A Appendix

This section provides additional implementation details, background information, and results.
Therefore, it is started by introducing the distribution strategy used to parallelize the training of
the TD3 agents. Thereafter, the adaptions to the simulation setup used to generate the presented
results are introduced. Finally, the missing result plots of the exemplary trajectories shown in the
main paper — c.f., Figure 5 and 6 — are presented. Note that, videos, images, and more discussion
can be found on our project webpage'.

A.1 Distribution Strategy

While OpenAI-ES offers straightforward parallelization to a huge number of workers by default,
TD3 was introduced as a serial approach. Nonetheless, as TD3 is an off-policy approach, it can be
trained on data from parallel workers as well. Barth-Maron et al. [33] introduced a distributed ver-
sion of DDPG, which runs multiple actors in parallel to generate experience that is added to a joint
replay buffer. Then a single critic can be trained on data from the joint replay buffer. We also dis-
tribute training in TD3. However, unlike Barth-Maron et al. [33], we only distribute the simulation
environment to different workers and run it with different seeds while using a single actor instead.
This distribution strategy allows more efficient training on consumer PCs as it reduces communi-
cation bandwidth — only states and actions need to be communicated instead of actor parameters
— and runs the single actor on the GPU to predict the actions of all workers at once. In contrast,
we implemented OpenAI-ES similarly to the original authors, as it relies on the usage of different
actors.

A.2 Simulation Setup

RLBench is based on PyRep and CoppeliaSim, and provides the reaching and pick-and-lift tasks.
However, some adaptions had to be made to the tasks and RLBench itself. At the time of writing,
RLBench uses different time horizons for sole arm actions and arm actions with gripper usage.
While a sole arm action is executed in a single time step, once a gripper action is triggered, the
simulation runs in a loop until the gripper has changed its state while continuously repeating the
arm action. This idiosyncrasy was learned by the agent and led to inferior performance. Thus we
separated arm and gripper actions: once a gripper action is triggered, arm actions are stalled. This
is also beneficial for real-world application, as this relationship between arm and gripper actions
allows scaling the arm actions almost independently of the gripper actuation. Finally, the target
object in the pick-and-lift task was not rotated during training to lower the task’s complexity.

A.3 Results

Pick-and-Lift Task with an Inclined Reference Configuration When using the loss that mini-
mizes the distance to a reference configuration — c.f., Equation (9) —, any reference configuration
can be passed. In Figure 5, an inclined reference configuration was passed to learn to grasp from
the right. Figure 7 presents the respective validation results of the TD3 agent on the pick-and-lift
task with an inclined reference configuration during training. As can be seen, our approach reaches
similar performance to the agent without redundancy resolution on the main objective (even slightly
outperforming the agent without redundancy resolution), while allowing to embed secondary objec-
tives — here minimizing the distance to an inclined reference configuration.

Reaching Task with Collision Avoidance When using the loss shown in Equation (10) as the
secondary objective, the agent is biased towards actions that maximize the distance between the
robot links and obstacles, as shown in the exemplary episode presented in Figure 6. Figure 8 presents
the respective validation results of the TD3 agent on the reaching task during training. As can be
seen, our method again reaches similar performance to the agent without redundancy resolution on
the main objective, while allowing to embed secondary objectives — here collision avoidance.

"https://sites.google.com/view/redundant-action-bias

11


https://sites.google.com/view/redundant-action-bias

1.0 7

3
1

0.6

Proportion of
Successful Episodes
=
!

2
|
Average Reward per Step

T T T T T T T T T T
0 50000 100000 150000 200000 250000 0 50000 100000 150000 200000 250000

Episode Episode
=== Without Redundancy Resolution === With Redundancy Resolution (inclided to right)

Figure 7: Validation results of TD3 on a pick-and-lift task with an inclined reference position dur-
ing redundancy resolution in order to learn grasping from the right. The abscissa shows training
episodes. Every 2500 training episodes, the training was paused and the agents were evaluated on
1000 random validation episodes (i.e., no exploration). Then, the means were taken to plot a single
point of the reward and the loss.

Proportion of
Successful Episodes
o
=
L

S
L
Average Reward per Step

o
=3

T T T T T T T T T T T T T T T T T
0 25000 50000 75000 100000 125000 150000 175000 200000 0 25000 50000 75000 100000 125000 150000 175000 200000

Episode Episode

== Without Collision Avoidance === With Collision Avoidance

Figure 8: Validation results of TD3 on a reaching task with and without redundancy resolution
for collision avoidance. The abscissa shows training episodes. Every 2500 training episodes, the
training was paused and the agents were evaluated on 1000 random validation episodes (i.e., no
exploration). Then, the means were taken to plot a single point of the reward and the loss.

12



