
Appendix for Differential-Critic GAN

A ABLATION STUDY

The objective in our DiCGAN (equation 4) consists of two components, i.e., the WGAN loss, which
serves as the cornerstone of DiCGAN, and the ranking loss, which serves as the correction for WGAN.
Meanwhile, we introduce the operation of replacement (equation 8) during the model training.
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Method MNIST
top 1 top 5

Original 9.9 51.1
DiCGAN (λ = 0) 9.1 54.6
DiCGAN (ng = 0) 24.0 87.8

DiCGAN 100.0 100.0

(c)

Figure 1: (a-b) The percentage of desired samples (D/W) versus epoch in DiCGAN (λ = 0), DiCGAN
(ng = 0) and DiCGAN. (a) plots the D/W of the digit zero. (b) plots the D/W of the digit zero to four.
(c) The percentage of desired samples (D/W) from the orginial datasets, WGAN, DiCGAN (λ = 0),
DiCGAN (ng = 0) and DiCGAN.

To analyze the effects of the correction for WGAN (the third term in equation 5) and the replacement
operation, we plot the percentage of desired samples (D/W) versus the training epoch for DiCGAN
(λ = 0), DiCGAN (ng = 0) and DiCGAN in Fig. 1a, 1b. Meanwhile, the the converged percentage
of desired samples (D/W) are reported in Fig. 1c. It can be seen that

1. Without the correction term (λ = 0), DiCGAN cannot learn the desired data distribution.
The percentage of desired samples (D/W) from DiCGAN (λ = 0) remains constant during training
on MNIST (Fig. 1a, 1b) compared with the original datasets (Fig. 1c). This is because that the
remaining WGAN term in DiCGAN(λ = 0) focuses on learning the training data distribution.

2. Without the replacement (ng = 0), DiCGAN makes a minor correction to the generated
distribution. In Fig. 1a, 1b, the D/W of DiCGAN (ng = 0) slightly increases compared with
the original datasets. This is consistent with our analysis that the correction term would drive the
generation towards the desired distribution.

3. DiCGAN learns the desired data distribution with a sequential minor correction. The D/W
of DiCGAN grows with training and reaches almost 100% when convergence. The correction
term drives DiCGAN’s generation towards the desired data slightly at each epoch. With the
iterative replacement, the minor correction sequentially accumulates and finally the generated
distribution shifts to the desired data distribution.

B LEARNING THE DISTRIBUTION OF DESIRED OBJECTS

We consider cars as the desired objects and design the experiment to learn the distribution of cars in
CIFAR.

Sample selection in FBGAN: A classifier, pretrained for classifying cars and planes, is adopted for
selection. The generated objects, classified to car, are selected to replace the old training data.

Pairwise preferences construction in DiCGAN: Denoting label of CIFAR image as y, the pairwise
preference between two images x1 and x2 are x1 � x2 when y1 = “car”, y2 = “plane”, and vice
versa. At each iteration, we construct 32 pairs by random sampling pairs from the mini-batch 64
samples.
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Method CIFAR (IS)
D/W IS MS-SSIM

Dataset 50.0 4.96 0.45
FBGAN 93.9 3.78 0.52
DiCGAN 95.4 3.67 0.49

Table 1: Results on CIFAR dataset.

In Fig. 2, we visualize the generated CIFAR images ran-
domly sampled from the generator of DiCGAN. It shows
that DiCGAN gradually generates cars, as we desired.

Meanwhile, we sample 10K samples from the generator
and calculate the percentage of car images among the gen-
erated samples for quantitative evaluation. In Table 1, (1)
almost all images generated by DiCGAN and FBGAN are
car images; (2) the percentage of car images generated by
WGAN is similar to the training dataset. (3) We calculate
the IS and MS-SSIM of the cars in the training data (denoted as “original”. The IS and the diversity
of FBGAN and DiCGAN does not exhibit a big difference as the original dataset, which means they
have relatively good quality and diversity. Meanwhile, they achieve comparable IS and MS-SSIM.

(a) Epoch 0 (b) Epoch 10 (c) Epoch 20 (d) Epoch 50 (e) Epoch 100

Figure 2: Generated images of DiCGAN on CIFAR. DiCGAN aims to learn the distribution of car
images of CIFAR. The training dataset is composed of car and plane images in CIFAR-10.

C EXPERIMENT SETTINGS

Hyperparameter The batch size b is set to 50 for MNIST, 64 for CIFAR and CelebA-HQ datasets.
The #generated samples ng is set to 50K for MNIST, 1K for CIFAR and 3, 000 for CelebA-HQ,
respectively. Other hyperparameters are adopted the same as in Gulrajani et al. (2017).

We construct pairwise preferences using the minibatch samples at each iteration based on the
classification labels. We construct the pairs by randomly selecting two samples from the minibatch
samples, respectively. The pairs, in which two samples belong to the same class, i.e., same digits or
same objects, are removed.

CelebA-HQ training setting WGAN is only trained with the constructed desired dataset. CWGAN
conditions on c to model a conditional data distribution p(x|c). There are 6, 632 samples labeled
as desired and 23, 368 samples labeled as undesired in the training data. A classifier, pre-trained
for classifying young faces and old faces, is adopted for predicting the labels for the generated face
images. At every training epoch, FBGAN generates 3, 000 images and those classified as the old are
selected to replace the old training data. As for DiCGAN, the generated face image classified with
the old attribute is preferred over the face image classified with the young attribute. At each iteration,
we construct 32 pairs by random sampling pairs from the mini-batch 64 samples.

D MORE VISUAL RESULTS
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(a) WGAN (subset)

(b) CWGAN

(c) FBGAN

(d) DiCGAN

Figure 3: Generated digits of DiCGAN on MNIST during the training process.

(a) Epoch 0 (b) Epoch 1 (c) Epoch 2 (d) Epoch 4 (e) Epoch 5
Figure 4: Generated images of DiCGAN on CelebA-HQ. DiCGAN learns the distribution of old
faces. DiCGAN gradually generates more old face images.
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Algorithm 1 Training algorithm of DiCGAN
1: input: training data X, pairwise preferences S
2: initilization: balance factor λ, #generated samples ng, #pairs ns, batchsize b, #iterations per epoch ni,

#critic iterations per generator iteration ncritic

3: Pretrain D and G
4: repeat
5: % Shift to the user-preferred distribution
6: Generate samples using equation 7
7: Replace old samples in X with Xg using equation 8
8: Obtain pairwise preferences R using equation 2
9: % Training of D and G at an epoch

10: for i = 1, . . . , ni do
11: for t = 1, . . . , ncritic do
12: Sample {xi}bi=1 from X, {zi ∼ p(z)}bi=1

13: Sample {sj}ns
j=1 from S.

14: Train the differential critic D using LD in equation 5
15: end for
16: Train the generator G using LG in equation 5
17: end for
18: until converge
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