
Appendix

A More related works

Besides proportionality, in another parallel line of research, envy-freeness and its relaxations, namely
envy-free up to one item (EF1) and envy-free up to any item (EFX), are also widely studied. It
was shown in [35] and [11] for goods and chores, respectively, that an EF1 allocation exists for the
monotone combinatorial functions. However, the existence of EFX allocations is still unknown even
with additive functions. Therefore, approximation algorithms were proposed in [2, 42] for additive
functions and in [39, 16] for subadditive functions. We refer the readers to [3] for a detailed survey
on fair allocation of indivisible items.

B Missing materials in preliminaries

B.1 Impossibility result for general cost functions

We provide an example to show that no bounded approximation ratio can be achieved for general
cost functions. Note that there exist simpler examples, but we choose the following one because it
represents a particular combinatorial structure – minimum spanning tree. Let G = (V,E) be a graph
shown in the left sub-figure of Figure 2, where the vertices V are the items that are to be allocated,
i.e., M = V . There are two agents N = {1, 2} who have different weights on the edges as shown
in the middle and right sub-figures of Figure 2. The cost functions are measured by the minimum
spanning tree in their received subgraphs. Particularly, for any S ✓ V , vi(S) equals the weight of
the minimum spanning tree on G[S] – the induced subgraph of S in G – under agent i’s weights.
Thus, MMSi = 0, for both i = 1, 2, where an MMS defining partition for agent 1 is {v1, v2} and
{v3, v4} and that for agent 2 is {v1, v4} and {v2, v3}. However, it can be verified that no matter how
the vertices are allocated to the agents, there is one agent whose cost is at least 1, which implies that
no bounded approximation is possible for general costs.

Figure 2: An instance with unbounded approximation ratio

B.2 Proof of Observation 1

To prove the observation, it suffices to show MMS
d
i  dnd e · MMS

n
i for any agent i 2 N . Let

X = (X1, . . . , Xn) be an MMS defining partition for agent i, which satisfies vi(Xj)  MMS
n
i for

every j 2 [n]. Consider a d-partition X0 = (X 0
1, . . . , X

0
d) built by evenly distributing the n bundles

in X to the d bundles in X0; that is, the number of bundles distributed to the bundles in X0 differs
by at most one. Clearly, X0 satisfies vi(X 0

j)  dnd e ·MMS
n
i for every j 2 [d]. By the definition of

1-out-of-d MMS, it follows that

MMS
d
i  max

j2[d]
vi(X

0
j)  d

n

d
e ·MMS

n
i ,

thus completing the proof.

14

x

z

y
1

2
3

2

2

3

3

Agent 1

x

z

y
1

2
3

2

2

3

3

Agent 2

x

z

y
1

2
3

2

2

3

3

Agent 3

Figure 3: An instance with 3 agents and 27 items

C Missing materials in general subadditive cost setting

C.1 An example that helps understand Theorem 1

The example is illustrated in Figure 3 where each agent has three covering planes. Take agent 1 for
example, her three covering planes contain the items whose x coordinates are 1, 2, 3, respectively.
If there exists an allocation that is better than 3-MMS, then each agent is allocated items from at
most 2 of her covering planes. Without loss of generality, we assume that agent 1 (or agents 2 and 3
respectively) is not allocated any item whose x (or y and z respectively) coordinate is 1. Then, the
item (1, 1, 1) is not allocated to any agent, a contradiction.

C.2 Proof of Corollary 1

We consider the same instance that is designed in Theorem 1. In this instance, we have proved that no
matter how the items are allocated among the agents, there is at least one agent, say i, whose cost is n.
Moreover, by the design of the cost functions, for any integer d, it can be observed that MMS

d
i = dnd e.

Note that dnd e is always smaller than n for all d � 2, thus the allocation is not 1-out-of-d MMS to i.

D Missing materials in bin packing setting

D.1 The IDO reduction

For a bin packing or job scheduling instance I , the IDO instance I
0 is constructed by setting the size

of each item ej 2M to each agent i 2 N in I
0 to the j-th largest size of the items to i in I . Then the

IDO reduction is formally presented in the following lemma.

Lemma 1 For the bin packing or job scheduling setting, if there exists an allocation A0 =
(A0

1, . . . , A
0
n) in the IDO instance I

0 such that v0i(A0
i)  ↵ · MMS

d
i (I

0) for all i 2 N , then there
exists an allocation A = (A1, . . . , An) in the original instance I such that vi(Ai)  ↵ ·MMS

d
i (I)

for all i 2 N .

Proof. We design Algorithm 4 that given I , I 0 and A0, computes the desired allocation A. In the
algorithm, we look at the items from em to e1. For each item, we let the agent who receives it in I

0

pick her smallest unallocated item in I .

To prove the lemma, we first show that vi(Ai)  v
0
i(A

0
i) for all i 2 N . Consider the iteration where

we look at the item eg. We suppose that in this iteration agent i picks item eg0 ; that is, eg 2 A
0
i,

eg0 2 Ai and eg0 is the smallest unallocated item for i. Since an item is removed from the set R
after it is allocated, exactly m� g items have been allocated before eg0 is allocated. Therefore, eg0

is among the top m � g + 1 smallest items for agent i. Recall that eg is the item with the exactly
(m�g+1)-th smallest size to i, hence si,g0  s

0
i,g . The same reasoning can be applied to other items

in A
0
i and Ai, and to other agents. It follows that for any i 2 N , any eg 2 A

0
i and the corresponding

eg0 2 Ai, si,g0  s
0
i,g. For the bin packing or job scheduling setting, this implies vi(Ai)  v

0
i(A

0
i).

Since the maximin share depends on the sizes of the items but not on the order, the maximin share

15

of agent i in I
0 is the same as that in I , i.e., MMS

d
i (I

0) = MMS
d
i (I). Hence, the condition that

v
0
i(A

0
i)  ↵ ·MMS

d
i (I

0) gives vi(Ai)  ↵ ·MMS
d
i (I), which completes the proof.

Algorithm 4 IDO reduction for the bin packing and job scheduling settings
Input: A general instance I , the IDO instance I

0 and an allocation A0 = (A0
1, ..., A

0
n) for the IDO

instance such that v0i(A0
i)  ↵ ·MMS

d
i (I

0) for all i 2 N .
Output: An allocation A = (A1, ..., An) such that vi(Ai)  ↵ ·MMS

d
i (I) for all i 2 N .

1: For all i 2 N and eg 2 A
0
i, set pg i.

2: Initialize Ai ; for all i 2 N , and R M .
3: for g = m to 1 do

4: Pick eg0 2 argminek2R{spg,k}.
5: Apg Apg [{eg0}, R R \ {eg0}.
6: end for

D.2 Lower bound instance

We present an instance for the bin packing setting where no allocation can be better than 2-MMS.
We first recall the impossibility instance given by Feige et al. [20]. In this instance there are three
agents and nine items as arranged in a three by three matrix. The three agents’ costs are shown in the
matrices V1, V2 and V3.

V1 =

6 15 22
26 10 7
12 19 12

!
V2 =

6 15 23
26 10 8
11 18 12

!

V3 =

6 16 22
27 10 7
11 18 12

!

Feige et al. [20] proved that for this instance the MMS value of every agent is 43, however, in any
allocation, at least one of the three agents gets cost no smaller than 44.

We can adapt this instance to the bin packing setting and obtain a lower bound of 2. In particular, we
also have three agents and nine items. The numbers in matrices V1, V2 and V3 are the sizes of the
items to agents 1, 2 and 3, respectively. Let the capacities of the bins be ci = 43 for all i 2 {1, 2, 3}.
Accordingly, we have MMSi = 1 for all i 2 {1, 2, 3}. Since in any allocation, there is at least one
agent who gets items with total size no smaller than 44, for this agent, she has to use two bins to pack
the assigned items, which means that no allocation can be better than 2-MMS.

D.3 Computing
3
2MMS+ 1 allocations

Recall that in the proof of Corollary 2, it has been shown that each agent i 2 N can use MMSi bins
to pack all items in Wi(Ai \ {e⇤i }) and another MMSi bins to pack all items in Ji(Ai \ {e⇤i })[{e⇤i }.
Actually, since all items in Ji(Ai \ {e⇤i }) [{e⇤i } are small for i and at least two small items can be
put into one bin, i only needs dMMSi

2 e bins to pack all items in Ji(Ai \ {e⇤i })[{e⇤i }. Therefore, each
agent i can use no more than 3

2MMSi + 1 bins to pack all the items allocated to her.

E Missing materials in job scheduling setting

E.1 Another interpretation to the job scheduling setting

An alternative way to explain the job scheduling setting is to view each agent i as a group of ki small
agents and MMS

d
i as the collective maximin share for these ki small agents. We believe this notion

of collective maximin share is of independent interest as a group-wise fairness notion. We remark
that this notion is different from the group-wise (and pair-wise) maximin share defined in [7] and
[15], where the max-min value is defined for each single agent. In our definition, however, a set of
agents share the same value for the items allocated to them.

16

E.2 Algorithm

E.2.1 Part 1: partitioning the items into d bundles

We first partition the items into d bundles B = (B1, . . . , Bd) in a round-robin fashion. Specifically,
we allocate the items in descending order of their sizes to the bundles by turns, from the first bundle
to the last one. Each time, we allocate one item to one bundle, and when every bundle receives an
item, we start over from the first bundle and so on. For any set of items S, let S[l] be the l-th largest
item in S, then the algorithm is formally presented in Algorithm 5.

Algorithm 5 Partitioning the items into d bundles
Input: An IDO job scheduling instance (N,M, {vi}i2N , {si}i2N).
Output: A d-partition of M : B = (B1, . . . , Bd).

1: Initialize Bj ; for every j 2 [d], and r 1.
2: while r  m do

3: for j = 1 to d do

4: if r  m then

5: Bj Bj [{M [r]}.
6: r r + 1.
7: end if

8: end for

9: end while

By the characteristic of the round-robin fashion, we have the following important observation.

Observation 2 For each bundle Bj 2 B and each item ek 2 Bj \ {Bj [1]} (if exists), the d� 1 items
before ek (i.e., items ek�1, ek�2, . . . , ek�d+1) have at least the same sizes as ek.

E.2.2 Part 2: imaginary assignment

Next, for each bundle Bj 2 B computed in the first part and each agent i 2 N , we imaginatively
assign the items in Bj \Bj [1] to i’s machines as follows. We greedily assign the items with larger
sizes to i’s machines with faster speeds (in other words, with larger capacities), as long as the
total workload on one machine does not exceed the its capacity. The first time when the workload
exceeds the capacity, we move to the next machine and so on. The algorithm is formally presented
in Algorithm 6 and illustrated in Figure 4. For each l 2 Pi, CI

i,l contains the items imaginatively
assigned to machine l that do not make the total workload exceed l’s capacity, and ti,l is the last item
assigned to l that makes the total workload exceed the capacity. Note that CI

i,l may be empty and
ti,l may be null. For simplicity, let ti,0 = Bj [1]; that is, Bj [1] is assigned to an imaginary machine
0. The items in

S
l2[ki]

C
I
i,l are called internal items (as shown by the dark boxes in Figure 4), and

{ti,0, . . . , ti,ki} are called external items (as shown by the light boxes).

Algorithm 6 Imaginary assignment
Input: A bundle Bj 2 B computed in the first part and an agent i 2 N .
Output: Sets of internal items {CI

i,1, . . . , C
I
i,ki

} and external items {ti,0, . . . , ti,ki}.
1: Initialize C

I
i,l ;, ti,l null for every l 2 [ki], and r 1.

2: while r  |Bj | do

3: for l = 1 to ki do

4: ti,l�1 Bj [r], r r + 1.
5: while r  |Bj | and si(CI

i,l [{Bj [r]})  ci,l do

6: C
I
i,l C

I
i,l [{Bj [r]}, r r + 1.

7: end while

8: end for

9: end while

For each bundle Bj 2 B and each agent i 2 N , the imaginary assignment has the following important
properties.

17

Figure 4: The imaginary assignment of Bj to agent i

• Property 1: all items in Bj \ {Bj [1]} can be assigned to agent i’s machines. Besides, the
last machine ki does not have an external item; that is, ti,ki is null.

• Property 2: for any 1  l  ki, the total size of the internal items CI
i,l does not exceed the

capacity of machine l, i.e., si(CI
i,l)  ci,l

• Property 3: for any 1  l  ki, the external item ti,l�1 (if not null) has size no larger than
the capacity of machine l, i.e., si(ti,l�1)  ci,l.

Proof. The first property holds since otherwise, si(Bj \ {Bj [1]}) >
P

l2[ki]
ci,l. By Observation 2,

it follows that
si(M) > d · si(Bj \ {Bj [1]}) > d ·

X

l2[ki]

ci,l.

However, since all items can be assigned to i’s machines in i’s 1-out-of-d MMS defining partition,
we have si(M)  d ·

P
l2[ki]

ci,l, a contradiction.

The second property directly follows the algorithm. For the third property, si(ti,0)  ci,1 follows
two facts that ti,0 is assigned to some machine in i’s 1-out-of-d MMS defining partition and ci,1

is the largest capacity of the machines. We then consider l 2 [ki � 1] and show si(ti,l)  ci,l+1

(if ti,l is not null). The same reasoning can be applied to any other l
0 2 [ki � 1]. Let S1 =S

p2[l](C
I
i,p [{ti,p}). From the algorithm, we know that si(S1) >

P
p2[l] ci,p and ti,l is the smallest

item in S1. By Observation 2, there exist another d � 1 disjoint sets of items {S2, . . . , Sd} such
that si(Sk) � si(S1) for every k 2 [2, d] and ti,l is also the smallest item in

S
k2[d] Sk. Hence,P

k2[d] si(Sk) > d ·
P

p2[l] ci,p. This implies that in i’s 1-out-of-d MMS defining partition, at least
one item in

S
k2[d] Sk is assigned to machine p � l + 1. Combining with the fact that ti,l is the

smallest item in
S

k2[d] Sk, we have si(ti,l)  ci,l+1.

By these properties, for each machine l 2 Pi, we can assign either the internal items C
I
i,l or the

external item ti,l�1 to l, such that its completion time does not exceed MMS
d
i . This intuition guides

the allocation of the items to the agents in the following part.

E.2.3 Part 3: allocating the items to the agents

Lastly, for any bundle Bj 2 B, we arbitrarily choose two agents i1, i2 2 N and allocate them the
items in Bj as formally described in Algorithm 7. Recall that in the imaginary assignment of Bj

to each agent i 2 {i1, i2}, the items in Bj are divided into internal items
S

l2[ki]
C

I
i,l and external

items {ti,0, . . . , ti,ki}. Let E = {e⇤1, . . . , e⇤|E|} contain all external items shared by i1 and i2. Note
that e⇤1 = ti1,0 = ti2,0. We allocate the items in Bj to agents i1 and i2 in |E| rounds. In each round
q 2 [|E|], we first find the machines of i1 and i2 to which the shared external items e⇤q and e

⇤
q+1 are

assigned (denoted by l1, l2, l01 and l
0
2, respectively. If q = |E|, simply let l01 = ki1 and l

0
2 = ki2). We

then find the agent ik 2 {i1, i2} whose machine lk + 1 has more internal items. We allocate ik her
internal items from machine lk + 1 to machine l

0
k, and allocate the other agent ik’s external items

from machine lk to machine l
0
k � 1.

Since 2 · d = 2 · bn2 c  n, no more than n agents are needed to allocate all items. Thus to prove
Theorem 4, it remains to show that each agent can assign her allocated items to her machines such
that the total workload on each of the machines does not exceed its capacity.

18

Algorithm 7 Allocating the items to the agents
Input: A d-partition of the items B = (B1, . . . , Bd) returned by Algorithm 5.
Output: An allocation A = (A1, . . . , An) such that vi(Ai)  MMS

d
i for all i 2 N .

1: Initialize Ai ; for every i 2 N .
2: for j = 1 to d do

3: Arbitrarily choose 2 agents i1, i2 2 N , N N \ {i1, i2}.
4: {CI

i1,1, . . . , C
I
i1,ki1

}, {ti1,0, . . . , ti1,ki1
} Algorithm 6(Bj , i1).

5: {CI
i2,1, . . . , C

I
i2,ki2

}, {ti2,0, . . . , ti2,ki2
} Algorithm 6(Bj , i2).

6: E {ti1,0, . . . , ti1,ki1
} \ {ti2,0, . . . , ti2,ki2

}. Re-label E {e⇤1, . . . , e⇤|E|}. // Shared
external items by i1 and i2

7: for q = 1 to |E| do

8: Find l1 2 [0, ki1] and l2 2 [0, ki2] such that e⇤q = ti1,l1 = ti2,l2 .
9: if q < |E| then

10: Find l
0
1 2 [0, ki1] and l

0
2 2 [0, ki2] such that e⇤q+1 = ti1,l01

= ti2,l02
.

11: else

12: l
0
1 = ki1 and l

0
2 = ki2 .

13: end if

14: if |CI
i1,l1+1| � |CI

i2,l2+1| then

15: Ai1
Sl01

l=l1+1 C
I
i1,l

, Ai2
Sl01�1

l=l1
ti1,l.

16: else

17: Ai2
Sl02

l=l2+1 C
I
i2,l

, Ai1
Sl02�1

l=l2
ti2,l.

18: end if

19: end for

20: end for

Proof of Theorem 4. Consider any bundle Bj 2 B and assume the two chosen agents are i1, i2 2 N .
We first look at the first round of the process of allocating the items in Bj to i1 and i2. Without
loss of generality, assume that the first machine of i1 contains more internal items than that of i2,
i.e., CI

i1,1 � C
I
i2,1. From the algorithm, the items i1 takes are

Sl01
l=1 C

I
i1,l

. By the second property
of the imaginary assignment, these items can be assigned to the first l01 machines of i1 such that
the total workload on each machine does not exceed its capacity. Besides, the items i2 takes are
Sl01�1

l=0 ti1,l, which are e
⇤
1 and a subset of

Sl02
l=2 C

I
i2,l

. By the second and third properties of the
imaginary assignment, these items can be assigned to the first l02 machines of i2 such that the total
workload on each machine does not exceed its capacity. The same reasoning can be applied to all
following rounds. By induction, it follows that both i1 and i2 can assign their allocated items to their
machines such that the total workload on each machine does not exceed its capacity. This means that
both i1 and i2 receive costs no more than their 1-out-of-d MMS, which completes the proof.

For the multiplicative relaxation of MMS, by Theorem 4 and Observation 1, a d n
bn

2 ce-MMS allocation
is guaranteed. As the bin packing setting, after a slight modification, Algorithm 5 computes a 2-MMS
allocation, which is better than d n

bn
2 ce-MMS.

Proof of Corollary 3. We show that by replacing the value of d with n, Algorithm 5 computes a
2-MMS allocation. Particularly, in the new version of Algorithm 5, we partition the items in M into
n bundles in a round-robin fashion and allocate each of the n bundles to one agent in N . By the
properties of the imaginary assignment, for each agent, the makespan of processing either the internal
items or the external items in her bundle using her machines does not exceed MMS

n
i . This implies

that for each agent, the cost of her bundle does not exceed 2 ·MMS
n
i , which completes the proof.

F Proportionality up to one or any item

We now discuss two other relaxations for proportionality, i.e., proportional up to one item (PROP1)
and proportional up to any item (PROPX), which are also widely studied for additive costs.

19

Definition 2 (↵-PROP1 and ↵-PROPX) An allocation A = (A1, . . . , An) is ↵-approximate pro-
portional up to one item (↵-PROP1) if vi(Ai\{e})  ↵ · vi(M)

n for all agents i 2 N and some item
e 2 Ai. It is ↵-approximate proportional up to any item (↵-PROPX) if vi(Ai\{e})  ↵ · vi(M)

n for
all agents i 2 N and any item e 2 Ai. The allocation is PROP1 or PROPX if ↵ = 1.

It is easy to see that a PROPX allocation is also PROP1. Although exact PROPX or PROP1 allocations
are guaranteed to exist for additive costs, when the costs are subadditive, no algorithm can be better
than n-PROP1 or n-PROPX. Consider an instance with n agents and n+ 1 items. The cost function
is vi(S) = 1 for all agents i 2 N and any non-empty subset S ✓ M . Clearly, the cost function
is subadditive since vi(S) + vi(T) � vi(S [T) for any S, T ✓ M . By the pigeonhole principle,
at least one agent i receives two or more items in any allocation of M . After removing any item
e 2 Ai, Ai is still not empty. That is, vi(Ai\{e}) = 1 = n · vi(M)

n for any e 2 Ai. This example can
be easily extended to the bin packing and job scheduling settings, and thus we have the following
theorem.

Theorem 5 For the bin packing and job scheduling settings, no algorithm performs better than
n-PROP1 or n-PROPX.

Proof. For the bin packing setting, consider an instance with n agents and n+ 1 items. The capacity
of each agent’s bins is 1, i.e, ci = 1 for all i 2 N . Each item is very tiny so that every agent can pack
all items in just one bin, e.g., si,j = 1

n+1 for any i 2 N and ej 2M . Therefore, we have vi(M) = 1

and PROPi =
1
n for each agent i 2 N . By the pigeonhole principle, at least one agent i receives two

or more items in any allocation of M . After removing any item e 2 Ai, agent i still needs one bin to
pack the remaining items. Hence, we have vi(Ai\{e}) = 1 = n · PROPi for any e 2 Ai.

For the job scheduling setting, consider an instance with 2n agents and 2n + 1 items where each
agent possesses 2n machines with the same speed of 1, and the size of each item is 1 for every agent.
It can be easily seen that for every agent i 2 N , the maximum completion time of her machines is
minimized when assigning two items to one machine and one item to each of the remaining 2n� 1
machines. Therefore, we have vi(M) = 2 and PROPi =

2
2n = 1

n for any i 2 N . Similarly, by the
pigeonhole principle, at least one agent i receives two or more items in any allocation of M . This
implies that vi(Ai\{e}) = 1 = n · PROPi for any e 2 Ai, thus completing the proof.

20

