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A Dataset and Codebase Release

The dataset and codebase of our work are released at the following link1. We provide the instructions
to download the assets contained in the PInNED dataset and the codebase to run the main experiments
on the Personalized Instance-based Navigation (PIN) task.

B Limitations

A limitation of this work is related to the visual appearance of some of the object instances in the
PInNED dataset. For example, the Habitat simulator’s [61] rendering can cause a deterioration in the
texture quality of some objects, failing to accurately reproduce them in the environment. Moreover,
instances with very small or detailed components can also exhibit a degradation in their visual fidelity
when instantiated in the simulator. Consequently, as the agent moves farther from these objects, their
details become less discernible. As a direct consequence, detecting small target objects is a critical
challenge for navigation agents tackling the PIN task.

This behavior is showcased in Sec. E, where agents tackling the PIN task in the episodes of PInNED
dataset face significant challenges in successfully detecting instances of inherently small object
categories. In fact, despite agents such as the modular agent with DINOv2 [51] showcase good
performance on the overall PIN task, detecting small objects represents one of the main limitations of
current object-driven agents, as they can only be recognized when the robot is close to them.

A possible future improvement could involve designing novel exploration policies that aim to bring
the robot closer to surfaces where the target might be placed while leveraging different detection
criteria that take into consideration the scale of the observed objects.

C Broader Impacts

The introduction of the Personalized Instance-based Navigation (PIN) task and the accompanying
PInNED dataset has the potential to advance the field of visual navigation and Embodied AI. The
PIN task fills the limitations of the current datasets for embodied navigation by requiring agents to
distinguish between multiple instances of objects from the same category, thereby enhancing their
precision and robustness in real-world scenarios. This advancement can lead to more capable and
reliable robotic assistants and autonomous systems, especially in household settings. Moreover,
the PInNED dataset serves as a comprehensive benchmark for the development and evaluation of
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Table A: Configuration of the main parameters used for executing each episode of the PIN task
contained in the PInNED dataset.

Action Space Episode Configuration Depth Sensor
forward step 0.25 success distance 1.0 width 360
turn angle 30 max episode steps 1000 height 640
tilt angle 30 RGB Sensor hfov 42

Agent Configuration width 360 position [0, 1.31, 0]
visual sensors rgb, depth height 640 min depth 0.5
height 1.41 hfov 42 max depth 5.0
radius 0.17
position [0, 1.31, 0]

PInNED (Ours) InstanceImageNav MultiON GOAT-Bench

Figure A: Comparison of observations depicting different target objects of PInNED dataset with the
target objects of InstanceImageNav, MultiON, and GOAT-Bench datasets.

novel algorithms in object-driven navigation. By providing a challenging and extensive dataset, we
encourage the research community to develop innovative approaches and solutions.

D Additional Personalized Instance-based Navigation Details

Configurations. In addition to the task definition details provided in Sec. 3.1 of the main paper,
relevant hyperparameters employed for executing each episode of the PInNED dataset are presented
in Table A.

The configuration used for a PIN episode comprises a maximum duration of 1, 000 time steps, with
the agent’s action space defined by discrete forward steps of 0.25 m, a turn angle of 30°, and a head
tilt angle of 30°. Each episode is considered successful if the position of the agent is within 1 meter
from the position of the target object, and it predicts the ‘stop’ action before the end of the time
step budget. The configurations used for the navigation experiments reflect the settings employed to
simulate the camera sensors and space occupation of the HelloRobot Stretch2 platform.

Comparison with Object-oriented Tasks. In addition to Fig. 2 of the main paper, in Fig. A
we showcase additional examples of goal objects captured in the embodied setting for different
object-driven datasets. The target objects belonging to the PInNED dataset are compared with
InstanceImageNav [36], MultiON [70], and GOAT-Bench [32] datasets. It is noticeable that injecting
photo-realistic objects allows to have targets that do not present artifacts or reconstruction errors,
which is common for InstanceImageNav and GOAT-Bench target objects. Furthermore, when
comparing the target objects of PInNED with those in the MultiON dataset, it is noticeable that the
PInNED objects exhibit a more photo-realistic visual quality.

2https://hello-robot.com/stretch
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Figure B: Sample frontal visual references of personalized targets from PInNED dataset. We include
three instances for each object category, considering the categories not included in Fig. 3 of the main
paper.

Comparison with ProcTHOR. ProcTHOR [23] is a framework built on AI2-THOR [34] to procedu-
rally generate interactive environments, enabling the evaluation of data augmentation and large-scale
training in different Embodied AI tasks. PInNED is a dataset designed specifically to study the newly
introduced PIN task, in which the agent is tasked with finding a specific instance according to target
images or textual descriptions.

ProcTHOR includes 1,633 instances across 108 object categories, with the ability to vary brightness,
colors, materials, and object states. These categories include several household objects, covering
generic objects, such as ‘pen’ or ‘apple’, objects that can be personal, such as ‘mug’ and ‘watch’, and
large objects that are unlikely to change their placement in the environment, such as ‘fridge’, and
‘window’. PInNED presents 18 object categories that can be personal, with the specific purpose of
accompanying the task in which the agent has to distinguish instances belonging to the same category.
All the categories represent objects that can be moved frequently in the environment and do not have
a predefined location.

As well as most procedural datasets, ProcTHOR sacrifices realism in favor of interactivity, scalability,
and customizability. PInNED, as a task-specific dataset, favors photo-realistic environments and
objects. Indeed, it is the first instance-based navigation dataset based on both photo-realistic environ-
ments and injected objects, that can be moved frequently and with multimodal targets. Interactivity
with the objects is out of scope for this work, however, the addition of external objects paves the way
for possible future enhancements where interactivity is needed.

E Additional PInNED Dataset Details

Additional Reference Samples. To better visualize the content of PInNED dataset, in Fig. B we
illustrate additional samples of the acquired visual references for the categories that are not included
in Fig. 3 of the main paper.

Additionally, we present samples including both visual and textual modalities for the input references
associated with some of the object instances of PInNED dataset in Fig. C and Fig. D. In particular,
we show the three views composing the set of visual references and the three manually annotated
descriptions for the textual references.
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Table B: Statistics about the number of distractors placed in the episodes of the training and validation
sets of PInNED dataset. We consider the distractors belonging both to the same category of the target
and to other categories.

# of Distractors Same Object Category Other Categories

Train Val Train Val

Max 6 3 13 10
Average 2.93 2.90 7.75 7.19
Standard Deviation 0.33 0.37 2.84 2.82

Object Selection and Distribution Criteria. The scope of PIN is to provide a benchmark to
evaluate an agent tasked with finding a specific object that can be located anywhere in an unexplored
environment, where distractors of the same category are present; hence, the object categories are
selected according to the following criteria: (i) objects that are highly customizable in terms of shapes,
colors, and other visual aspects, (ii) objects that are frequently moved and can be placed anywhere,
and (iii) objects of common use for which is reasonable to ask a robot to find.

Additional Information about Dataset Generation. In Table B, we provide statistics on the number
of distractors placed in the training and validation episodes of PInNED dataset. During the generation
of PIN episodes, a maximum number of distractors, both from the same category as the target instance
and from other categories, is sampled from the set of available objects. The final number of additional
objects in each episode is determined by the number of suitable surfaces and the available space on
these surfaces. During the dataset generation process, objects are positioned above these surfaces and
lowered until they contact the surface. If an object cannot be initially placed due to size constraints or
collisions with other elements or walls, the placing process for that object is aborted, and another
one is sampled from unused object instances. After the generation of the dataset of episodes, an
additional assessment is performed through the Habitat simulator to remove the episodes containing
objects that are not reachable from the starting position of the agent.

Object Distances. In addition to Fig. 4 of the main paper, Fig. E presents a plot depicting the
Euclidean distances of target objects and distractors from the starting position of the agent in the
episodes of both training and validation splits of PInNED dataset. When considering the Euclidean
distance, the distribution of the distances of the additional objects remains consistent with the geodesic
distances presented in the main paper. Furthermore, the plots of the distances of all additional objects
(target instances and distractors) are presented in Fig. F.

Modular Agent Activations. In Fig. G we present a comparison of the similarities computed between
the patch-level features of different backbones on the observations of the agent and the references.
In particular, we show these similarities on DINOv2 [51], DINO [12], CLIP with visual references,
and CLIP with textual references [54]. The resolution of the similarities extracted from DINOv2
is higher than the others since we employed the input resolution 518× 518 on which the ViT-B/14
model has been trained, which corresponds to a grid of 37× 37 patches, whereas DINO and CLIP
are based on a ViT-B/16 backbone with 224× 224 as input resolution. It is noteworthy that DINOv2
exhibits strong semantic localization properties, with high similarity values on the exact location
of the image on which the target is observed. On the contrary, DINO and CLIP tend to exhibit
less well-localized similarities. Moreover, CLIP with visual references has a high similarity on the
patches corresponding to the laptop in the observation, whereas CLIP with textual references has a
low similarity on the same patches.

Object Size Analysis. Taking into account that personalized objects are defined as predefined
instances with distinct characteristics, the primary challenge in the PIN task lies in effectively
recognizing these specific details, especially when dealing with subtle features and limited interaction
capabilities within the environment. In this analysis, we present a category-wise size analysis of the
objects in the dataset by computing and measuring the 3D bounding box of each object. In Fig. H,
we plot the distribution of the volumes of the bounding boxes associated with each object category
showing that the distributions between training and validation splits remain consistent.

Category-wise Navigation Results. In Table C we present the navigation results of the modular
agent based on DINOv2 as the matching backbone in which we compute the metrics for each category.
From the results on SR and SPL we can note that there are categories that are easier to locate and
reach, such as ‘backpack’, ‘bag’, ‘ball’, ‘hat’, ‘laptop’, and ‘toy’, and there are instances from
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a yellow kanken backpack with yellow straps on the top

a yellow monochrome kanken backpack

a photo of a yellow backpack with a strap and red circle on the front

a black camera bag with a handle and a mesh pocket

a black camera bag with a buckle and a small silver plate

a black camera bag with two red laces, a silver plate and a black buckle in
the middle front

a beach ball with alternated red, light blue and white slices

an inflatable colored beach ball

a beach ball with a multicolored design

a stack of two books with a leather cover tied using a brown strap

a brown book with yellowed pages with two straps and golden buckles on
top

two books tied together by a brown lace, with black leather covers and a
red jurassic park logo

a big black camera with a black handle and a wheel on the side

a black cubic camera with a brown knob and a strap

a kodak brownie hawkeye black flash camera, which is cube-shaped and
has a black handle

a blue smartphone with a white text on the back

a blue phone with a black screen

a cellphone with a gradient blue to purple color, two lenses, a fingerprint
reader and the xiaomi mi logo on the back

a pair of black squared eyeglasses with a golden plate on the arms

a pair of sunglasses with a black frame and gold detail

a pair of black thick eyeglasses with squared frame and golden hinges

a sombrero with red details and a yellow stripe

a straw hat with a yellow ribbon around it

a sombrero with red elements on the brim and a yellow stripe with chiquito
written multiple times on top

a pair of black beats headphones

a pair of headphones with a black band

a pair of black headphones with the beats by dre logo on the ear cups and
two gray lines on the headband

Figure C: Visual reference images and textual reference descriptions of personalized targets from
PInNED dataset. The samples are taken from ‘backpack’, ‘bag’, ‘ball’, ‘book’, ‘camera’, ‘cellphone’,
‘eyeglasses’, ‘hat’, and ‘headphones’ object categories.

categories that are never correctly reached, such as ‘keys’, ‘wallet’, and ‘watch’. This result returns
the inability of the vanilla matching modules to distinguish these categories in the embodied setting.
Moreover, we can observe that there is an overall positive correlation between SR and average
category size, implying that small objects are particularly challenging to detect.

Similarity Analysis. The similarity of objects is a critical factor in the PIN task. The presence of
distractors increases the challenge of the proposed task, as the agent must balance between being
overly cautious and overly confident when identifying target instances. This trade-off is central to
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a worn red key and a yellow keytag with a black text

a yellow plastic tag with a red key

a red rusty key and a yellow keytag with generator maintenance written on
it

a black and grey laptop with rgb keyboard

a black and grey laptop with a alien head on the back

a laptop having a gray top cover with an alien logo on the back, a black
base panel and a rainbow colored keyboard

a blue mug with a red fox logo on it

a blue mug with a firefox logo on it

a blue mug with the mozilla firefox logo, composed of a red fox around the
globe, printed on it

a pair of orange adidas running shoes

a pair of orange adidas sneakers with black stripes

a pair of orange running shoes with orange laces, black adidas stripes, and
white outsoles

a beige teddy bear with a red bandana on a wooden chair

a teddy bear sitting in a wicker chair with a red bandana on its neck

a cream-colored smiling teddy bear with a red scarf and sitting on a woven
chair

a black and white toy car with a number 2 on the front

a black and white toy car

a black toy race car, with white wheels, a number 2 painted on the side, and
a ball replacing the drive

a black htc visor with blue polka dots

a blue rounded virtual reality headset with a black strap

a htc visor having black bands and blue front side with light blue dots

a black leather wallet with an orange plate

a brown leather wallet with a button on it

a dark brown leather wallet having an orange patch with fossil written on it

a gold and grey watch with black leather strap

a brown leather wallet with a button on it

a rounded watch having a thick golden case, white dial and black leather
band with a golden buckle

Figure D: Visual reference images and textual reference descriptions of personalized targets from
PInNED dataset. The samples are taken from ‘keys’, ‘laptop’, ‘mug’, ‘shoes’, ‘teddy bear’, ‘toy’,
‘visor’, ‘wallet’, and ‘watch’ object categories.

the effectiveness of the navigation approaches. In particular, concerning images as references of
the target object, re-identification methods should be a robust solution against distractors due to
considering the matching between keypoints instead of the semantic similarity between observation
and reference. Indeed, in Table 2 of the main paper, the state-of-the-art re-identification method
SuperGlue has a lower category error than DINOv2 and CLIP. However, it presents the worst results
according to SR and SPL, showing difficulties in matching keypoints when observation and reference
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Figure E: Euclidean distances of the objects included in the episodes of training (orange) and
validation (blue) splits of PInNED dataset. The plots consider the distances from the start position to
the target object (left) and to all distractors (right). Distances are measured in meters, with the mean
value for each plot displayed at the top.
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Figure F: Plots of the geodesic and Euclidean distances for all the objects placed in the episodes of
PInNED dataset. Training (orange) and validation splits (blue) are presented in terms of distances
from the start position to all the spawned additional objects. All the distances are plotted in meters,
and the mean value of each plot is shown on top.

Reference Observation DINOv2 DINO CLIP (Visual) CLIP (Textual)

Figure G: Comparison of the similarities between the patch-level features on two observations of an
agent extracted with different backbones, DINOv2, DINO, CLIP with visual references, and CLIP
with textual references, and the references. Purple values represent low similarity values, while
yellow values represent high similarity values.

have discrepancies in appearance. For methods based on semantic features, the similarity threshold is
the key element in balancing confidence and caution.

In Table C, we report the average cosine similarities in the DINOv2 embedding space per category.
In particular, we extracted the CLS token from each frontal goal image of the validation set and
computed the cosine similarities against the other goal images from the same category (i.e. intra-
category) and against goal images from different categories (i.e. inter-categories). The results show
that the intra-category similarity presents a strong relation with the category error (CE) and category
matches (CM) metrics. Indeed, the agent tends to mistake instances from categories with large
intra-category similarity values, such as ‘eyeglasses’, ‘headphones’, and ‘shoes’, while these mistakes
are reduced in categories such as ‘camera’ and ‘toy’ that are characterized by a larger variability
in their instances. When we adopt textual references as targets, the challenges concern how well
multimodal spaces embed fine-grained details, and how similarity behaves accordingly. Previous
work [7, 10] has shown that this challenge is non-trivial and still open. Our dataset represents a
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Figure H: Distribution of the volumes in meters of the bounding boxes of the objects in PInNED
dataset. Two plots are shown for each semantic category, reflecting respectively the objects of
training (orange) and validation (blue) splits. Each plot is accompanied by the corresponding mean
of bounding box volumes of the objects in each split.

further step in this direction, providing a benchmark to evaluate the capabilities of visual-language
models in recognizing fine-grained details. Future works can exploit our training set to instruct the
models to distinguish instances of the same category by focusing on adjectives and attributes.

Surfaces Details. As described in Sec. 3.3, the spawning position of each object in the PInNED
dataset is selected by sampling from the positions of a curated set of suitable surface macro-categories
included in the semantic annotations of HM3D. The surface categories selected for the creation of the
dataset are: armchair, bed, bench, cabinet, piano, rug, sofa, table. These surfaces are valid for all
the object categories and there are no subsets of surfaces dedicated to specific categories. There are
categories, especially ’shoes’, that are unlikely to be placed on certain surfaces. However, the scope
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Table C: Navigation results of the modular agent that employs DINOv2 as the matching module on the
validation episodes of PInNED dataset, considering the performance of the agent for each category.
Moreover, we report the average intra-category and inter-category cosine similarities computed on
the frontal goal images.

Navigation Metrics Detection Metrics Similarity
Category SR↑ SPL↑ CE↓ D2G↓ Steps %Match↑ TM↑ CM↓ NM↓ Intra-Category Inter-Category

Backpack 26.47 14.04 36.77 5.79 408.7 85.29 53.27 46.57 0.16 0.510 0.110
Bag 23.08 13.65 40.00 6.16 406.5 93.85 44.62 55.04 0.34 0.348 0.121
Ball 20.90 10.29 23.88 6.48 613.1 61.19 36.06 63.87 0.07 0.258 0.068
Book 19.40 10.83 35.82 5.71 484.3 86.57 58.51 40.16 1.33 0.613 0.106
Camera 7.46 3.38 7.50 8.57 883.2 20.90 69.23 23.08 7.69 0.152 0.050
Cellphone 8.96 3.11 14.92 8.63 844.8 32.84 7.81 90.96 1.23 0.506 0.112
Eyeglasses 10.45 5.08 32.83 7.70 682.0 62.69 79.80 19.95 0.25 0.846 0.104
Hat 26.87 11.95 23.88 6.45 652.8 67.16 88.08 11.89 0.03 0.549 0.084
Headphones 16.92 9.71 40.00 7.35 492.8 84.62 14.58 85.29 0.13 0.764 0.098
Keys 0.00 0.00 8.82 8.38 974.2 2.94 0.00 0.00 100.00 0.558 0.102
Laptop 21.54 11.50 49.23 7.01 455.3 93.85 16.86 82.60 0.54 0.348 0.084
Mug 10.61 4.47 10.61 8.10 911.8 22.73 92.00 4.50 3.50 0.298 0.073
Shoes 16.92 12.44 44.62 6.75 318.8 95.38 8.31 91.69 0.00 0.631 0.087
Teddy Bear 19.12 13.48 52.94 7.07 335.5 91.18 68.92 16.62 14.46 0.548 0.066
Toy 26.56 13.18 3.12 6.16 754.6 48.44 99.27 0.00 0.73 0.137 0.087
Visor 11.94 5.99 31.34 7.99 657.0 52.24 52.47 45.33 2.20 0.316 0.148
Wallet 0.00 0.00 6.15 8.39 985.3 1.54 0.00 0.00 100.00 0.282 0.105
Watch 0.00 0.00 7.69 8.39 999.0 0.00 0.00 0.00 100.00 0.566 0.102
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Figure I: Plot of the mean number of surfaces in each environment that are suitable for object
placement in the training (left) and validation (right) splits of the PInNED dataset.

of the task is to have objects that could be placed everywhere and teach a robotic agent to find them.
A teddy bear is not necessarily located on the bed, but could be located anywhere, even on the kitchen
table. If we assume a real-world scenario in which a child forgets the teddy bear on the kitchen table,
the agent should not go directly to the bedroom, but look for the object in the whole environment.
This is the reason for which we adopted a consistent spawning mechanism across all the categories.
We identify this combination of objects that could be placed everywhere and the consistent spawning
mechanisms as the correct approach for providing a dataset covering a large set of possible real-world
scenarios that avoid the exploitation of prior knowledge on the object placement.

In Fig. I, we showcase the occurrences of the suitable surfaces in the environments of HM3D [56].
Notably, the distribution of spawnable surfaces remains consistent between the training and validation
splits. This implies a recurring pattern in the furnishing of indoor spaces contained in the HM3D
dataset and used for the PIN task.

Hard Detection Cases. In Fig. J, we show four episodes in which detecting the target is particularly
challenging. These targets belong, respectively, to the ‘wallet’, ‘camera’, ‘watch’, and ‘keys’ cat-
egories. Table C shows that these categories are the most challenging ones for the modular agent
with DINOv2, which is the best-performing agent according to Table 2. Indeed, the categories ‘keys’,
‘wallet’, and ‘watch’ all yielded no successful episodes. These objects are hard to detect even for a
human, confirming how challenging the PIN task is. Future work should investigate the possibility
of moving the agent closer to areas in which there are small objects that cannot be identified as the
target from longer distances.
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Figure J: Examples of situations in which detecting the target in the embodied environment is
particularly challenging. We depict the frontal visual references of the target in the first row and a
portion of an agent’s observation containing the target in the second row.

Table D: Navigation results of the modular agent that employs SuperGlue as the matching module on
the validation episodes of PInNED dataset, considering different resize values of the visual references
of the target provided to the matching module.

Navigation Metrics Detection Metrics
Resize SR↑ SPL↑ CE↓ D2G↓ Steps %Match↑ TM↑ CM↓ NM↓
360 2.51 0.82 7.05 8.48 881.6 17.77 43.76 5.17 51.07
180 3.02 1.20 7.21 8.48 864.1 20.70 21.72 3.58 76.35
180, 360 3.27 1.28 7.58 8.36 804.0 29.42 16.96 3.44 79.60

Fine-Grained vs General Descriptions Comparison. In Table E we present an ablation study
in which we compare the performance of the baselines with both fine-grained and general object
categories. Specifically, we conducted the following experiments. For the modular agents based on
CLIP and OWL as the matching module, we leveraged the general object category (e.g. backpack)
instead of the fine-grained textual descriptions as navigation targets, while maintaining the same
similarity threshold. The results on both CLIP and OWL present similar behaviors: the number of
successful episodes is slightly increased, but also the number of episodes in which the agent mistakes
reaching distractors of the same category and the number of matches with them increased. Moreover,
the reduction in the average number of steps indicates that similarities, on average, are higher. The
increase in successful episodes is surprising but in line with the findings of previous works in the
literature [7, 10], which demonstrate that current vision-language models struggle with fine-grained
details. These results show that our work can help future works in the realization and evaluation
of vision-language models with improved understanding capabilities of details. Concerning the
end-to-end agent RIM, we trained the model on the CLIP embeddings extracted from the general
object categories instead of the fine-grained textual descriptions. The results show a lower number of
successful episodes and a higher number of episodes in which the agent reaches a distractor of the
same category.

F Additional Implementation Details

Modular Agents. In Sec. 4.1, we introduce the modular agents tested on the PIN task. Their ability
to distinguish a specific instance in a given observation depends on the score threshold that maximizes
the detection results. We tune this threshold on a subset of the training episodes. For all the backbones
except for SuperGlue [60], we extract two squared crops with size 360× 360 from the 360× 640
observation and resize them to the image resolutions on which the backbones have been trained.
Then, we consider all the matches resulting from the two crops. At least a match over the threshold is
required to consider the goal detected in an observation. For the textual modalities, we employ the
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Table E: Navigation results on PInNED on the environments of HM3D dataset, comparing categorical
and fine-grained textual modalities.

Navigation Metrics Detection Metrics
Backbone Modality SR↑ SPL↑ CE↓ D2G↓ Steps %Match↑ TM↑ CM↓ NM↓

Modular Agents
CLIP [54] ViT-B/16 Categorical 3.52 2.75 10.23 7.98 148.1 95.47 5.12 15.73 79.15
CLIP [54] ViT-B/16 Fine-Grained 3.10 1.82 9.31 7.94 503.1 62.95 20.07 22.07 57.86
OWL [29, 49] ViT-B/32 Categorical 7.79 3.73 19.96 7.96 780.6 38.81 26.50 58.49 15.01
OWL [29, 49] ViT-B/32 Fine-Grained 7.29 3.36 12.66 7.90 871.7 22.97 62.60 32.88 4.52

End-to-end Agents
RIM [18] ResNet-50 Categorical 4.61 3.78 14.25 9.23 336.0 - - - -
RIM [18] ResNet-50 Fine-Grained 7.12 6.67 10.44 8.43 409.3 - - - -

80 prompt templates proposed by Radford et al. [54] for ImageNet [24]. In this section, we report
additional implementation details for each backbone.

SuperGlue [60]: We observe that SuperGlue struggles to match the visual references with
the observations of the agent and that the resolution of the references influences the matching
capabilities. In particular, we provide the visual references to SuperGlue as squared images
360× 360, corresponding to the shortest side of the observation of the agent. For each visual
reference, namely for each of the three views of the object, we provide two resizes of the object
such that the longest side is, respectively, 360 and 180. This procedure results in two reference
images for each view of the object, an image entirely occupied by the object and an image where
the object occupies a quarter of it. In Table D we show that this approach results in a higher
success rate than having a single image per object view. Moreover, we employ the indoor weights
of SuperGlue with a threshold of 0.2 on the confidence of each matched keypoints pair and a
matching threshold σ of 8.0 on the confidence sum of all the matched keypoints pairs.

CLIP [54]: We employ CLIP ViT-B/16 with the pre-trained weights from OpenAI for both the
experiments with visual and textual references. We resize the two observation crops to 224×224,
resulting in a grid of 14× 14 patches. The best matching threshold σ for the visual and textual
modalities are, respectively, 0.575 and 0.28.

CLIP-Grad: We follow the implementation of the network interpretability method proposed in
CoW [29] on top of CLIP with textual references. We employ CLIP ViT-B/32 with the pre-trained
weights from OpenAI and matching threshold 0.85.

OWL [49]: OWL is an open-vocabulary detector that is trained in two steps: (i) a large contrastive
image-text pre-training following LiT [78] and (ii) an object-level training on publicly available
detection datasets (Open Images V4 [38], Objects 365 [63], and Visual Genome [37]). We
employ a matching threshold of 0.25 applied to the predicted bounding box scores.

DINO [12]/DINOv2 [51]: DINO is a self-supervised backbone pre-trained according to a
self-distillation training paradigm. DINOv2 is an improved version of DINO with the aim of
producing general-purpose visual features. We employ DINO ViT-B/16 and DINOv2 ViT-B/14
trained, respectively, on ImageNet-1k [24] and LVD-142M [51]. We use the same input image
resolutions on which they are trained, namely 224× 224 and 518× 518, producing 14× 14 and
37× 37 grids of patches. The best matching scores are, respectively, 0.575 and 0.5.

PerSAM/PerSAM-F [80]: We leverage the implementation of PerSAM on SAM ViT-B/16,
trained on SA-1B, with input image resolution at 1, 024. PerSAM-F is a variant of PerSAM that
fine-tunes the model on the reference image, We follow the training configuration of the original
implementation. We consider the maximum patch-level similarity between the reference images
and the observation crop as the matching score on which we apply the thresholds 0.925 and 0.61
for, respectively, PerSAM and PerSAM-F.

End-to-End Agents. As mentioned in Sec. 4.2 end-to-end approaches use a neural network policy
which is trained end-to-end to directly process sensor observations and predict the atomic actions
needed to fulfill the required task. In our case, we adapted two recent end-to-end approaches for
ObjectNav finetuning them to perform PIN task: RIM [18] and ZSON [45].
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RIM [18]: The model is finetuned using behavior cloning following Chen et al. [18] approach
and starting from the pre-trained weights for ObjectNav [6]. We evaluate two variants of the
fine-tuned model, conditioned on visual features and conditioned on textual features. In RIM
approach, besides the episodic implicit map that is updated recursively, the input of the policy at
each timestep is composed of the concatenation of the features extracted from RGB and depth
observation, the pose of the agent, previous action, and the target object category. To adapt RIM
for the PIN task, we modify the features extracted from the object category label. Originally each
label is associated with a row in a lookup table containing learnable embeddings of length 32.
In our adaptation, we replace such embeddings with CLIP (ViT-B/16) features extracted using
the visual or textual references. Since each input reference modality is described by 3 images or
descriptions, we compute the mean of the features extracted from each reference. Following, a
learnable linear layer is trained to project CLIP features to a vector of length 32. The resulting
embedding is used to condition the navigation of the RIM agent. The fine-tuning process is
performed on a single GPU for a total of ≈ 2M fine-tuning steps over ≈ 24 hours.

ZSON [45]: For the adaptation of the ZSON method, we fine-tuned the model pre-trained
on the ImageNav task, following the same approach as Majumdar et al. [45]. The agent is
fine-tuned with reinforcement learning using an adaptation of ZSON reward but ignoring the
angle to the goal since it is not a component considered in the PIN task. The resulting reward
is rt = rsuccess − ∆dtg + rslack. We refer to Majumdar et al. [45] for a description of the
components of the reward. Moreover, while the original approach uses ImageNav goals that are
represented as photos captured at the position that the agent is required to reach, we used image
references of the target instance to perform the fine-tuning. The model is fine-tuned on a single
GPU for ≈ 24 hours for a total of ≈ 5M fine-tuning steps.

Compute Information. We performed our experiments on a computing platform composed of
NVIDIA RTX5000 GPUs and 8 GB of CPU memory for each job. A job can be computed on a
single GPU. Each episode step for the modular agents requires an average of ≈ 200ms to be executed.
Hence, the entire DINOv2 experiment on the 1, 193 validation episodes, with an average number of
steps equal to 658.7, requires ≈ 44 computation hours. The entire evaluation on the validation split
for the end-to-end agents requires ≈ 5 computation hours.

G Licenses and Terms of Use

The episodes of the PInNED dataset are built using the scenes from the HM3D dataset [56]. The
scenes of the HM3D dataset are released under the Matterport End User License Agreement, which
permits non-commercial academic use.

For the augmentation of HM3D scenes with additional objects, PInNED dataset utilizes 3D object
assets from Objaverse-XL dataset [22]. Objaverse-XL is distributed under the ODC-By 1.0 license,
with individual objects retrieved from various sources, including GitHub, Thingiverse, Sketchfab,
Polycam, and the Smithsonian Institution. Each object is subject to the licensing terms of its respec-
tive source, necessitating users to evaluate license compliance based on their specific downstream
applications.

Nevertheless, the specific objects included in our dataset are restricted to assets sourced from
Sketchfab which are released under various Creative Commons licenses. Specifically, the dataset
includes assets under the following licenses: CC BY (311 objects), CC BY-NC (14 objects), CC
BY-SA (8 objects), CC BY-NC-SA (3 objects), and CC0 (2 objects).

The episodes of the PInNED dataset, along with the manually annotated object descriptions are
released under the CC BY license, while the codebase for the PIN task is released under the MIT
license.

The authors accept full responsibility for any rights violations arising from the use or publication
of the data and content in this paper. All licenses related to external content included in this paper
ensure no infringement on third-party rights.
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1 {
2 "episode_id": "0",
3 "scene_id": "hm3d/val/00800-TEEsavR23oF/TEEsavR23oF.basis.glb

",
4 "start_position": [-0.28, 0.013, -6.54],
5 "start_rotation": [0, 0.98, 0, 0.20],
6 "info": {"geodesic_distance": 8.24},
7 "goals": [
8 {
9 "object_category": "backpack",

10 "object_id": "3f5948f7f47343acb868072a7fe92ada",
11 "position": [-5.13, 1.08, -0.81]
12 }
13 ],
14 "distractors": [
15 {
16 "object_category": "backpack",
17 "object_id": "3c47af8b6a3e413f94c74f86d4c396ed",
18 "position": [-3.46, 2.20, -4.30]
19 },
20 {
21 "object_category": "backpack",
22 "object_id": "0b795895343b44b69191ef9b55b35840",
23 "position": [-11.17, 0.88, -0.36]
24 },
25 {
26 "object_category": "backpack",
27 "object_id": "d86ee61984544b45a9f11f49e5e02c43",
28 "position": [-9.13, 1.22, -3.52]
29 },
30 {
31 "object_category": "mug",
32 "object_id": "d26e9bfce2644bb7af6710c6511ea718",
33 "position": [-7.84, 0.62, -0.14],
34 },
35 {
36 "object_category": "laptop",
37 "object_id": "6495988c6c044c76a2fc9f9278543c16",
38 "position": [-1.64, 0.87, -6.15],
39 },
40 {
41 "object_category": "headphones",
42 "object_id": "ccf60b0502784fb38e483a6b07cfad53",
43 "position": [3.41, 0.84, -8.21],
44 },
45 ],
46 "scene_dataset_config": "data/scene_datasets/hm3d/hm3

d_annotated_basis.scene_dataset_config.json",
47 "object_category": "backpack",
48 "object_id": "3f5948f7f47343acb868072a7fe92ada"
49 }

Listing A: Python dictionary containing a sample of the episodes contained in PInNED dataset. The
list of distractors is skimmed for better visualization.

H Assets

The episodes of PInNED dataset are defined as Python dictionaries containing relevant information
for the execution of the PIN task with the Habitat simulator. An example of episode annotation is
presented in Listing A. Each episode specifies the environment where it is taking place, the starting
position and rotation of the agent, along with the position and object identifier of the target instance
and the distractors.
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1 {
2 "scale": [0.116, 0.116, 0.116],
3 "render_asset": "0a96f1f19afc432bb22c3d74da546338.glb",
4 "requires_lighting": true,
5 "up": [0.0, 1.0, 0.0],
6 "front": [0.0, 1.0, 0.0],
7 "COM": [0.0, 0.0, 0.0],
8 "gravity": [0, 0, 0],
9 "force_flat_shading": true,

10 "is_collidable": true,
11 "use_mesh_for_collision": true,
12 "semantic_id": 2,
13 "semantic_category": "ball"
14 }

Listing B: Python dictionary containing the information used by Habitat simulator to instantiate a
specific object instance in the environment.

The information used by the Habitat simulator to resize and instantiate each 3D object at the position
specified by the episodes of PInNED dataset is also contained in a Python dictionary, where a specific
file represents each object. A sample of object annotation is showcased in Listing B.

I Datasheet

In this section, we present a comprehensive datasheet [30] for the proposed dataset, providing a
unified reference for relevant information on the PInNED episodes and the objects used to build the
dataset.

I.a Motivation

For what purpose was the dataset created? The PInNED dataset has been built with the motivation
of fostering future research on smart navigation agents. Such agents need to acquire the capability
of distinguishing between different instances of the same object category and leverage different
modalities of inputs to reach a specific object asked by the user. The dataset introduces a novel task in
Embodied AI research and, in order to run the episode of the PInNED dataset, the Habitat simulator
needs to be used. Instructions on how to run and instantiate the episodes of PInNED dataset are
included in the public repository described in Sec. A.

Who created the dataset and on behalf of which entity? The dataset was created by researchers at
the University of Modena and Reggio Emilia.

Who funded the creation of the dataset? Refer to the Acknowledgments and Disclosure of Funding
section in the main paper.

I.b Composition

What do the instances that comprise the dataset represent? The PInNED dataset consists of
generated navigation episodes designed to address the PIN task, accompanied by a list of object
identifiers used in each episode within the Habitat simulator. As the dataset is composed of navigation
episodes, containing all necessary information for the simulator to execute the task, no additional
metadata is provided. However, an example of episode annotations is included in Listing A.

How many instances are there in total? The dataset of episodes for the PIN task is composed of a
total of 865, 519 training episodes and 1, 193 validation episodes. Moving on to the objects contained
in the PInNED dataset, the total number of unique object instances that are injected in the navigation
environments is 338.

Does the dataset contain all possible instances or is it a sample (not necessarily random) of
instances from a larger set? While episodes of the PInNED dataset are generated procedurally by
the authors of the paper, the objects used as additional objects are part of the objects released from
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Objaverse-XL dataset [22], which is composed of 3D models from different online sources such as
GitHub, Thingiverse, Sketchfab, Polycam, and the Smithsonian Institution. The objects of PInNED
are however restricted to 3D models included in Sketchfab.

What data does each instance consist of? The dataset content is defined by the information of the
episodes for the PIN task. Each episode is represented as a dictionary containing the information
needed by the Habitat simulator [61] to execute the task. A .json file including a list of the navigation
episodes is produced for each scene included in HM3D dataset. We refer to Listing A for a sample
of episode annotation. Each episode in the dataset specifies additional objects that are placed at
a specific location loading .glb files containing the meshes of the objects. The .glb files used to
instantiate the episodes of the PInNED dataset are downloadable from Objaverse-XL API using the
Python script provided in the codebase. Each 3D object is associated with a .json file containing a
dictionary with the information needed by the Habitat simulator to correctly instantiate the object in
the environment in terms of size and appearance.

Is there a label or target associated with each instance? Each object used for the PInNED dataset
is manually associated with an object category label to correctly perform the placement procedure
of distractors belonging to the same category of the target instance, as well as computing metrics
related to the PIN task. However, the object category label should not be used by the agent to tackle
the PIN task. For each episode, only one instance is defined as the correct target to complete the task
successfully.

Are there recommended data splits? The episodes of the PInNED dataset are divided into training
and validation splits depending on the environment where the episodes are taking place. The
environments are divided into training and validation splits following the environmental-level division
performed by Ramakrishnan et al. [56]. Regarding the additional objects included in PInNED dataset,
the object instances are divided into 266 training instances and 72 validation instances. It is worth
noting that the sets of instances used for the training and validation splits do not overlap.

Are there any errors, sources of noise, or redundancies in the dataset? The additional objects on
the surfaces of HM3D environments could be misplaced due to noise in the original annotations of
the scene, or due to the presence of clutter at the acquisition time of the environment. Other sources
of noise could be related to possible typos in the process of annotation of the textual descriptions of
the additional objects.

Is the dataset self-contained, or does it link to or otherwise rely on external resources? The
PInNED dataset relies on the scenes included in the HM3D dataset of 3D spaces and on the 3D object
assets included in the Objaverse-XL dataset.

Does the dataset contain data that might be considered confidential? Does the dataset contain
data that, if viewed directly, might be offensive, insulting, threatening, or might otherwise cause
anxiety? No confidential or disturbing data is contained in the content of PInNED dataset.

I.c Collection Process

How was the data associated with each instance acquired? What mechanisms or procedures
were used to collect the data? The additional objects used for the PInNED dataset are manually
selected using the Python API from Objaverse-XL dataset.

The generation of the visual references of the target objects has been performed using Blender, where
the 3D mesh of the object is rendered and captured in an isolated setting. The camera performs a
30-degree yaw rotation around the object to capture a favorable view of the objects. Then, each
instance is rotated by 180 degrees in yaw to view its reverse side, while a 90-degree pitch rotation is
used to observe the upper side of the object. This procedure produces three visual references for each
target object.

The process of annotation of the textual descriptions of each object is performed by the authors of
the paper. Two objects of the same object category are shown to each annotator that is required to
describe one of the two instances in a way that is distinguishable from the other. The final procedure
used three annotators, for a total of three textual descriptions for each object. Samples of the input
references related to the objects of PInNED dataset are shown in Fig. C and Fig. D.
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The episodes of PInNED are generated by spawning the selected additional objects in the scene after
extracting all suitable surfaces from the semantic annotation of the environment. We refer to Sec. 3.3
for more details on object placement.

If the dataset is a sample from a larger set, what was the sampling strategy? The sampling
strategy for selecting the objects from Objaverse-XL is based on a manual assessment of the photo-
realistic properties of the selected objects and the corresponding visual appearance of the object when
rendered using the Habitat simulator. The sampling strategy of the objects contained in the episodes
of PInNED dataset is a random sampling. For each episode, a goal object category is selected, and a
specific target instance is sampled from the set of suitable objects. Instances belonging to the same
object category of the target object are sampled and positioned in the environment as distractors.
If other spawnable surfaces are available, more distractors belonging to other object categories are
placed in the environment. Details on the number of additional objects placed in the episodes of
PInNED dataset are included in Sec. D. For the final generation of the episodes of PInNED dataset,
400 episodes are generated for each possible object category on the environments of the training split,
while 2 episodes for each object category are generated in every environment of the validation split.

Who was involved in the data collection process? The actors performing the data collection and
annotation process of the dataset are the authors of the paper.

Over what timeframe was the data collected? The dataset assets were collected and the episodes
of the PInNED dataset were generated between November 2023 and May 2024.

Were any ethical review processes conducted? No ethical review process was necessary for the
collection of the dataset.

I.d Preprocessing / Cleaning / Labeling

Was any preprocessing/cleaning/labeling of the data done? The objects used in the PInNED
dataset are manually resized when rendered with the Habitat simulator adjusting their dimension
compared with the surrounding environment to be similar to their real-world counterpart. Each
3D object is associated with a corresponding object category label to allow the usage of different
instances of the same object category when tackling the PIN task. The episodes of PInNED dataset
are, instead, validated using the Habitat simulator to remove any episode containing objects that are
not reachable from the starting position of the agent.

I.e Uses

Has the dataset been used for any tasks already? The PInNED dataset can be used to train and
evaluate agents for the Personalized Instance-based Navigation (PIN) task. See Sec. 3 and Sec. 5 for
more details on the task definition and the experimental evaluation.

What (other) tasks could the dataset be used for? The dataset could be used for other tasks
involving recognition or manipulation on specific instances using visual or textual references as input.

Is there anything about the composition of the dataset or the way it was collected and pre-
processed/cleaned/labeled that might impact future uses? Users need to follow and respect the
licenses associated with the additional 3D objects and the episodes contained in this dataset.

I.f Distribution

How will the dataset will be distributed? The dataset is made public through the release of a
public GitHub repository. The repository containing dataset and codebase is released at this url:
https://github.com/aimagelab/pin.

When will the dataset be distributed? The dataset has been publicly released on October 2024.

Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)? The dataset and the object annotations are released
under the CC BY license. The codebase is released under the MIT license. The additional objects
contained in the episodes of PInNED dataset are subject to the licenses that they are released under.
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Have any third parties imposed IP-based or other restrictions on the data associated with
the instances? Any restrictions are related to additional objects and to the licenses which they are
released under. Users need to assess license questions based on their use.

I.g Maintenance

Who will be supporting/hosting/maintaining the dataset? The dataset will be maintained by the
authors of the paper who commit to maintaining the dataset long-term.

How can the owner/curator/manager of the dataset be contacted? The authors can be contacted
at {firstname.lastname}@unimore.it.

Will the dataset be updated? A potential future update could involve extending the dataset to include
a test split, upon receiving permission from the HM3D dataset owners to access the environments in
the test split.

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for
them to do so? Users are free to extend the dataset at the condition of following and respecting the
licenses associated with the dataset and associated additional objects by contacting the authors on the
public repository.
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