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ABSTRACT

Physical systems with complex unsteady dynamics, such as fluid flows, are often
poorly represented by a single mean solution. For many practical applications,
it is crucial to access the full distribution of possible states, from which relevant
statistics (e.g., RMS and two-point correlations) can be derived. Here, we pro-
pose a graph-based latent diffusion model that enables direct sampling of states
from their equilibrium distribution, given a mesh discretization of the system and
its physical parameters. This allows for the efficient computation of flow statis-
tics without running long and expensive numerical simulations. The graph-based
structure enables operations on unstructured meshes, which is critical for repre-
senting complex geometries with spatially localized high gradients, while latent-
space diffusion modeling with a multi-scale GNN allows for efficient learning and
inference of entire distributions of solutions. A key finding of our work is that the
proposed networks can accurately learn full distributions even when trained on in-
complete data from relatively short simulations. We apply this method to a range
of fluid dynamics tasks, such as predicting pressure distributions on 3D wing mod-
els in turbulent flow, demonstrating both accuracy and computational efficiency in
challenging scenarios. The ability to directly sample accurate solutions, and cap-
turing their diversity from short ground-truth simulations, is highly promising for
complex scientific modeling tasks.

1 INTRODUCTION

Numerically solving partial differential equations (PDEs) is essential in many scientific and en-
gineering fields (Strikwerda, 2004; Karniadakis & Sherwin, 2013), with fluid dynamics being of
particular interest across a wide range of disciplines (Verma et al., 2018; Kochkov et al., 2021).
Nevertheless, the high computational cost often limits the practical application of these methods and
the exploration of large parameter spaces. While recent advances in deep learning have produced
promising surrogate models for fluid simulation, these typically focus on predicting trajectories
(Kim et al., 2019; Stachenfeld et al., 2021) or mean flows (Lino et al., 2023). For long trajectories,
such methods often suffer from instability issues (Lippe et al., 2024). Besides, in many applications,
the primary interest is not in individual trajectories or mean flows but in the statistical properties
and probability distributions of unsteady flow fields in statistical equilibrium (Pope, 2000). For in-
stance, RMS fluctuations must be accounted for in the design of airfoils or when deciding the relative
placement of aerodynamic components (Caros et al., 2022; Jané-Ippel et al., 2023), and turbulence
research inherently revolves around flow field statistics.

While specialized techniques exist for certain applications – such as unsteady Reynolds-averaged
simulations, which approximate the mean flow (Alfonsi, 2009; Pope, 2004), or the sum-of-
squares method, which can derive upper and lower bounds for time-averaged flow parameters
(Chernyshenko et al., 2014) – obtaining accurate distributions and statistics in the general case still
requires extensive, time-consuming simulations. Often, long simulations are needed to gather suffi-
cient data for stable distributional statistics, and in turbulent flows, very small time-steps are neces-
sary. Additionally, a significant portion of compute time is spent during the warm-up phase, before
reaching statistical equilibrium (Moin & Kim, 1982), and in complex systems, such as weather sim-
ulations, reliable results require running ensembles of perturbed simulations (Maher et al., 2021).

To address this, we leverage a diffusion model that directly learns the distribution of equilibrium
flow states, enabling efficient sampling from the flow state distribution and allowing for the in-
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expensive computation of any desired distributional metric. Unlike prevalent grid-based diffusion
models (Song et al., 2021; Lienen et al., 2024), our approach employs a graph-based representation,
operating directly on meshes. This allows for the accurate representation of complex geometries
and the adaptive allocation of resolution (Pfaff et al., 2021) – a crucial advantage for complex 3D
scenarios, which would otherwise require computationally expensive operations on a dense 3D grid.

However, integrating graph neural networks (GNNs) with diffusion models for large systems
presents challenges, particularly due to limitations in the efficiency of message passing for prop-
agating features across the graph, which can hinder global denoising. To address this, we introduce
an efficient multi-scale GNN architecture to model the denoising transitions and propose working
on a compressed latent mesh. Operating in this latent space not only reduces inference time but also
mitigates the introduction of undesired high-frequency noise in the solutions. Additionally, we find
that the underlying distributions can be accurately learned from short simulations, even when these
simulations lack sufficient diversity to fully represent the flow statistics. We demonstrate that our
approach can accurately capture full distributions where other methods, such as Gaussian mixture
models or variational autoencoders (VAEs), suffer from noise and mode collapse. In addition, it
exhibits strong generalization and can be significantly more efficient than numerical simulations.

2 RELATED WORK

Numerous deep learning algorithms have been proposed to address scientific problems (Guest et al.,
2018; Jumper et al., 2021; Pathak et al., 2022), with fluid flow problems receiving considerable atten-
tion within this field (Morton et al., 2018; Bar-Sinai et al., 2019; Lino et al., 2023). At the same time,
probabilistic models, such as Gaussian mixture models and generative adversarial networks (GANs)
(Goodfellow et al., 2014), have enabled the modeling of probability distributions over plausible
states of physical systems based on collections of system snapshots (Maulik et al., 2020; Drygala
et al., 2022; Kim & Lee, 2020). Recently, denoising diffusion probabilistic models (DDPMs) have
emerged as a powerful class of probabilistic models, initially applied to image generation (Ho et al.,
2020; Nichol & Dhariwal, 2021), where GANs have struggled to capture the full diversity of the
data distribution (Dhariwal & Nichol, 2021). These models have found significant utility in physical
modeling as well, with applications such as flow field super-resolution and reconstruction (Shu et al.,
2023; Li et al., 2023), uncertainty estimation in under-resolved simulations (Liu & Thuerey, 2024),
and enhancing the long-term stability of autoregressive rollouts (Lippe et al., 2024; Rühling Cachay
et al., 2024; Kohl et al., 2024). More closely related to our work, Gao et al. (2024) and Lienen et al.
(2024) leveraged DDPMs to model the probability distribution of fully-developed flows.

However, most of these studies relied on CNNs to parameterize the denoising process, which gen-
erally restricts system representation to Cartesian grids. GNNs, on the other hand, offer greater
flexibility and allow for the discretization of systems using unstructured meshes (Pfaff et al., 2021;
Lino et al., 2022). While GNNs have shown efficacy in modeling steady and unsteady simulations
involving complex geometries and uneven spatial gradients (Belbute-Peres et al., 2020; Lam et al.,
2023), their use in combination with DDPMs remains relatively unexplored.

Recent efforts have applied DDPMs to graph structures for tasks such as molecule synthesis (Xu
et al., 2022; Hoogeboom et al., 2022; Trippe et al., 2023; Vignac et al., 2023), protein generation
(Wu et al., 2024), and inverse protein folding (Yi et al., 2024). More aligned with our work, Wen
et al. (2023) combined DDPMs and GNNs to forecast the probability distribution of future system
states. Their approach was applied to traffic and air quality prediction, where the system’s evolution
was conditioned on past states and the underlying graph structure. However, their work applied
data compression only along the temporal dimension, neglecting – along with previous work –
spatial compression through graph pooling. As a result, these approaches were restricted to small
graphs. In contrast, our work targets systems with thousands of nodes in both 2D and 3D. This
required modeling the denoising process by multi-scale GNNs. These typically follow a U-Net
like architecture (Gao & Ji, 2019), with specialized pooling and unpooling layers. We opted for
non-learnable pooling with automatic graph hierarchy construction, which has proven to be more
effective for deterministic flow simulation (Cao et al., 2023). Additionally, by shifting the generative
problem to a compressed latent space, we let the model focus on more meaningful features, while
any residual noise in the generated samples is reduced when transforming them back to physical
space, unlike previous GNN-based DDPMs. We also address a promising, yet overlooked, topic:
extrapolating the full distribution of system states from incomplete simulations.
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Figure 1: (a) We learn the probability distribution of the systems’ converged states provided only
a short trajectory of length δ << T per system. (b) A preview of our turbulent wing experiment.
The distribution learned by our LDGN model accurately captures the variance of all states (bottom
right), despite seeing only an incomplete distribution for each wing during training (top right).

3 LEARNING TO SAMPLE FROM DISTRIBUTIONS OF SIMULATIONS

We propose Diffusion Graph Networks (DGNs), a model that learns the probability distribution
of dynamical states of physical systems, defined by their discretization mesh and their physical
parameters, by applying the DDPM framework to the mesh nodes. Additionally, we introduce a
second model variant, the Latent DGN (LDGN), which operates in a pre-trained semantic latent
space rather than directly in the physical space.

We represent the system’s geometry using a mesh with nodes VM and edges EM , where each node
i is located at xi. The system’s state at time t, Y (t), is defined by F continuous fields sampled at
the mesh nodes: Y (t) := {yi(t) ∈ RF | i ∈ VM}, where yi(t) ≡ y(xi, t). Simulators evolve the
system through an infinite sequence of states, Y = {Y (t0),Y (t1), . . . ,Y (tn), . . . }, starting from
an initial state Y (t0). We assume that after an initial transient phase, the system reaches a statistical
equilibrium (see Figure 1a). In this stage, statistical measures of Y , computed over sufficiently
long time intervals, are time-invariant, even if the dynamics display oscillatory or chaotic behavior
(Wilcox, 1998). The states in the equilibrium stage, Z ⊂ Y , depend only on the system’s geometry
and physical parameters, and not on its initial state.

In many engineering applications, such as aerodynamics and structural vibrations, the primary focus
is not on each individual state along the trajectory, but rather on the statistics that characterize the
system’s dynamics (e.g., mean, RMS, two-point correlations). However, simulating a trajectory of
converged states Z long enough to accurately capture these statistics can be very computationally
expensive, especially for real-world problems involving 3D chaotic systems. To address this, we
aim to directly sample converged states Z(t) ∈ Z without simulating the initial transient phase.
Subsequently, we can analyze the system’s dynamics by drawing multiple samples.

Given a dataset of short trajectories from N systems, Z = {Z1,Z2, ...,ZN}, our goal is to learn a
probabilistic model of Z that enables sampling of a converged state Z(t) ∈ Z , conditioned on the
system’s mesh, boundary conditions, and physical parameters. Crucially, this model must capture
the underlying probability distributions even when trained on trajectories that are too short to fully
characterize their individual statistics. Although this is an ill-posed problem, we hypothesize that,
given sufficient training trajectories, it is possible to uncover their statistical correlations and shared
patterns, enabling interpolation across the condition space.

3.1 DIFFUSION GRAPH NETWORKS

We use the DDPM framework (Ho et al., 2020; Nichol & Dhariwal, 2021) to generate states Z(t)

by denoising a sample ZR ∈ R|VM |×F drawn from an isotropic Gaussian distribution. The system’s
conditional information is encoded in a directed graph G := (V, E), where V ≡ VM and the mesh
edges EM are represented as bi-directional graph edges E . Node attributes Vc = {vc

i | i ∈ V}
and edge attributes Ec = {ecij | (i, j) ∈ E} encode the conditional features, including the relative
positions between adjacent node, xj − xi. Domain-specific details on the node and edge encodings
can be found in Appendix C and Table 4.
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In the diffusion (or forward) process, node features from Z1 ∈ R|V|×F to ZR ∈ R|V|×F are
generated by sequentially adding Gaussian noise: q(Zr|Zr−1) = N (Zr;

√
1− βrZ

r−1, βrI),
where βr ∈ (0, 1), and Z0 ≡ Z(t). Any Zr can be sampled directly via:

Zr =
√
ᾱrZ

0 +
√
1− ᾱrϵ, (1)

with αr := 1 − βr, ᾱr :=
∏r

s=1 αs and ϵ ∼ N (0, I) (Ho et al., 2020). The denoising process
removes noise through learned Gaussian transitions: pθ(Zr−1|Zr) = N (Zr−1;µr

θ,Σ
r
θ), where the

mean and variance are parameterized as (Nichol & Dhariwal, 2021):

µr
θ =

1
√
αr

(
Zr − βr√

1− ᾱr
ϵrθ

)
, Σr

θ = exp
(
vr
θ log βr + (1− vr

θ) log β̃r

)
, (2)

with β̃r := (1 − ᾱr−1)/(1 − ᾱr)βr. Here, ϵrθ ∈ R|V|×F predicts the noise ϵ in equation (1), and
vr
θ ∈ R|V|×F interpolates between the two bounds of the process’ entropy, βr and β̃r.

DGNs predict ϵrθ and vr
θ using a message-passing-based GNN (Battaglia et al., 2018). This takes

Zr−1 as input, and it is conditioned on graph G, its node and edge features, and the diffusion step r:

[ϵrθ,v
r
θ]← DGNθ(Z

r−1,G,Vc,Ec, r). (3)

We train the DGN using the loss function in equation (14). The full denoising process requires R
evaluations of the DGN to transition from ZR to Z0, though more efficient sampling techniques
exist (Nichol & Dhariwal, 2021; Song et al., 2021).

The DGN follows the widely used encoder-processor-decoder GNN architecture (Sanchez-
Gonzalez et al., 2020; Pfaff et al., 2021). In addition to the node and edge encoders, our encoder
includes a diffusion-step encoder, which generates a vector remb ∈ RFemb that embeds the diffusion
step r. The node encoder processes the conditional node features vc

i , alongside remb. Specifically,
the diffusion-step encoder and the node encoder operate as follows:

remb ← ϕ ◦ LINEAR ◦ SINEMB(r), vi ← LINEAR ([ϕ ◦ LINEAR(vc
i ) | remb]) , ∀i ∈ V, (4)

where ϕ denotes the activation function and SINEMB is the sinusoidal embedding function (Vaswani
et al., 2017). The edge encoder applies a linear layer to the conditional edge features ecij . The
encoded node and edge features are RFh -dimensional vectors (Femb = 4× Fh). We condition each
message-passing layer on r by projecting remb to an Fh-dimensional space and adding the result to
the node features before each of these layers – i.e., vi ← vi + LINEAR(remb). Details on message
passing can be found in Appendix B.1.

Previous work on graph-based diffusion models has used sequential message passing to propagate
node features across the graph (Hoogeboom et al., 2022; Wen et al., 2023). However, this ap-
proach fails for large-scale fluid flows, such as the ones studied in this paper, as denoising of global
features becomes bottlenecked by the reach of message passing (Section 5). To address this, we
adopt a multi-scale GNN for the processor, applying message passing on G and multiple coarsened
versions of it in a U-Net fashion (Lino et al., 2022; Cao et al., 2023). This design leverages the
U-Net’s effectiveness in removing both high- and low-frequency noise (Si et al., 2023). To obtain
each lower-resolution graph from its higher-resolution counterpart, we use Guillard’s coarsening
algorithm (Guillard, 1993), originally developed for fast mesh coarsening in CFD applications. As
in the conventional U-Net, pooling and unpooling operations, now based on message passing, are
used to transition between higher- and lower-resolution graphs. These operations are detailed in
Appendix B.3.

3.2 LATENT DIFFUSION GRAPH NETWORKS

Inspired by latent diffusion models for CNNs (Rombach et al., 2022), we extend the DGN frame-
work to operate in a lower-dimensional graph-based representation that is perceptually equivalent to
Z. This space is defined as the latent space of a Variational Graph Auto-Encoder (VGAE) trained to
reconstruct Z(t). We refer to a DGN trained on this latent space as a Latent DGN (LDGN).

In this configuration, the VGAE captures high-frequency information (e.g., spatial gradients and
small vortices), while the LDGN focuses on modeling mid- to large-scale patterns (e.g., the wake
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Figure 2: (a) Our VGAE consists of a condition encoder, a (node) encoder, and a (node) decoder.
The multi-scale latent features from the condition encoder serve as conditioning inputs to both the
encoder and the decoder. (b) During LDGN inference, Gaussian noise is sampled in the VGAE
latent space and, after multiple denoising steps conditioned on the low-resolution outputs from the
VGAE’s condition encoder, transformed into the physical space by the VGAE’s decoder.

and vortex street). By decoupling these two tasks, we aim to simplify the generative learning pro-
cess, allowing the LDGN to concentrate on more meaningful latent representations that are less
sensitive to small-scale fluctuations. Additionally, during inference, the VGAE’s decoder helps re-
move residual noise from the samples generated by the LDGN. This approach significantly reduces
sampling costs since the LDGN operates on a smaller graph rather than directly on G.

For our VGAE, we propose an encoder-decoder architecture with an additional condition encoder to
handle conditioning inputs (Figure 2a). The condition encoder processes Vc and Ec, encoding these
into latent node features V ℓ

c and edge features Eℓ
c across L graphs {Gℓ := (Vℓ, Eℓ) | 1 ≤ ℓ ≤ L},

where G1 ≡ G and the size of the graphs decreases progressively, i.e., |V1| > |V2| > · · · >
|VL|. This transformation begins by linearly projecting Vc and Ec to a Fae-dimensional space and
applying two message-passing layers to yield V 1

c and E1
c . Then, L− 1 encoding blocks are applied

sequentially:[
V ℓ+1
c ,Eℓ+1

c

]
← MP ◦ MP ◦ GRAPHPOOL

(
V ℓ
c ,E

ℓ
c

)
, for l = 1, 2, . . . , L− 1, (5)

where MP denotes a message-passing layer and GRAPHPOOL denotes a graph-pooling layer (see the
diagram on Figure 9a).

The encoder produces two FL-dimensional vectors for each node i ∈ VL, the mean µi and standard
deviation σi that parametrize a Gaussian distribution over the latent space. It takes as input a state
Z(t), which is linearly projected to a Fae-dimensional vector space and then passed through L −
1 sequential down-sampling blocks (message passing + graph pooling), each conditioned on the
outputs of the condition encoder (Figure 9b):

V ← GRAPHPOOL ◦ MP ◦ MP
(
V + LINEAR

(
V ℓ
c

)
, LINEAR

(
Eℓ

c

))
, for l = 1, 2, . . . , L− 1; (6)

and a bottleneck block:

V ← MP ◦ MP
(
V + LINEAR

(
V L
c

)
, LINEAR

(
EL

c

))
. (7)

The output features are passed through a node-wise MLP that returns µi and σi for each node
i ∈ VL. The latent variables are then computed as ζi = BATCHNORM(µi + σiϵi), where ϵi ∼
N (0, I). Finally, the decoder mirrors the encoder, employing a symmetric architecture (replacing
graph pooling by graph unpooling layers) to upsample the latent features back to the original graph
G (Figure 9c). Its blocks are also conditioned on the outputs of the condition encoder. The message
passing and the graph pooling and unpooling layers in the VGAE are the same as in the (L)DGN.

The VGAE is trained to reconstruct states Z(t) ∈ Z with a KL-penalty towards a standard normal
distribution on the learned latent space. Once trained, the LDGN can be trained following the ap-
proach in Section 3.1. However, the objective is now to learn the distribution of the latent states
ζ, defined on the coarse graph GL, conditioned on the outputs V L

c and EL
c from the condition en-

coder. As illustrated in Figure 2b, during inference, the condition encoder generates the conditioning
features V ℓ

c and Eℓ
c (for l = 1, 2, . . . , L), and after the LDGN completes its denoising steps, the

decoder transforms the generated ζ0 back into the physical feature-space defined on G.
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u(x, y, t) v(x, y, t)

p(x, y, t)

p(x, y, t)

(b) Flow fields around an Ellipse(a) Pressure 

            distribution on

      an ellipse

(c) Pressure distribution on a wing

p(x, y, z, t)

wind

Figure 3: (L)DGNs can generate diverse states of dynamic mesh-based simulations given the mesh
geometry and simulation parameters. We demonstrate this by learning: (a) the pressure on an ellipse
in 2D laminar flow (ELLIPSE task), (b) the velocity and pressure fields resulting from that flow
(ELLIPSEFLOW task), and (c) the pressure on a wing in 3D turbulent flow (WING task).

Unlike in conventional VGAEs (Kipf & Welling, 2016), the condition encoder is necessary because,
at inference time, we need an encoding of Vc and Ec on graph GL, where the LDGN operates. This
encoding cannot be directly generated by the encoder, as it also requires Z(t) as input, which is
unavailable during inference. An alternative approach would be to define the conditions directly in
the coarse representation of the system provided by GL, but this representation lacks fine-grained
details, leading to sub-optimal results (see Appendix D.3 for details).

4 EXPERIMENTAL DOMAINS

We use three experimental domains for our experiments: (i) pressure on the wall of an ellipse in
2D quasi-periodic laminar flow (ELLIPSE task), (ii) velocity and pressure fields around that ellipse
(ELLIPSEFLOW task), and (iii) pressure on a wing in 3D turbulent flow (WING task). The ELLIPSE

and ELLIPSEFLOW data were adapted from Lino et al. (2022), while the dataset for the WING task
was generated using Detached Eddy Simulation (DES) with OpenFOAM’s PISO solver.

The ELLIPSEFLOW task involves a canonical fluid dynamics problem: predicting the velocity u and
pressure p fields around an elliptical cylinder (Figure 3b). While this task benefits from spatial refine-
ment near the surface of the ellipse, the ELLIPSE task fully leverages the graph-based representation
by focusing solely on the surface of the immersed object (Figure 3a). The WING experiments target
wings in 3D turbulent flow, characterized by intricate vortices that spontaneously form and dissipate
on the wing surface (Figure 3c). This task is particularly challenging due to the high-dimensional,
chaotic nature of turbulence and its inherent multi-scale interactions across a wide range of scales.
The geometry of the wings varies in terms of relative thickness, taper ratio, sweep angle, and twist
angle. These simulations are computationally expensive, and using GNNs allows us to concentrate
computational effort on the wing’s surface, avoiding the need for costly volumetric fields. A regular
grid around the wing would require over 105 cells, in contrast to approximately 7,000 nodes for the
surface mesh representation. The surface pressure can be used to determine both the aerodynamic
performance of the wing and its structural requirements. Fast access to the probabilistic distribution
of these quantities would be highly valuable for aerodynamic modeling tasks.

5 RESULTS

Our main findings indicate that DGNs and LDGNs can generate high-quality fields and accurately
reproduce the distribution of converged states, even when trained on incomplete distributions. Both
models outperformed the baselines – a vanilla GNN, a Bayesian GNN, a Gaussian regression GNN,
a Gaussian mixture GNN, and a VGAE – in terms of sample accuracy and distributional accuracy.
LDGNs showed improvement over DGNs, particularly in distributional accuracy and suppressing
undesired high-frequency noise.

Unless otherwise specified, all models were trained on 10 consecutive states per system for the
ELLIPSE and ELLIPSEFLOW domains, and 250 consecutive states (shortly after the data-generating

6
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(a) LDGN samples and matching G.T. (b) G.T. and learned PDFs for 10-time-step trainining trajectories

d

Figure 4: For a system on dataset ELLIPSE-INDIST, (a) samples from the LDGN and ground truth,
and (b) probability density function from the DGN, LDGN, baseline models, and ground truth. The
DGN and LDGN show the best distributional accuracy.

(a) Ground truth and predicted u fields (b) Ground truth and predicted p distribution

G.T.

Ground truth

GM-GNN

DGN

Ground

truth

LDGN

Figure 5: Samples from the DGN, LDGN, baseline models, and ground truth on (a) dataset
ELLIPSEFLOW-INDIST, and (b) dataset WING-TEST. The DGNs and LDGNs achieve the highest
sample accuracy, with the DGNs showing good accuracy but retaining some high-frequency noise.

simulator reached statistical equilibrium) for the WING domain. For the ELLIPSE and ELLIPSEFLOW

domains, this covers approximately 26-48% of the time points required to capture a full vortex-
shedding cycle, while for the WING domain, it represents about 10% of the time points needed to
achieve statistically stationary variance. To assess the performance, we compared to ground-truth
trajectories spanning three complete periods and a time interval long enough to achieve stationary
variance, respectively. To accelerate sampling, we adopted the strategy from Song & Ermon (2020),
which considers only a subset of the denoising steps. We used 50 steps, evenly distributed.

Sample accuracy Visually, the fields generated by our DGNs and LDGN models are faithful to
the ground truth, as can be seen in Figures 4a and 5. In the ELLIPSE and ELLIPSEFLOW domains,
it is possible to compare each sampled state with the states from a simulated trajectory and find its
equivalent state (the one with the highest correlation), since this trajectories are smooth and periodic.
For these domains, we report the coefficient of determination (R2) between the generated samples
and their ground-truth equivalents as a measure of the models’ sample accuracy. In the ELLIPSE

task, the LDGN achieved the highest accuracy, closely followed by the DGN (Table 5), and, in the
ELLIPSEFLOW task, the DGN was the best performing model, followed by the LDGN (Table 6).

Although the DGN and LDGN models’ accuracy is comparable, high-frequency noise is evident
in the samples generated by the DGN model (Figure 5). To quantify high-frequency noise, we
computed the graph Fourier transform of the predicted fields and assessed the energy associated
with the 10 highest graph eigenvalues for all systems in the ELLIPSEFLOW-INDIST and WING-TEST

datasets. We found that the DGNs consistently over-estimated high-frequency content in generated
samples, while LDGN samples remained close to the ground truth, with on average 3x reduced high-
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frequency error (See Appendix D.4 for detailed numbers). This discrepancy is due to the fact that
DGNs are required to handle high-frequency details directly, whereas LDGNs leverage a VGAE to
transform potentially noisy latent features back to physical space. The VGAE, being robust to noisy
latent features, effectively mitigates such noise.

Distributional accuracy High sample accuracy does not necessarily imply that a model is learn-
ing the true distribution. In fact, these properties often conflict. For instance, in VGAEs, the
KL-divergence penalty allows control over whether to prioritize sample quality or mode cover-
age. To evaluate how well models capture the probability distribution of system states, we use the
Wasserstein-2 distance. This metric can be computed in two ways: (i) by treating the distribution at
each node independently and averaging the result across all nodes, or (ii) by considering the joint
distribution across all nodes in the graph. We denote these metrics as W node

2 and W graph
2 , respec-

tively. The node-level measure (W node
2 ) provides insights into how accurately the model estimates

point-wise statistics, such as the mean and standard deviation at each node. However, it does not
penalize inaccurate spatial correlations, whereas the graph-wise measure (W graph

2 ) does. To ensure
stable results when computing these metrics, the target distribution for the ELLIPSE and ELLIPSE-
FLOW tasks is represented by 60 to 100 consecutive states, depending on the period length, while
the predicted distribution is represented by 200 samples. For the WING task, the target distribution
is represented by 2,500 consecutive states, and the predicted one by 3,000 samples.

Inferred Std. on a test case

Ground

truth

DGN

GM-GNN

DGN LDGN

GM-GNN

LDGN

Figure 6: The LDGN’s standard deviation
is the closest to the ground-truth.

In our experiments, the training trajectories are in-
tentionally short. For instance, in the ELLIPSE-TRAIN

and ELLIPSEFLOW-TRAIN datasets, the trajectories are
too short to cover one full oscillation period, meaning
they do not explicitly provide full statistical informa-
tion about the systems. In the WING-TRAIN dataset,
while the trajectories are long enough to capture the
mean flow, they fall short of capturing the standard
deviation, spatial correlations, or higher-order statis-
tics. Despite these challenges, the DGN, and espe-
cially the LDGN, are capable of accurately learning
the complete probability distributions of the training
trajectories and accurately generating new distribution
for both in- and out-of-distribution physical settings. This capability is highlighted in Figure 7a,
which shows the probability density function (PDF) for a training trajectory of the ELLIPSE-TRAIN

dataset (top right) and the PDF learned by the LDGN for the same system (bottom right). Similarly,
Figure 1b demonstrates how the LDGN accurately captures the standard deviation across all possible
states (bottom right), even though this information is not provided in the training dataset. This excel-
lent distributional accuracy was likewise observed for test data, Figures 4b and 6. As demonstrated
in Figure 4b, this is a rare property – (L)DGN is the only method which could faithfully represent
the ground-truth distribution, while other methods show either collapse or wrong weighting.

The Wasserstein-2 distances for all datasets are summarized in Tables 7 to 9. The LDGN consis-
tently outperforms other models, followed by the DGN. Experiments in Appendix D.5 suggest that
the ability of the diffusion-based models to learn the full distribution from short trajectories likely
stems from their capacity to recognize common physical patterns across different systems, leverag-
ing this knowledge to enhance its understanding of each individual trajectory. Unlike models that
rely on sampling from a compressed latent space or make assumptions about probability distribu-
tions for parameters or outputs, their gradual denoising approach minimizes overfitting based on
only the training data. This allows them to extrapolate the training trajectories and generalise to new
physical setting more effectively. The LDGN variant outperforms the DGN thanks to learning the
distributions in a more meaningful latent space that is less sensitive to small-scale fluctuations.

Generalization We tested generalization to out-of-distribution Reynolds numbers, ellipse thick-
ness and ellipses rotated by 10-degrees in the ELLIPSE and ELLIPSEFLOW tasks. The DGN and LDGN
models generally exhibit good generalization, as shown by their sample and distributional accuracy
in the out-of-distribution datasets, which is comparable to their performance on the in-distribution
datasets (Tables 5 to 8). However, we observed that both types of accuracy degrade as the variance
of the ground-truth trajectories increases, even within the in-distribution datasets, as seen in Fig-
ure 12. This is understandable, as higher diversity of states makes it more difficult for the model to
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identify common features among systems that are close in parameter space, thereby affecting sam-
ple quality. Additionally, low-probability states in high-variance trajectories are rarely encountered
during training, and can differ significantly from those in lower-variance trajectories, such as states
of separated flow near the ellipse’s leading edge. As a result, these states may be overlooked by the
models, leading to reduced distributional accuracy.

Influence of the number of states per training trajectory A key strength of the DGN and LDGN
models is their ability to learn all possible states of a system from incomplete data. In the ELLIPSE

task, we used 10 consecutive time-steps per training trajectory, while the full periods of these tra-
jectories range from 21 to 38 time-steps. We found that the distributional accuracy of the DGN and
LDGN models is only slightly affected by further reducing the length of the training trajectories,
and, interestingly, this accuracy remains relatively close to the accuracy of training runs with com-
plete periods. This behavior is illustrated in Figure 7b, which shows the W node

2 and W graph
2 metrics

for the DGN and LDGN models, as well as for four baseline models, on the ELLIPSE-INDIST dataset.
In this figure, the darker gray region indicates training trajectories that are always longer than the
oscillation period, while in the lighter gray region at least one trajectory exists that is long enough.
To the left of this area, it can be observed that the W node

2 of most baselines drops sharply due to the
missing information. In contrast, the DGN and LDGN models are barely affected. It is also worth
noting that the Gaussian mixture model (GM-GNN) achieves the lowest W node

2 among all models
when trained on long trajectories. However, this baseline does not model spatial correlations, which
explains its consistently high W graph

2 values.

Computational efficiency Direct comparisons between very different implementations are inher-
ently difficult. Nonetheless, to provide rough estimates of the performance characteristics for our
WING experimental domain, the ground-truth simulator, running on 8 CPU threads, required 2,989
minutes to simulate the initial transient phase plus 2,500 equilibrium states – sufficient to obtain
a converged variance. In contrast, the LDGN model took only 49 minutes on 8 CPU threads and
2.43 minutes on a single GPU to generate 3,000 samples. If we consider the generation of a single
converged state (for use as an initial condition in another simulator, for example), the speedup is
four orders of magnitude on the CPU and five orders of magnitude on the GPU. Thanks to its latent
space, the LDGN model is not only more accurate, but also 8× faster than the DGN model, while
requiring only about 55% more training time. Performance details are available in Appendix D.1.
This significant efficiency advantage suggests that these models could be particularly valuable in
scenarios where computational costs are otherwise prohibitive.

Multi-scale vs. single-scale DGN A key distinction of our GNN architecture is the use of a
multi-scale GNN, while all previous works applied message passing directly on the input graph
(Hoogeboom et al., 2022; Wu et al., 2024; Yi et al., 2024; Wen et al., 2023). DDPMs are known
to benefit from hierarchical and global denoising transitions, which enable the model to capture
and process information at multiple spatial resolutions (Dhariwal & Nichol, 2021; Si et al., 2023).

Figure 7: (a) The LDGN accurately learns the full probability distribution of the ELLIPSE system
states, despite being trained on short trajectories (10 consecutive snapshots) that do not cover all
possible states. (b) The distributional error of the DGN and LDGN models is not significantly
affected by short training trajectories. They consistently exhibit the lowest W graph

2 distance.
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While the previously used single-scale GNNs may suffice for smaller systems, we observed that
they failed on larger systems, such as those in the ELLIPSEFLOW and WING domains, due to the
limited reach of their receptive field. For a fair comparison to heterogeneous previous work, we have
considered a single-scale version of our DGN (with the same parametrization and hyperparameters).
In the ELLIPSE task (approximately 70 nodes per graph), our proposed four-scale DGN significantly
outperformed its single-scale counterpart in both sample and distributional accuracy, as shown in
Table 11 of the appendix. In the ELLIPSEFLOW task (∼2.3k nodes per graph) and the WING task
(∼6.8k nodes), the single-scale version did not produce feasible solutions (see Figure 15). We
observed that, in the ELLIPSEFLOW task, performance improves as the number of scales is increased
, with the five-scale model yielding the best results, as also shown in Table 11. This model is also
the most computationally efficient, outperforming the two-scale version by 25%.

Comparison to probabilistic baselines We compare to a Bayesian GNN, a Gaussian mixture
model (GM-GNN), a Gaussian regression model (GR-GNN), and a VAE on the ELLIPSE task; to a
GM-GNN and a VAE on the ELLIPSEFLOW task; and to a GM-GNN on the WING task.

Bayesian GNN: Although the Bayesian GNN provided reasonable predictions for both in- and out-
of-distribution datasets, and achieved higher sample and distributional accuracy than other baselines,
its performance was still substantially inferior to that of the DGN and LDGN models (see Tables 5
and 7). Additionally, the probability distribution of the outputs incorrectly resembles a Gaussian
distribution (Figure 5). Another significant drawback is its high training cost (approximately 8
times slower than the DGN training), making it impractical for larger physical systems.

Gaussian Mixture Model: The GM-GNN represents a learned distribution as a combination of mul-
tiple Gaussian distributions. For each node it provides the mean, variance, and weight characterizing
each Gaussian distribution. Once the trained GNN is evaluated for a given conditional input, sam-
pling is efficient. However, since it is performed independently for each node, the resulting samples
are spatially discontinuous (Figure 5) and fail to represent the underlying distribution (Figure 4b).
This leads to low sample accuracy (Tables 5 and 6) and a high W graph

2 (Tables 7 to 9). Interestingly,
in the ELLIPSE task, the GM-GNN outperforms the DGN and LDGN models in terms of W node

2 , a
metric that does not penalize discontinuous samples, when trained on complete trajectories (grey
region in Figure 7b). However, when trained on shorter trajectories, its performance clearly deteri-
orates (white region in Figure 7b). This suggests that the GM-GNN is less capable at learning the
shared physical features across different systems. In comparison, the DGN and LDGN models are
much better suited for learning from partial distributions, which is especially relevant for 3D chaotic
systems due to the high cost of data generation.

Variational Autoencoder: Finally, a VGAE was also considered as a baseline model. This model
mirrors the architecture of the VGAE proposed for the LDGN (Section 3.2). but with the number
of message-passing and graph-pooling layers matching the totals used in the (L)DGN models. This
baseline achieved a sample accuracy closer to that of the DGN and LDGN models (Tables 5 and
6). In the ELLIPSE task, it successfully learned the distribution of states when trained on short
trajectories (Figures 4b and 7b). However, in the more complex ELLIPSEFLOW task, it suffered from
mode collapse despite careful selection of the latent space size and the KL penalty (Table 8).

6 CONCLUSIONS

We have introduced physical- and latent-space graph-based diffusion models that enable direct
sampling of physical states in large, geometrically complex dynamical systems from their equi-
librium distribution. Our latent-space model produces high-quality solutions without undesired
high-frequency noise in a fraction of the time compared to the physical-space model. Notably, it
accurately learns full distributions even when trained on incomplete data from short simulations,
marking an important step towards more efficient probabilistic modeling. However, our method has
limitations that suggest interesting directions for future work. For example, the samples produced
by our method are not temporally correlated, and it would be valuable to extend the model with tem-
poral conditioning. Additionally, incorporating physical constraints (e.g., through guidance) could
further improve the quality of the generated solutions. Another promising direction is improving
sampling speed, which could potentially be achieved through flow matching (Lipman et al., 2023)
– see Appendix D.7 – or by exploring new Transformer architectures (Alkin et al., 2024) to replace
our latent-space model.
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A DENOISING DIFFUSION PROBABILISTIC MODELS (DDPMS)

DDPMs can learn to synthesise a sample z0 from a data distribution q(z0) by progressively denois-
ing a sample zR drawn from an isotropic Gaussian distribution (Song & Ermon, 2020; Ho et al.,
2020). This denoising process mirrors the inverse of a fixed Markov chain of length R, known as the
forward process, and it consists of R denoising steps. The forward (or diffusion) process produces
variables z1 through zR by sequentially injecting them with Gaussian noise:

q(zr|zr−1) := N (zr;
√

1− βtz
r−1, βrI), (8)

where βr ∈ (0, 1). Thanks to the reparametrization trick (Kingma et al., 2015), it is possible to
shortcut in the forward process and directly sample zr, at any diffusion step r, according to

q(zr|z0) = N (zr;
√
ᾱrz

0, (1− ᾱr)I), (9)

this is,
zr =

√
ᾱrz

0 +
√
1− ᾱrϵ. (10)

Here, αr := 1 − βr, ᾱr :=
∏r

s=1 αs and ϵ ∼ N (0, I) (Ho et al., 2020). If R is large enough and
the β-schedule is selected properly, the forward process leads to zR (nearly) following a Gaussian
distribution. Typical values for R are around thousands, and linear and cosine β-schedules are the
most common (Nichol & Dhariwal, 2021).

Given the data distribution q(z0), the transitions of the reverse (or denoising) process q(zr−1|zr)
can be approximated using a neural network parametrised by θ,

pθ(z
r−1|zr) := N (zr;µθ(z

r, r),Σθ(z
r, r)) . (11)

Although the mean µθ(z
r, r) could be parametrised in several ways, Ho et al. (2020) found best to

first predict the noise ϵ with the neural network and then compute µθ(z
r, r) according to

µθ(z
r, r) =

1
√
αr

(
zr − βr√

1− ᾱr
ϵθ(z

r, r)

)
. (12)

To simplify training, Ho et al. (2020) avoided learning the variance and fixed it to Σθ(z
r, r) = σ2

rI,
with either

σ2
r = β or σ2

r = β̃r = (1− ᾱr−1)/(1− ᾱr)βr,

which correspond to the upper and lower bounds on the reverse process entropy, respectively. Fol-
lowing Nichol & Dhariwal (2021), we opt to parameterise Σθ(z

r, r) as an interpolation between the
lower, β̃r, and upper, βr, bounds on the reverse process entropy in the log domain:

Σθ(z
r, r) = evθ(zr,r) log βr+(1−vθ(zr,r)) log β̃r , (13)

where vθ(z
r, r) is predicted by the neural network. Nichol & Dhariwal (2021) demonstrated that

learning Σθ(z
r, r) improved the likelihood of DDPMs and reduced the number of diffusion steps re-

quired for sampling from the learned q(z0) distribution at inference, which we considered especially
relevant for flow field synthesis due to the time constraints in design optimisation tasks.

To train a network to approximate ϵθ(zr, r) and vθ(zr, r), we minimise the loss function L, defined
as the sum of two terms:

L = Lsimple + λvlbLvlb, (14)
where Lsimple and Lvlb are defined as

Lsimple = Er,z0,ϵ

[
||ϵ− ϵθ(z

r, r)||2
]
, (15)

Lvlb = − log pθ(z
0|z1) +

T∑
2

DKL

(
q(zt−1|zt, z0) || pθ(zt−1|zt)

)
.

The term Lvlb represents the variational lower bound. Its first term is the negative log-likelihood of a
Gaussian distribution, while the remaining terms are the Kullback-Leibler (KL) divergence between
two Gaussians. The gradients of ϵθ(zr, r) are only backpropagated through Lsimple, whereas the
Lvlb term is used to optimise vθ(zr, r). This training strategy was proposed by Nichol & Dhariwal
(2021) and has also been proven successful in subsequent work Dhariwal & Nichol (2021).

To reduce gradient noise, we employ importance sampling and dynamically weight each loss term
based on the loss history (Nichol & Dhariwal, 2021).
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B ADDITIONAL MODEL DETAILS

The implementation of our models and baselines, including their weights, and demonstration scripts
are available at on-acceptance.

B.1 (L)DGN ARCHITECTURE AND TRAINING

The message-passing layers in the (L)DGN’s processor follow the general framework described
in Battaglia et al. (2016) and Battaglia et al. (2018). The edge- and node-update functions are
modeled by MLPs with one hidden layer, containing Fh neurons, and with Fh output features. Their
activation functions are SELU functions with their standard parameters (Klambauer et al., 2017) –
as are all the activations in the model. These MLPs are preceded by layer normalization (Ba et al.,
2016). Specifically, the edge-update, edge-aggregation, and node-update steps are as follows:

eij ←Weeij + MLPe (LN ([eij |vi|vj ])) , ∀(i, j) ∈ E , (16)

ēj ←
∑

i∈N−
j

eij , ∀j ∈ V, (17)

vj ←Wvvj + MLPv (LN ([ēj |vj ])) , ∀j ∈ V, (18)

The (L)DGN processes information at L length scales by creating lower-resolution graphs and prop-
agating the node and edge features across them. These low-resolution graphs have fewer nodes and
edges than the original mesh graph, allowing a single message-passing layer to propagate attributes
over longer distances more efficiently. In the (L)DGN’s processor, information is first distributed
and processed in the high-resolution graph through two sequential message-passing layers. It is then
passed to the immediately lower-resolution graph via graph pooling (equations (21) and (20)), and,
here, the features are again processed through two message-passing layers. This process is repeated
L− 1 times in total. Once the lowest-resolution features are processed at GL, they are passed back
to the scale immediately above through a graph-unpooling layer (equation (22)), which also takes
as input the node-feature values at this scale. The features are successively passed through pairs of
message-passing layers and unpooling layers until the information is processed again at the original
mesh graph.

For a fair comparison all DGN, LDGN and baselines models in Appendices B.5, D.2 and D.3,
trained for the same task, follow a similar architecture, with the same number of message-passing
layers and a comparable number of weights. In the ELLIPSE task, all models operate across 4 levels
of resolution (14 message-passing layer in total) and have approximately 3.5M parameters. In the
ELLIPSEFLOW task, they span 5 levels of resolution (18 message-passing layer in total) and have
4.5M parameters, while in the WING task, they cover 6 levels of resolution (22 message-passing
layer in total) with 5.5M parameters. In the LDGN models, the VGAE applies two graph-pooling
layers before denoising (Figure 8), and the denoising model applies the remaining graph-pooling
layers until the target resolution is achieved. In the ELLIPSE task (1D meshes), this VGAE provides
approximately 4-fold compression, whereas in the ELLIPSEFLOW and WING tasks (2D meshes), it
roughly offers a 16-fold compression.

2x graph pooling in VGAE

phyical-space mesh latent-space mesh

Figure 8: In our experiments, the LDGN models are applied to the latent space of two-scale VGAEs.

The DGN and LDGN models were trained using the node-wise mean of the loss function described
in equation (14). To reduce gradient noise and improve training stability, we employed the impor-
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tance sampling technique from Nichol & Dhariwal (2021). During each training epoch, a single
state was sampled from each training trajectory.

The initial learning rate was set to 10−4 and was reduced by a factor of 10 when the training loss
plateaued for n consecutive epochs. In the ELLIPSE and ELLIPSEFLOW tasks, we used n = 50,
while in the WING task, n was set to 250 due to the shorter length of the training dataset. Training
continued until the learning rate reached 10−8. This training strategy was consistently applied to
both the DGN, LDGN, and baseline models.

B.2 VGAE ARCHITECTURE AND TRAINING

The LDGN’s VGAE consists of a condition encoder, a node encoder, and a node decoder, as illus-
trated in Figure 9 and outlined in Section 3.2. It was trained to reconstruct the input node features
with a low-weighted KL term between the latent distribution of each node, ζi, and a standard normal
distribution:

LVGAE =
1

|V|
∑
i∈V
||zi − z′

i||2 + 10−6 ×

(
− 1

2|V|
∑
i∈V

(
1 + log

(
σ2
i

)
− µ2

i − σ2
i

))
(19)

Figure 9: Diagram of the VGAE architecture. It consist of (a) a condition encoder, (b) a node
encoder, and (c) a node decoder.

B.3 GRAPH POOLING AND UNPOOLING

Our DGN, LDGN, and baseline models (except for the VGAE, since there are no skip connections
between the encoder and decoder branches) follow a U-Net-like architecture (Ronneberger et al.,
2015), where message passing is applied across L levels of resolution (Gao & Ji, 2019; Lino et al.,
2022; Fortunato et al., 2022; Cao et al., 2023). Thus, in addition to the primal graph, G := (V, E),
L − 1 lower-resolution graphs are employed. Here, for each resolution level ℓ from 2 to L, we
denote their graphs as Gℓ := (Vℓ, Eℓ), while the primal graph is denoted as G ≡ G1 := (V1, E1).
To generate each lower-resolution graph Gℓ, we apply Guillard’s coarsening algorithm (Guillard,
1993), originally developed for multi-grid methods in CFD. This algorithm removes a subset of
nodes from the input mesh (or bi-directional graph) as outlined in Algorithm 1. For 1D meshes, the
compression ratio is approximately two, and for 2D meshes, around four.

Unlike the methods in Gao & Ji (2019) and Lino et al. (2022), our coarsening approach preserves
the original relative distribution of nodes in the coarser graphs. Furthermore, for the WING task,
the voxel-grid coarsening used in Lino et al. (2022) introduces new nodes and edges that do not lie
on the WING surface. In contrast, Guillard’s coarsening ensures that the coarser nodes and edges
remain strictly on the Wing surface, thereby avoiding undesired connections between nodes that
may be spatially close in the world-space but distant in the mesh-space (e.g., a pair of nodes located
on the upper and lower surfaces of the Wing). Additionally, unlike the method in Fortunato et al.
(2022), our approach operates automatically without relying on an external mesh generator. Another
valid and similar alternative could have been bi-stride pooling (Cao et al., 2023).

In our implementation, once Vℓ+1 ⊂ Vℓ is obtained from Gℓ, each node i ∈ Vℓ is assigned a
parent node j ∈ Vℓ+1, denoted as Pi. Each node i is assigned to the parent node that is the fewest
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Algorithm 1 Guillard’s coarsening algorithm (Guillard, 1993)
1: mask← ones(|Vℓ|) ▷ Vector of size |Vℓ| filled with ones
2: for node i ∈ Vℓ do ▷ Iterate node-by-node
3: if mask[i] = 1 then ▷ If first visit to node i then this node is not dropped
4: for node j ∈ N−

i do
5: mask[j]← 0 ▷ The incoming neighbours are dropped
6: end for
7: end if
8: end for
9: Vℓ+1 ← Vℓ[mask]

hops away. If multiple candidates are equidistant, the parent node is chosen based on the smallest
Euclidean distance. Nodes that share the same parent node j ∈ Vℓ+1 are referred to as its child
nodes, denoted by Chj ⊂ Vℓ. The set of edges Eℓ+1 is constructed to preserve the connectivity of
the child nodes in Vℓ. Specifically, there is an edge from i ∈ Vℓ+1 to j ∈ Vℓ+1 if at least one edge
exists between their child nodes in Vℓ. All these operations are performed as pre-processing steps
and do not occur during model evaluation.

To implement a U-Net-like architecture, we use graph pooling and unpooling to transition between
higher and lower-resolution graphs. Following Lino et al. (2022) and Fortunato et al. (2022), both
pooling and unpooling operations are based on message passing.

Graph pooling Graph pooling from Vℓ to Vℓ+1 is performed by message passing from each node
i ∈ Chj to its parent node j ∈ Vℓ+1, following equation (20). Edge features Eℓ+1 are assigned via
linear projection of the relative positions between parent nodes, as shown in equation (21).

vj ←
∑
i∈Chj

MLP (LN ([Linear(xj − xi)|vi])) , ∀j ∈ Vℓ+1, (20)

ejk ← Linear(xj − xk), ∀(j, k) ∈ Eℓ+1. (21)

Graph unpooling Similarly, graph unpooling from Vℓ to Vℓ−1 is performed by message passing
to each node i ∈ Vℓ−1 from its parent node Pi ⊂ Vℓ, as defined in equation (22):

vi ← MLP (LN ([Linear(xi − xj)|vj |vi])) , ∀i ∈ Vℓ−1 and j = Pi. (22)

The features of Eℓ−1 come via a skip connection from the encoder branch, just before the graph-
pooling layer from Vℓ−1 to Vℓ is applied.

B.4 TREATMENT OF DIRICHLET BOUNDARY CONDITIONS

In the ELLIPSEFLOW task, the velocity values at the inlet and on the ellipse wall are known a
priori, defining Dirichlet boundary conditions. To ensure that these boundary conditions are ex-
actly satisfied in the DGN’s samples, we apply deterministic diffusion transitions to the nodes on
these boundaries. Specifically, for boundary nodes, we propagate the values deterministically as
vr
i :=

√
αr vr−1

i , and instead of learning their denoising transitions, we directly reverse the diffu-
sion process, using vr−1

i := vr
i /
√
αr.

During training, the loss function is not evaluated at these boundary nodes, and during inference,
their noisy node features are sampled not from a Gaussian distribution but are instead assigned their
”diffused” values, i.e., vR

i :=
√
ᾱR v0

i . While more sophisticated methods exist for handling bound-
ary conditions, such as those proposed by Lugmayr et al. (2022), our approach remains efficient and
straightforward.

In the LDGN and baseline models, we directly replace the output at these boundary nodes with their
right values.
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Table 1: Model size and hyper-parameters

Task Model # Parameters Fh Femb Fae FL # Scales

ELLIPSE

DGN 3.51 M 128 512 – – 4

LDGN 3.52 M 128 512 126 1 2 + 2

Vanilla GNN 3.53 M 154 – – – 4

Bayesian GNN 3.56 M 138 – – – 4

GR-GNN 3.52 M 154 – – – 4

GM-GNN 3.53 M 154 – – – 4

VGAE 3.48 M 124 – – 4 4

ELLIPSEFLOW

DGN 4.50 M 128 512 – – 5

LDGN 4.51 M 128 512 126 1 2 + 3

Vanilla GNN 4.50 M 153 – – – 5

GM-GNN 4.50 M 153 – – – 5

VGAE 4.51 M 126 – – 32 5

WING

DGN 5.48 M 128 512 – – 6

LDGN 5.49 M 128 512 126 1 2 + 4

GM-GNN 5.45 M 152 – – – 6

B.5 BASELINE DETAILS

We compared the DGN and LDGN models with several GNN-based probabilistic baseline models:
a Vanilla GNN, a Bayesian GNN, a Gaussian Regression GNN, a Gaussian Mixture GNN, and a
VGAE. Details on these baselines are provided below.

Vanilla GNN The so-called Vanilla GNN is a deterministic GNN that mirrors the architecture of
the DGN, except for the absence of the diffusion-step encoder and the remb conditioning layers. It
takes the conditioning features Vc and Ec as input and returns constant (for the given conditions)
node features, z′

i, which represent the mean learned from the training data. It was trained to maxi-
mize the expected data, this is

Lvanilla =
1

|V|
∑
i∈V
||zi − z′

i||2, (23)

where zi are the states sampled from the training trajectories. Vanilla GNNs were trained for the
ELLIPSE and ELLIPSEFLOW tasks. Since it was trained on short trajectories (10 snapshots per trajec-
tory), its predictions resembles a single state rather than the mean of the complete distribution. This
explains the relatively high sample accuracy of these models, while their distributional accuracy is,
of course, low (Tables 5 to 8).

Bayesian GNN In Bayesian neural networks, prediction variability arises from modeling the pa-
rameters as random variables with associated probability distributions. We compared our DGN and
LDGN models to a Bayesian GNN on the ELLIPSE task. To train the Bayesian GNN efficiently,
we used variational inference and approximated the posterior distribution of the parameters with a
Gaussian. The architecture of the Bayesian GNN mirrors that of the DGN, except for the absence
of the diffusion-step encoder and the remb conditioning layers. During training, we maximized the
Evidence Lower Bound (ELBO), assuming a Gaussian prior distribution over the parameters. We
performed a grid search to find the optimal weight for the KL-divergence term in the ELBO loss
(Liu & Thuerey, 2024), which was determined to be 0.1 for maximizing distributional accuracy on
the ELLIPSE-INDIST dataset.

Gaussian Mixture GNN (GM-GNN) A Gaussian mixture model (GMM) represents a learned
distribution as a combination of multiple Gaussian distributions (Maulik et al., 2020). Its architec-
ture mirrors that of the DGN. Through grid search, we selected three Gaussian components for the
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ELLIPSE and ELLIPSEFLOW tasks, and five components for the WING task. Once the GNN is evalu-
ated for a given conditional input, sampling is efficient: a Gaussian distribution is selected based on
the returned weights, followed by sampling from that distribution.

Gaussian Regression GNN (GR-GNN) We also considered a Gaussian Regression model, re-
ferred to as GR-GNN, which is a special case of the GM-GNN that represents the learned distribu-
tion as a single Gaussian.

VGAE As a VGAE baseline, we considered a model mirroring the architecture of the VGAE
proposed for the LDGN, but with the number of message-passing and graph-pooling layers matching
the total used in the DGN models. For the ELLIPSE task, we set the size of the latent features
to FL = 1 and performed a grid search to find the optimal weight for the KL term (Kingma et al.,
2015), which was determined to be 0.001 to maximize distributional accuracy on the ELLIPSE-INDIST

dataset. For the ELLIPSEFLOW task, we found the best KL weight to be 10−8, and the optimal size
of the latent features is FL = 32 to maximize distributional accuracy on the ELLIPSEFLOW-INDIST

dataset.

The number of hidden features per node and edge after encoding is denoted as Fh, and the size
of the diffusion-step embedding is represented by Femb. In the LDGNs’ VGAE, the intermediate
hidden features are denoted by Fae, and the number of latent features by FL. The values of these
hyperparameters for each model, as well as the total model size, are summarized in Table 1.

C EXPERIMENTAL AND DATASET DETAILS

The datasets used in our ELLIPSEFLOW and ELLIPSE experiments are available at on-acceptance, and
the datasets used in our WING experiments are available at on-acceptance. To the best of our knowl-
edge, no previous studies have tackled large-scale, unsteady, and turbulent dynamics on detailed
unstructured meshes, as featured in our WING datasets. This motivated the creation of these new
datasets to provide a realistic and challenging application context.

All the simulations in our experiments are governed by the incompressible Navier-Stokes equations,
which describe the motion of fluids and capture the balance of mass and momentum in incompress-
ible flows. In their non-dimensional form, these equations are expressed as follows:

• Continuity equation (mass conservation):

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0

• Momentum conservation equations along the x, y, and z directions, respectively:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −∂p

∂x
+

1

Re

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −∂p

∂y
+

1

Re

(
∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2

)
,

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −∂p

∂z
+

1

Re

(
∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2

)
.

Here, u(t, x, y, z), v(t, x, y, z), and w(t, x, y, z) represent the velocity components along the x, y,
and z directions, respectively; p(t, x, y, z) denotes the pressure, and Re is the Reynolds number, a
dimensionless quantity measuring the ratio of inertial to viscous forces, which characterizes the flow
regime (Pope, 2000).

Since these equations lack an analytical solution, our understanding of fluid behavior under differ-
ent conditions relies heavily on experiments and numerical simulations. The flow regime can be
classified based on the Reynolds number. For low Reynolds numbers, the flow is laminar, exhibit-
ing smooth and predictable layers with minimal disruption. For high Reynolds numbers, the flow
becomes turbulent, characterized by chaotic, irregular fluctuations. Although the Navier-Stokes
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equations are deterministic, turbulent flows are chaotic due to the high nonlinearity of these equa-
tions, which renders the system sensitive to even minor perturbations. Despite this chaos, in fully
developed turbulence, the energy introduced (e.g., from shear or pressure gradients) is balanced by
energy dissipation through viscous forces, allowing the turbulence statistics to reach a steady state
over time (Wilcox, 1998).

ELLIPSEFLOW task This task involves a canonical fluid dynamics problem, inferring the velocity
u and pressure p fields in simulations of flow around an elliptical cylinder where the free-stream ve-
locity is parallel to the ellipse’s major axis (Figure 3b). The flow is laminar and unsteady, exhibiting
periodic vortex shedding due to the formation of an unstable low-pressure wake behind the elliptical
cylinder (Figure 3b). We compute probability density functions (PDFs) and statistical measures by
sampling states within a periodic cycle.

In the training dataset (ELLIPSEFLOW-TRAIN), the Reynolds number (Re) ranges from 500 to 1000,
and the ellipse’s relative thickness ranges from 0.5 to 0.8. Test datasets evaluate model perfor-
mance for in-distribution Re and thickness (ELLIPSEFLOW-INDIST), as well as for lower and higher
Re (ELLIPSEFLOW-LOWRE and ELLIPSEFLOW-HIGHRE, respectively) and lower and higher thickness
(ELLIPSEFLOW-THIN and ELLIPSEFLOW-THICK, respectively). These datasets are low-resolution ver-
sions of the datasets from Lino et al. (2022). Here, each simulation consists of 101 consecutive
time-steps of fully developed 2D flow around an ellipse. The original simulations were generated
using Nektar++ (Cantwell et al., 2015). We reduced the resolution by approximately a factor of two.
The ellipse’s major axis length is one (non-dimensional unit), and the domain height ranges from
five to six. The training dataset contains 5000 simulations, while each test dataset comprises 50
simulations sampled from the original datasets in Lino et al. (2022). Additionally, the test dataset
ELLIPSEFLOW-AOA contains 24 simulations for ellipses with an angle-of-attack (the angle between
the ellipse’s major axis and the free-stream velocity) of 10 degrees. Parameter values for each dataset
are detailed in Table 2.

To condition probabilistic models, each node i encodes the Reynolds number and a one-hot vector
ωi indicating its type (inlet, wall, or inner node), while each edge (i, j) encodes the relative position
between nodes, eij := xj − xi. The output is the velocity ui(t

∗) and pressure pi(t
∗) at each node

i and at an arbitrary time t∗.

Table 2: Values of the parameters for the ELLIPSE andELLIPSEFLOW systems in the training and test
datasets

Dataset
Reynolds
number

Re

Minor
axis
b

Angle of
attack
(deg)

Average
# nodes

in ELLIPSE

Average
# nodes

in ELLIPSEFLOW
Purpose

ELLIPSE(FLOW)-TRAIN [500, 1000] [0.5 0.8] 0 71 2340 Training

ELLIPSE(FLOW)-INDIST [500, 1000] [0.5 0.8] 0 70 2328 Test

ELLIPSE(FLOW)-LOWRE [400, 500] [0.5 0.8] 0 72 2376 Test

ELLIPSE(FLOW)-HIGHRE [1000, 1100] [0.5 0.8] 0 71 2312 Test

ELLIPSE(FLOW)-THIN [500, 1000] [0.45 0.5] 0 64 2286 Test

ELLIPSE(FLOW)-THICK [500, 1000] [0.8 0.9] 0 76 2282 Test

ELLIPSE(FLOW)-AOA [500, 1000] [0.5 0.8] 10 74 2514 Test

ELLIPSE task It involves inferring pressure p on the wall of the ellipse from the previous task
(Figure 3a). The pressure distribution on the ellipses in each ELLIPSEFLOW dataset was extracted to
create these datasets. The Reynolds number is provided as an input condition for the probabilistic
models at each node, and the relative position between adjacent nodes, along with the projection of
the free-stream velocity along the edges are provided as input conditions for each edge. The models
output the pressure pi(t∗) at each node i. The distribution of simulation parameters (Re and relative
thickness) in the ELLIPSE datasets mirrors that in the ELLIPSEFLOW datasets (Table 2).

In both ELLIPSE and ELLIPSEFLOW simulations, the temporal variance of the system’s state increases
primarily with the relative thickness of the ellipses due to the formation of larger vortices and, to a
lesser extent, with Re. The effect of these parameters on temporal variance is shown in Figure 12a.
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Table 3: Values of the parameters for the WING systems in the training and test datasets

Dataset Thickness Taper
ratio

Sweep
(degrees)

Twist
(degrees)

# time
steps

Average
# nodes Purpose

WING-TRAIN [10, 14] [0.3, 0.7] [20, 40] [-5, 5] 250 6852 Training

WING-TEST 11, 13 0.4, 0.6 25, 35 -2.5, 2.5 2500 6828 Testing

WING task These experiments involve a wing in turbulent flow (Re ∼ 2 × 106), characterized
by 3D vortices that spontaneously form and dissipate at various locations on the wing surface
(Figure 3c). Each node i encodes a unit outer normal vector n̂i and each edge (i, j) encodes
eij := [xj − xi,u∞ · t̂ij ,u∞ · n̂i,u∞ · b̂ij ], where tij is a unit vector parallel to the edge and
b̂ij := t̂ij × n̂i. The output is pi(t∗). Unlike the previous systems, this flow is chaotic, and its time
statistics converge over long time spans.
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Figure 10: Node-wise mean of the
time/sample-wise standard deviation
computed over an increasing number of
states. In the training trajectories, only the
first 250 time-steps after the transient stage
are used, and their standard deviation is
not close to its ground-truth value, which is
computed over 2,500 time-steps.

We generated the training and test datasets for the
WING systems using the PISO solver of OpenFOAM
with the Spalart-Allmaras Delayed Detached Eddy
Simulation turbulence model (OpenFOAM Founda-
tion, 2022). The simulation and dataset meshes were
generated with snappyHexMesh. The free-stream
velocity is 100 km/h, and the kinematic viscosity is
1.5 ×10−5 m2/s. A symmetry boundary condition
was used on the vertical plane intersecting the wing
root. The wing sections are 24XX NACA airfoils
with constant relative thickness (indicated by XX),
and the quarter-chord is horizontal (i.e., zero dihe-
dral angle). The wing has a length of 1 m and a
root chord length of 1 m, with a root-section angle-
of-attack of 20 degrees. The chord length decreases
linearly toward the tip, and the angle of attack also
varies linearly toward the tip. The geometric param-
eters of the wing that vary across the training and test
datasets include the relative thickness, the taper ratio
(ratio between the tip and root chords), the sweep an-
gle (angle between the quarter-chord line and a line
perpendicular to the wing root), and the twist angle
(angle of attack at the tip minus the angle of attack
at the root). The values of these parameters for each
dataset are listed in Table 3. Time-wise variance pri-
marily depends on the wing’s relative thickness, with lower values resulting in higher variance due
to more detached flow. Variance also increases with larger twist angles and smaller sweep angles.

The training dataset consists of 1,000 simulations, and the test dataset consists of 16 simulations.
We simulated the first 4 seconds (transient regime) starting from a RANS solution, then recorded the
pressure on the wing every 0.002 seconds for 0.5 seconds (250 time-steps) in the training dataset,
and for 5 seconds (2,500 time-steps) in the test dataset. The first 250 time-steps are not sufficient
to represent the variability of the states, as illustrated in Figure 10, but we aim to reduce the high
cost of running these simulations by relying on the probabilistic models’ ability to learn common
patterns from an ensemble of simulations.

The conditional features provided as input, as well as the predicted output for each system, are listed
in Table 4.
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Table 4: Conditional inputs and predicted outputs for each system type

System
Node

conditions
vi

Edge conditions
eij

Node
outputs

zi

ELLIPSE Re xj − xi, u∞ · t̂ij pi

ELLIPSEFLOW Re, ωi xj − xi ui, vi, pi
WING n̂i xj − xi, u∞ · t̂ij ,u∞ · n̂ij ,u∞ · b̂ij pi

Figure 11: For a system in dataset ELLIPSE-INDIST, probability density function from the DGN,
LDGN, and baseline models trained on 100-time-step trajectories (full distribution). Ground truth
in Figure 4b.

D SUPPLEMENTARY RESULTS

Tables 5 and 6 collect our measures of sample accuracy, the coefficient of determination, on the
test datasets; and Tables 7 to 9 collect our measures of distributional accuracy, the graph-level
Wasserstein-2 distance. The correlation between the variance of the ground-truth trajectories and
the accuracy of the LDGN’s predictions is illustrated in Figure 12. Figures 13 and 14 showcase ad-
ditional examples of results generated by DGN, LDGN, and baseline models for the ELLIPSEFLOW

and WING tasks.
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Figure 12: For each simulation in the ELLIPSE (top row) and ELLIPSEFLOW (bottom row) test datasets
with a 0-degree angle-of-attack: (a) node-wise mean of the time-wise standard deviation of the
ground truth fields, (b) average R2 between the LDGN outputs and their corresponding ground
truth, and (c) graph-wise W2 distance between the learned distribution of the fields and their ground
truth. Higher standard deviation results in more difficulty generating accurate fields and learning
their probability distribution.
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Table 5: Mean coefficient of determination (R2) on the ELLIPSE datasets

Model

ELLIPSE
-INDIST -LOWRE -HIGHRE -THIN -THICK -AOA

Vanilla GNN 0.984 ± 0.017 0.991 ± 0.007 0.974 ± 0.018 0.992 ± 0.003 0.964 ± 0.025 0.948 ± 0.029

Bayesian GNN 0.962 ± 0.025 0.967 ± 0.026 0.952 ± 0.021 0.952 ± 0.047 0.945 ± 0.020 0.931 ± 0.050

GR-GNN 0.944 ± 0.034 0.971 ± 0.018 0.902 ± 0.039 0.966 ± 0.017 0.900 ± 0.033 0.907 ± 0.031

GM-GNN 0.951 ± 0.030 0.973 ± 0.019 0.912 ± 0.033 0.970 ± 0.013 0.901 ± 0.032 0.922 ± 0.031

VGAE 0.981 ± 0.038 0.989 ± 0.026 0.971 ± 0.047 0.996 ± 0.006 0.947 ± 0.077 0.951 ± 0.049

DGN 0.994 ± 0.006 0.997 ± 0.001 0.988 ± 0.015 0.994 ± 0.002 0.992 ± 0.007 0.968 ± 0.026
LDGN 0.995 ± 0.007 0.998 ± 0.002 0.986 ± 0.019 0.997 ± 0.001 0.991 ± 0.009 0.966 ± 0.028

Table 6: Mean coefficient of determination (R2) on the ELLIPSEFLOW datasets

Model

ELLIPSE

FLOW -INDIST -LOWRE -HIGHRE -THIN -THICK -AOA

Vanilla GNN 0.979 ± 0.015 0.983 ± 0.011 0.972 ± 0.016 0.984 ± 0.007 0.962 ± 0.022 0.972 ± 0.019

GM-GNN 0.954 ± 0.022 0.964 ± 0.012 0.940 ± 0.021 0.967 ± 0.008 0.923 ± 0.032 0.947 ± 0.024

VGAE 0.981 ± 0.014 0.983 ± 0.012 0.974 ± 0.016 0.984 ± 0.008 0.966 ± 0.021 0.976 ± 0.014

DGN 0.990 ± 0.010 0.993 ± 0.007 0.982 ± 0.016 0.989 ± 0.009 0.991 ± 0.005 0.987 ± 0.014
LDGN 0.987 ± 0.013 0.992 ± 0.009 0.979 ± 0.017 0.986 ± 0.011 0.988 ± 0.007 0.981 ± 0.016

Table 7: Mean |V|-dimensional (i.e., graph-wise) Wasserstein-2 distance (W graph
2 ) on the ELLIPSE

datasets

Model

ELLIPSE
-INDIST -LOWRE -HIGHRE -THIN -THICK -AOA

Vanilla GNN 0.96 ± 0.52 0.70 ± 0.44 1.32 ± 0.49 0.35 ± 0.10 2.15 ± 0.27 1.31 ± 0.35

Bayesian GNN 0.83 ± 0.35 0.66 ± 0.25 1.05 ± 0.34 0.49 ± 0.04 1.87 ± 0.22 1.28 ± 0.26

GR-GNN 1.09 ± 0.55 0.79 ± 0.42 1.49 ± 0.51 0.44 ± 0.12 2.32 ± 0.24 1.51 ± 0.53

GM-GNN 1.07 ± 0.52 0.77 ± 0.43 1.44 ± 0.51 0.43 ± 0.11 2.29 ± 0.24 1.38 ± 0.46

VGAE 0.44 ± 0.25 0.32 ± 0.21 0.59 ± 0.21 0.13 ± 0.03 1.13 ± 0.20 0.80 ± 0.16

DGN 0.29 ± 0.15 0.21 ± 0.09 0.42 ± 0.18 0.16 ± 0.02 0.56 ± 0.14 0.58 ± 0.1
LDGN 0.23 ± 0.12 0.17 ± 0.08 0.42 ± 0.18 0.10 ± 0.02 0.57 ± 0.15 0.59 ± 0.11

D.1 PERFORMANCE

Providing a truly hardware-agnostic performance comparison is challenging. Most of the neural
network components in our models are optimized for GPUs, while official OpenFOAM distributions
lack GPU support. Additionally, performance results can vary depending on the target statistic (e.g.,
mean flow requires shorter simulations and less sampling compared to RMS calculations).

In Table 10, we present a breakdown of the runtime for the DGN and LDGN models on our WING

experimental domain. The runtimes were measured on a CPU, limited to 8 threads, and on a sin-
gle RTX 3080 GPU. The time for estimating the distribution accounts for the generation of 3,000
samples. This number of samples is sufficient for the RMS of the pressure to converge. When
running on the GPU, we maximized concurrency to achieve 100% GPU utilization (50 to 60 concur-
rent samples). The ground-truth simulation was performed using OpenFOAM’s PISO solver on the
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Table 8: Mean |V|-dimensional (i.e., graph-wise) Wasserstein-2 distance (W graph
2 ) on the ELLIPSE-

FLOW datasets

Model

ELLIPSE

FLOW -INDIST -LOWRE -HIGHRE -THIN -THICK -AOA

Vanilla GNN 6.23 ± 1.93 5.87 ± 1.61 6.88 ± 1.80 4.10 ± 0.68 9.73 ± 1.49 7.302 ± 1.700

GM-GNN 7.24 ± 2.12 6.76 ± 1.67 8.29 ± 2.04 5.05 ± 0.83 10.77 ± 1.69 8.393 ± 1.767

VGAE 6.10 ± 1.83 5.60 ± 1.54 6.70 ± 1.72 4.00 ± 0.68 9.36 ± 1.51 7.077 ± 1.607

DGN 4.72 ± 2.10 4.04 ± 1.74 5.48 ± 2.01 3.20 ± 0.81 7.76 ± 2.39 5.964 ± 2.125

LDGN 3.07 ± 0.93 2.53 ± 0.71 3.84 ± 1.24 2.81 ± 0.59 3.62 ± 0.91 3.709 ± 0.864

Table 9: Mean |V|-dimensional (i.e., graph-wise) Wasserstein-2 distance (W graph
2 ) on the WING-TEST

dataset

Metric GM-GNN DGN LDGN

W graph
2 4.32 ± 0.86 2.12 ± 0.90 1.95 ± 0.89

same workstation, limited to 8 CPU threads. Excluding pre-processing and post-processing steps, a
nine-second simulation (required for the RMS to become statistically stationary) takes 50 hours.

Compared to this baseline, we observe a one to two order-of-magnitude speedup on the CPU and
a two to three order-of-magnitude speedup on the GPU. For single-sample generation, the speedup
is indicated with respect to the time-stepping runtime of the numerical solver. This speedup would
appear even more significant if we also accounted for the simulation of the transition regime.

The LDGN model is 8× more efficient than the DGN due to performing the denoising process in a
compressed latent space. However, this efficiency is only observed when the CPU/GPU cores are
fully utilized.

D.2 INFLUENCE OF THE NUMBER OF SCALES IN DGN MODELS

A key distinction of our DGN architecture, compared to previous GNN-based DDPM models, is the
use of a U-Net-like architecture with graph pooling and unpooling layers specifically designed for
mesh graphs (see Appendix B.3). Previous models were limited to small graphs, where applying
message passing directly on the input graph was sufficient (Xu et al., 2022; Hoogeboom et al., 2022;
Trippe et al., 2023; Vignac et al., 2023; Wu et al., 2024; Yi et al., 2024; Wen et al., 2023). However,
DDPMs are known to require hierarchical and global denoising transitions, as these allow the model

(a) OOD test case with b = 0.9 (b)  OOD test case with Re = 1100

Ground truth Ground truth

Figure 13: Samples from the DGN, LDGN, baseline models, and ground truth for (a) a simulation
from dataset ELLIPSEFLOW-THICK, and (b) a simulation from dataset ELLIPSEFLOW-HIGHRE. The
DGN and LDGN achieve the highest sample accuracy, with the DGN showing good accuracy but
retaining some high-frequency noise.
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(a) NACA2411, taper = 0.6, sweep = 35 deg, twist = 2.5 deg (b) NACA2413, taper = 0.4, sweep = 25 deg, twist = 2.5 deg

DGN LDGN

Ground truth GM-GNN

DGN LDGN

Ground truth GM-GNN

Figure 14: Samples from the DGN, LDGN, GM-GNN, and ground truth for two simulation from
the WING-TEST dataset.

Table 10: Performance comparison for sample generation and distribution estimation on the WING

task, along with the speedup achieved over the numerical solver

Model
CPU

s/sample
(speedup)

CPU
min/distribution

(speedup)

GPU
s/sample
(speedup)

GPU
min/distribution

(speedup)

DGN 6.81 (×8.8) 340 (×8.8) 0.59 (×100) 19 (×152)

LDGN 0.98 (×61) 49 (×61) 0.20 (×300) 2.43 (×1235)

to capture and process information across multiple spatial resolutions (Dhariwal & Nichol, 2021;
Si et al., 2023). Below, we compare our DGN with a single-scale model. For a fair comparison
to heterogeneous previous work, we have considered a single-scale version of our DGN, with the
same denoising parametrization, number and formulation of message-passing layers, diffusion-step
conditioning, and training settings.

In the ELLIPSE task (with approximately 70 nodes per graph), a four-scale DGN significantly outper-
formed its single-scale counterpart (with the same total number of message-passing layers) in both
sample and distributional accuracy, as shown in Table 11. In the ELLIPSEFLOW task (approximately
2.3k nodes per graph) and the WING task (approximately 6.8k nodes per graph), the single-scale
DGN failed to produce feasible solutions, as illustrated in Figure 15. Instead, the model learned a
transition noise close to zero, resulting in the amplification of the initial Gaussian noise during the
denoising process, as described by equation (2). In the ELLIPSEFLOW task, performance improved
as the number of scales increased (while maintaining the same total number of message-passing lay-
ers), reaching optimal results with the five-scale model, as also shown in Table 11. This five-scale
DGN was also the most computationally efficient: it was 25% faster than the two-scale model, 12%
faster than the three-scale model, and 7% faster than the four-scale model.

Table 11: Sample accuracy (R2), distributional accuracy (W graph
2 ) and inference time for GNN mod-

els with varying numbers of scales

Dataset # scales
in model R2 W graph

2
Inference time

ms /sample

ELLIPSE-INDIST
1 0.964 ± 0.043 0.60 ± 0.28 204

4 0.995 ± 0.006 0.29 ± 0.15 160

ELLIPSEFLOW-INDIST

2 0.957 ± 0.026 5.37 ± 1.34 436

3 0.966 ± 0.034 5.48 ± 2.04 376

4 0.990 ± 0.010 5.01 ± 2.10 353

5 0.990 ± 0.010 4.72 ± 2.11 328
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1-scale model 2-scale model 3-scale model 4-scale model 5-scale model

R = 1000 R = 0R = 500

(a) Denoising with a single-scale model

(b) Samples from a single-scale and multi-scael models

Figure 15: Single-scale models failed to learn in the ELLIPSEFLOW and WING tasks due to the limited
range of their receptive fields. (a) Instead of removing noise between transitions, a single-scale
model amplified the initial Gaussian noise. (b) Samples from DGN models with one-, two-, three-,
four-, and five-scale architectures for a simulation from the ELLIPSEFLOW-INDIST dataset.

D.3 ALTERNATIVE VGAE ARCHITECTURE

Our VGAE incorporates a condition encoder block (Figure 9a) that generates an encoding of Vc

and Ec on the latent graph GL, which is then passed as a conditioning input to the LDGN model.
These encodings cannot be directly generated by the VGAE’s node encoder (Figure 9b), as the node
encoder also requires Z(t) as input, which is unavailable during inference since we directly sample
Gaussian noise in the latent space.

An alternative approach to ours could be to define the LDGN conditions directly within the coarse
representation of the system provided by GL. To test this, we compared our LDGN with another
version that lacks the condition encoder in the VGAE (but has similar number of weights), where
node and edge conditional features are defined directly on GL. We evaluated this in the ELLIPSE task
and found that our proposed LDGN architecture provides better sample and distributional accuracy,
as shown in Tables 12 and 13. This improvement is likely because our conditional encodings,
although compressed, still retain information about relevant high-frequency features.

Table 12: Comparison of the coefficient of determination (R2) for an LDGN using our VGAE and
one using the alternative VGAE

Model

ELLIPSE
-INDIST -LOWRE -HIGHRE -THIN -THICK

Alternative 0.993 ± 0.009 0.996 ± 0.003 0.985 ± 0.017 0.994 ± 0.004 0.990 ± 0.010

Ours 0.996 ± 0.007 0.998 ± 0.002 0.988 ± 0.018 0.998 ± 0.001 0.993 ± 0.008

Table 13: Comparison of the graph-wise Wasserstein-2 distance (W graph
2 ) for an LDGN using our

VGAE and one using the alternative VGAE

Model

ELLIPSE
-INDIST -LOWRE -HIGHRE -THIN -THICK

Alternative 0.22 ± 0.08 0.44 ± 0.17 0.16 ± 0.03 0.60 ± 0.16 0.62 ± 0.09

Ours 0.17 ± 0.07 0.41 ± 0.17 0.10 ± 0.02 0.54 ± 0.16 0.57 ± 0.10
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D.4 RESULTS FOR HIGH-FREQUENCY ERROR ANALYSIS

To quantify the high-frequency noise present in the DGN and LDGN samples, we computed the
graph Fourier transform of the predicted fields and assessed the energy associated with the 10 highest
graph eigenvalues for all systems in the ELLIPSEFLOW-INDIST and WING-TEST datasets. This serves
as a measure of the high-frequency noise present in the predicted fields. The error of this high-
frequency energy relative to its ground truth, in percent, is collected in Table 14.

We note that the high-frequency noise in the samples generated by DGN models is consistently
higher than in the ground-truth fields. In contrast, the noise in LDGN samples differs only slightly.

Table 14: Relative error (%) between the high-frequency energy in the predicted samples and the
ground truth

Dataset & Magnitude DGN LDGN

ELLIPSEFLOW-INDIST

u 3.38 1.87

v 8.97 3.49

p 11.09 3.11

WING-TEST p 2.84 0.97

D.5 EFFICIENCY IN LEVERAGING TRAINING TRAJECTORIES

While the results in Section 5 demonstrate the efficacy of our approach, there is no theoretical guar-
antee that a model can learn full distributions from a collection of short trajectories. This ability
relies on the model’s capacity to recognize common physical patterns across different trajectories
and leverage this knowledge to enhance its understanding of each individual trajectory. Such inter-
polative capacity depends on two key factors: (i) having a sufficient number of training trajectories
to enable smooth interpolation across the parameter space, and (ii) the model’s ability to effectively
capture and generalize these dependencies.

Figure 16: The DGN, and especially
the LDGN, models are more efficient
than the VGAE and GM-GNN at learn-
ing common features from a collection
of short trajectories, resulting in signifi-
cantly lower distributional error in large
datasets.

To disentangle the effects of the number of training tra-
jectories and the model’s design, we conducted additional
experiments on the ELLIPSE task. Specifically, we trained
DGNs, LDGNs, and baseline models on datasets contain-
ing varying numbers of short trajectories, ranging from
500 to 5,000 samples. As shown in Figure 16, the dis-
tributional accuracy of the DGN and LDGN models im-
proves with an increasing number of training trajecto-
ries, demonstrating their ability to interpolate effectively
across trajectories associated with different input condi-
tions and accurately reproduce the underlying distribu-
tion. In contrast, the best-performing baseline model
(VGAE) plateaued in performance beyond 2,000 trajecto-
ries, highlighting its limited interpolation capacity despite
having the same number of learnable parameters.

This advantage likely stems from the diffusion-based
approach of DGNs and LDGNs, which, unlike models
that rely on sampling from a compressed latent space
(e.g., VGAE) or impose assumptions about the underly-
ing probability distributions (e.g., GM-GNN), minimizes
overfitting by gradually denoising. This approach en-
ables them to infer missing dynamics by leveraging sim-
ilar states encountered during training. Furthermore, the
LDGN variant outperforms the DGN by learning distributions in a compressed latent space that is
less sensitive to small-scale fluctuations, resulting in superior interpolation performance.
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Regarding sampling accuracy, we verified that it remains unaffected by the number of training tra-
jectories. This behavior aligns with our expectations, as accurate samples can still be generated even
without the ability to complete the system’s PDF by feature interpolation.

D.6 FLOW STATISTICS DERIVED FROM LEARNED DISTRIBUTIONS

With our DGN and LDGN models, we aim to learn the probability density function (PDF) of fully-
developed unsteady flows. In certain cases, however, learning the mean flow alone using a deter-
ministic GNN trained directly on mean-flow data might suffice. Nevertheless, such deterministic
models may encounter challenges when the available training trajectories are too short to properly
capture the mean flow. Furthermore, the distributions generated by the DGN and LDGN models can
be used to derive other relevant statistics, such as the turbulent kinetic energy (TKE) or the Reynolds
shear stress.

To evaluate the advantage provided by the DGN and LDGN models over deterministic baselines
in the mean-flow prediction task, we trained a deterministic model, referred to as the Mean-Flow
GNN, on 10-time-step-averaged flow fields from the ELLIPSEFLOW-TRAIN dataset. We compared
its performance to that of the models discussed in Section 5: the Vanilla GNN (another determin-
istic model trained to maximize the likelihood; see Section B.5), the DGN, the LDGN, and other
probabilistic baselines. The coefficient of determination for mean-flow predictions, as evaluated on
the ELLIPSEFLOW test datasets, is summarized in Table 15. Notably, the LDGN significantly out-
performs both the deterministic and probabilistic baselines in predicting the mean flow, achieving
coefficient of determination values close to one – despite being trained on only 10 consecutive states
per trajectory.

Figure 17 further illustrates these findings. Predictions from the two deterministic baselines (Mean-
Flow GNN and Vanilla GNN) exhibit diffused vertex distributions corresponding to the 10-time-step
(training simulation length) average fields. This diffusion indicates that during training, these models
are overly biased toward the conditions of individual samples and fail to generalize the true average
flow across training samples. The DGN slightly mitigates this problem through its gradual denoising
approach, which minimizes overfitting to individual training samples. The improvement is more
evident in the LDGN, which, thanks to its more meaningful latent space and latent input conditions,
better leverages the information present across systems that are close in parameter space.

Ground truth

(a) Mean u field for an in-distribution test case

(b) Mean u field for a generalisation test case with AoA = 10 deg

Ground truth

Figure 17: Mean u field predicted by the Mean-Flow GNN and the Vanilla GNN (deterministic
GNNs), as well as obtained from the distributions of the DGN and LDGN, for a test case from (a)
dataset ELLIPSEFLOW-INDIST and (b) dataset ELLIPSEFLOW-AOA.

To further demonstrate the effectiveness of the proposed diffusion models, we computed the turbu-
lent kinetic energy (TKE). This quantity is defined as:

TKE =
1

2
(⟨u′u′⟩+ ⟨v′v′⟩)

where ⟨·⟩ denotes ensemble averaging, and u′ := u−⟨u⟩ and v′ := v−⟨v⟩ are velocity fluctuations.
The coefficients of determination for the TKE are presented in Table 16. Reflecting the superior
distributional accuracy of the LDGN, this model significantly outperformed the baseline models,
with the DGN emerging as the second-best performer. The LDGN’s advantage in these predictions
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Table 15: Mean coefficient of determination (R2) of the mean-flow on the ELLIPSEFLOW datasets

Model

ELLIPSE

FLOW -INDIST -LOWRE -HIGHRE -THIN -THICK -AOA

Mean-Flow GNN 0.868 ± 0.014 0.872 ± 0.012 0.865 ± 0.015 0.883 ± 0.002 0.843 ± 0.008 0.863 ± 0.013

Vanilla GNN 0.869 ± 0.013 0.871 ± 0.012 0.864 ± 0.014 0.883 ± 0.003 0.845 ± 0.009 0.864 ± 0.013

GM-GNN 0.867 ± 0.015 0.870 ± 0.012 0.857 ± 0.016 0.883 ± 0.003 0.841 ± 0.009 0.860 ± 0.014

VGAE 0.926 ± 0.014 0.931 ± 0.012 0.921 ± 0.015 0.942 ± 0.003 0.902 ± 0.011 0.921 ± 0.015

DGN 0.941 ± 0.020 0.946 ± 0.015 0.936 ± 0.021 0.954 ± 0.006 0.912 ± 0.028 0.930 ± 0.025

LDGN 0.976 ± 0.004 0.978 ± 0.002 0.975 ± 0.005 0.978 ± 0.001 0.974 ± 0.003 0.975 ± 0.003

is further illustrated in Figure 18. It is important to highlight that all these models were trained on
only 10 consecutive time steps from each training simulation (see Section 5), making the results
even more remarkable.

(a) TKE

1/2 (<u'u'> + <v'v'>)

(b) Reynols

shear stress 

-<u'v'>

Ground truth

Ground truth

Figure 18: (a) Turbulent kinetic energy and (b) Reynolds shear stress obtained from the distributions
predicted by the GM-GNN, DGN, and LDGN for a test case from the ELLIPSEFLOW-INDIST dataset.

Table 16: Mean coefficient of determination (R2) of the TKE on the ELLIPSEFLOW datasets

Model

ELLIPSE

FLOW -INDIST -LOWRE -HIGHRE -THIN -THICK -AOA

GM-GNN 0.669 ± 0.141 0.675 ± 0.155 0.646 ± 0.120 0.881 ± 0.043 0.393 ± 0.091 0.564 ± 0.132

VGAE -0.201 ± 0.040 -0.182 ± 0.040 -0.218 ± 0.050 -0.145 ± 0.011 -0.253 ± 0.038 -0.197 ± 0.043

DGN 0.783 ± 0.215 0.874 ± 0.141 0.755 ± 0.241 0.863 ± 0.150 0.485 ± 0.334 0.654 ± 0.279

LDGN 0.911 ± 0.226 0.947 ± 0.064 0.876 ± 0.234 0.895 ± 0.071 0.901 ± 0.046 0.895 ± 0.156

D.7 FAST SAMPLING WITH FLOW MATCHING

Flow matching (Lipman et al., 2023) has recently emerged as a promising generative model frame-
work, offering significant efficiency gains over diffusion models by defining a direct linear mapping
between samples of a Gaussian distribution (or any other distribution, in theory) and the target dis-
tribution. This enables sampling to be performed with fewer steps.

Our DGN and LDGN architectures can be seamlessly adapted to the flow-matching training frame-
work, benefiting from faster sampling. We observed that flow-matching GNNs (FM-GNNs) and
latent-flow-matching GNNs (LFM-GNNs) outperform their diffusion-based counterparts when the
number of denoising steps is limited to 10 or fewer. However, for ∼20 or more denoising steps,
diffusion models demonstrate superior performance.

This behavior is illustrated in Figure 19a, which compares the standard deviation of the pressure
predicted by the DGN and the FM-GNN with 10 denoising steps for a sample from the WING-TEST

dataset (ground truth shown in Figure 6). The shift in performance for 20 or more denoising steps is
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shown in Figure 19b, which presents the sample accuracy and distributional error as a function of the
number of denoising steps for the DGN, FM-GNN, and their latent variants on the ELLIPSE-INDIST

dataset.

From these results, we observe that the LFM-GNN achieves a compelling balance between accuracy
and sampling speed. However, further experimentation is necessary to fully explore its potential,
which we leave for future work.

DGN FM-GNN

(a) 10-step denoising

diffusion vs. flow matching
(b) Accuracy vs. # denoising steps

in EllipseVal dataset

Figure 19: Flow-matching-based models outperform diffusion-based models when only a small
number of denoising steps are employed for sampling. This was tested on (a) the WING-TEST dataset
and (b) the ELLIPSE-INDIST dataset.
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