenvalue has absolute value Apax. For simplicity, we take D = O.

We make a slight modification of Algorithm [T] which triples the size at each iteration instead. For
L = 3%, we estimate a finite impulse response of length 4 - 3¢~ — 1. Then, for the multiscale
SVD algorithm, at the kth scale (k > 1), we consider the rank-d SVD of Hankel;.,(F’), where
¢ =231 and use this SVD to estimate the F'(t) for 3*~1 < ¢ < 2*. For the single-scale SVD,
we estimate all F'(¢) from the rank-d SVD of Hankelyy ¢(F), where ¢ = 2 - 3971,

The plots show the error ||F*1(y 1) — F||,, where F is the estimated impulse response on [1, L],
averaged over 10 randomly generated LDS’s, as a function of the time 7" elapsed, for the following
settings of parameters:

23



640

641

642

644

645

646

647
648
649
650

651
652
653
654
655

d=1, L=27 d=3, L=27
0.6 F — least squares — least squares
SVD 151 SVD
05 - multiscale SVD multiscale SVD
1.2
w 04F e
=] o
E t 09
@ 03 @
02t 06 -
0.1 0.3
1000 1500 2000 500 1000 1500 2000
time time
d=3, L=81 d=5, L=81
—— least squares —— least squares
3.0 SVD 30 SVD
multiscale SVD multiscale SVD
25 F 25
20 5 20
2 e
= e
@ 15+ V15
10f 10}
051 05+
600 300 1200 1500 1800 600 900 1200 1500 1800
time time
d=10, L=81
35F
— least squares
30 svD
multiscale SVD
25¢F
.
g 201
@
151
1.0
05

600 900 1200

time

1500 1800

d=d, =dy,=1,L =27, Apay = 0.9.
d=dy, =dy=3,L =27, Apax = 0.9.
d=d, =d, =3, L =81, Apax = 0.95.
d=5d, =dy =3, L =81 Anax = 0.95.
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Al e

The code was written in Julia.

E Open problems

We conclude with some open problems. It would be interesting to obtain analogous rates (depending
on system order) for the nuclear norm regularized problem [SOF20]. Spectral methods also suggest
the possibility of obtaining regret bounds for adaptive control of partially-observed systems with
milder dependence on ﬁ(A)’ We give several other problems below.

Process noise. A natural open question is to obtain better guarantees in the presence of process
noise £(t). We note that in Theorem the factor multiplying /||, [ is V'L || M,y |, which we
expect to be on the order of L when L is the minimal sufficient memory length. This term arises
because process noise can accumulate over L timesteps. In the case where £(t) ~ N(0,%,) is iid
gaussian, the Kalman filter shows that we can rewrite the system in the predictor form

x(t)” = Agpx(t — 1)~ + Bkr <§g _ 3)

y(t) = Cx(t)” + Du(t) + e(t)

(16)

a7
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where e(t) ~ N(0,Xgr) for some covariance matrix Ygp that can be calculated in terms of
A,B,C,%X;,%,. This is now a filtering problem, where we have to regress the output on both
previous inputs u(¢) and outputs y(¢). This is more challenging, because unlike previous wu(t), the
previous y(t) are highly correlated. One can perhaps treat this as a low-rank approximation in a
different norm.

Hoo error bounds. How can we learn the system with H ., error bounds, that is, obtain error
bounds under worst case input? This is particularly useful in control. We do not expect we can

achieve \/% rates under iid inputs u(t). However, it may be possible to take an active learning
approach, by maximally exciting the system at frequencies we wish to learn, as in [WJ20].

Input design. In this work we choose iid random inputs, but can we estimate more efficiently with
well-designed deterministic inputs? Can we design inputs to respect constraints such as constraints
on frequencies? [SGA20] suggests that efficient estimation is possible under general conditions on
the inputs.

More general noise. Do guarantees still hold if the noise satisfies weaker conditions such as sub-
gaussianity? A key difficulty is bounding the maximum Fourier coefficient (as in Lemmal[A.6)).
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