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1 Method1

1.1 Coordinate transformation among LiDAR, camera and EGB image in DAIR-V2X2

dataset3

If the LiDAR coordinate system is regarded as the world coordinate system, the 3D coordinate of4

point W could be:5

Wworld =

[
xworld

yworld

zworld

]
(1)

We also have the camera coordinate and image coordinate of point W as6

Wcam =

[
xcam

ycam
zcam

]
,Wimg =

[
ximg

yimg

]
(2)

Its world homogeneous coordinate in camera coordinate system and its camera homogeneous coor-7

dinate in image coordinate system are8

Wworld h =

 xworld

yworld

zworld

1

 ,Wimg h =

[
ximg

yimg

1

]
(3)

Suppose that E is the transformation matrix from LiDAR coordinate system to camera coordinate9

system and I is the transformation matrix from camera coordinate system to image coordinate sys-10

tem, The inverse matrix of E and matrix I are11

E−1
4×4 =

 rx1 ry1 rz1 tx
rx2 ry2 rz2 ty
rx3 ry3 rz3 tz
0 0 0 1

 , I3×3 =

[
fx 0 u
0 fy v
0 0 1

]
(4)

Generally, E and I are the extrinsic matrix and intrinsic matrix of camera, which are given by12

dataset [1].13

Then we have14

Wcam h = E4×4 ∗Wworldh
,Wimg =

1

zcam
∗ I3×3 ∗Wcam (5)

1.2 Generate preference map15

We visualize four typical cases when generating one cell of preference map, which are shown in16

Fig 1.17
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Figure 1: Four typical cases when generating one cell of preference map.

2 Experiments18

2.1 Detailed settings of architecture19

We follow the default settings in OpenCOOD [2] codebase, which is also shown in Tab 2.20

Table 1: Details of unified network architecture.

Blocks Settings
Voxel Feature Encoder (VFE) use normalization and absolute 3D coordinates, 64 filters

PointPillar Scatter 64-channel output

BEV backbone
ResNet backbone with ordered layers=[3, 4, 5], strides=[2, 2, 2],
filters=[64, 128, 256], upsample strides=[1, 2, 4],
upsample filters=[128, 128, 128]

Shrink Header shrink from 384 channels to 256 channels with stride 3
Detect Head 256-channel output with 2 anchors

2.2 Detailed settings of experiments21

Table 2: Details of unified network architecture.

Method optimizer lr schedule initial lr
No Fusion Adam multistep 1e-3

Late Fusion Adam multistep 1e-3
When2com (CVPR’20) Adam multistep 1e-3

V2VNet (ECCV’20) Adam multistep 1e-3
DiscoNet (NeurIPS’21) Adam multistep 2e-3

CoBEVT (CoRL’22) Adam multistep 2e-3
V2X-ViT (ECCV’22) Adam multistep 2e-3

Where2comm (NeurIPS’22) Adam multistep 2e-3
BM2CP Adam multistep 1e-3

2.3 More Visualizations22

Fig 2 shows more comparisons with No Fusion, V2X-ViT and Where2comm.23
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Figure 2: More qualitative results in DAIR-V2X dataset. Ground truths are colored in green and
predictions are colored in red.
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