Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 TRAINING DETAILS

Our implementation is based on the open sourced OBL code with two main modifications. We first
replace the recurrent Q-learning backbone with PPO as it runs faster and requires significantly less
memory. Then, we implement a synchronous method that trains all OBL levels simultaneously.

Otherwise, we use a distributed training set up similar to (Hu et al., 2021b), which we detail in the
appendix. All bots are trained for 3000 epochs, each epoch consists of 1000 gradient steps. We
select the checkpoint with the highest SP score.

The original OBL trains multiple levels of policies sequentially, using the output policy of the pre-
vious level as the input policy of the new level. In ADVERSITY, we train all levels simultaneously
for faster wall-clock time. These policies are denoted as 7g, 71 . . . 7z, and their corresponding belief
models are denoted as By, . . ., B.. To warm up the belief model and avoid having too many invalid
samples, we first train a belief model By on the uniform random base policy 7o and initialize all
B, = By. Then, L policy training tasks and L belief training tasks start at the same time. The belief
tgsk of B gets a latest copy of 7; every 50 gradient steps and the policy task of 7; gets a latest copy of

B;_1 every 50 gradient steps. The details of each individual belief follows the exact configurations
of the original OBL paper and each policy task uses the PPO-OBL method described above.

For each adversary, we train a hierarchy of 7 levels, setting A = 0.25 for [= 1 and decreasing by
0.08 every level (min. 0). Levels [< 4 are trained simultaneously, followed by levels [> 5, also
trained simultaneously and with beliefs initialized at B, = By. This split was forced by limitations
on the concurrent compute available to the authors, but we anticipate no change in performance if
all levels were trained simultaneously. The ADVERSITY numbers reported in Section 7 all refer to
the highest level of the hierarchy.

A.2 PoLICY TRAINING DETAILS

We use a large scale distributed training framework for policy training. To train a single policy, we
run 6400 games in parallel, each adding to a centralized replay buffer. We achieve this by running 80
threads in parallel, with 80 games running per thread. All models are on GPUs and we dynamically
batch all model calls in order to increase inference speed. This schema also allows games on the
same thread to forward environment calls while certain games wait for GPU calls. As done in (Wang
et al., 2016), when an environment terminates, each game grabs all necessary objects: observations,
actions, and targets, pads everything to a length of 80 and adds it to a centralized replay buffer.

For every training step we apply the PPO update rule, but instead of using the real reward and
advantage, we use the fictitious values. Every m = 10 training steps, we update the environment
actors with the weights for the updated policy. As done in Cui et al. (2021) synchronously train our
hierarchy of beliefs and policies, querying for and updating all dependencies every p = 50 training
steps.

We utilize the same policy architecture as Hu et al. (2021b). We utilize their public-private LSTM
architecture. The public observation is encoded by a one-layer feedforwards neural network fol-
lowed by a LSTM. The private observation is encoded by a three-layer neural network. We combine
these encodings via element wise multiplication.

For all OBL experiments we compute the target with » = 1 fictitious steps. We also sample the
belief model s = 10 times and use the first sampled trajectory that doesn’t violate card constraints
to compute the fictitious targets. We then use a simulator to produce transitions from the valid
trajectory. Like Hu et al., we discard the fictitious transition whenever the belief fails to produce a
valid sample, which in practice happens on less than 1% of transitions.

Implementation

The policy is represented by a public-LSTM network 7y with a value head and a policy head. A
large number of parallel workers generate data by sampling from a slightly outdated policy g, and
write that data into a replay buffer D. One datapoint in D is an entire trajectory 77. Although PPO

12

Under review as a conference paper at ICLR 2023

normally does not need a replay buffer, we still use one here to fully decouple inference and training
for maximum speed. Its size is set to a small value of 1024 to minimize the instability caused by
stale data. g is trained with the Adam optimizer (Kingma & Ba, 2014) on minibatches of data
uniformly sampled from the replay buffer. The value loss is E,iop Y, [re + vVo (1) — Vo(77)]2.
The policy loss is E,ip 3., min[r(0) Ay, clip(r¢(0), 1 + €)A;] where 7(0) = %, A =
StopGradient(r; +yvg(7{,,) — Vy(7/)]. We perform one gradient step per minibatch. We use 1-step
bootstrapped value target instead of), r; because it converges significantly faster and it fits well in
the OBL fictitious target computation. gy is synced with 7y every 10 gradient updates.

A.3 BELIEF TRAINING DETAILS

We utilize the same distributed training schema from policy training for belief training. This has
also been done by (Hu et al., 2021b). As done in policy training, we query and update dependencies
every p = 50 training steps.

For belief training we store the true hand of the player along with the observation to train the be-
lief. For training, we train an autoregressive belief model that predicts cards oldest to newest via
supervised learning. More precisely, the belief model is trained to minimize the loss

n

L(h|) == log p(hylr}, hik-1), @)
k=1

where hy, is the kth card in the player’s hand and n is the hand size (usually 5).

A.4 ADDITIONAL RESULTS

DI D2 D3 D4 DS PL P2 P3 P4 PS Cl C2 C3 CA C5 Rl R2 R3 R4 RS DI D2 D3 D4 DS PL P2 P3 P4 PS Cl C2 C3 CA C5 Rl R2 R3 R4 RS

o o
02 02
03 03
04 04
o5 o5
P P
[[
P P2
Pa Pa
P P
a a
e e
= =
c c
s s
R R
R2 R2
R3 R3
Ra Ra
RS RS

(a) Rank bot (b) Color bot

o1 D2 D3 D4 DS [RLR2 ORI R4 RS
o1 D 04 D5 P1 P 3 oo om 3 R RS o
o1
02
02
03
03
o4
o4
05
o5
[
n
[
2
P2
E
Pa
»
Ps
e
a
=1
=
@ ca
. s
a A1
2 R2
R3 3
Ra Ra
&S &5

(c) Clone bot (d) OBL

Figure 3: Conditional action matrices showing p(a;+1|a;) for the 4 repulser policies

13

Under review as a conference paper at ICLR 2023

ADV(rb)_SEEDa ADV(rb)_SEEDb
D1D2D3D4D5 P1 P2 P3 P4 P5 C1C2C3 C4 C5R1R2R3IR4 RS D1D2D3D4D5 P1 P2 P3 P4 P5 C1C2 C3 C4 C5R1R2R3R4 RS

ADV(rb)_SEEDc
D1D2D3D4D5 P1 P2 P3 P4 PS5 C1C2C3C4 C5R1R2R3R4RS

ADV(cb)_SEEDC

ADV(cb)_SEEDa)¢
D1D2D3D4D5 P1 P2 P3 P4 PS5 C1C2C3C4 C5R1R2R3R4RS

D1D2D3D4 D5 P1 P2 P3 P4 P5 C1 C2 C3 C4 C5R1R2R3IR4 RS

ADV(cb)_SEEDb
D1D2D3D4D5 P1 P2 P3 P4 P5 C1C2 C3 C4 C5R1R2R3R4 RS

ADV(clone)_SEEDc

ADV(clone)_SEEDa -
D1D2D3D4D5 P1 P2 P3 P4 P5 C1C2C3C4 C5R1R2R3R4RS5

X ADV(clone)_SEEDb
D1D2D3D4D5P1 P2 P3 P4 P5C1C2C3C4C5R1R2R3R4RS

D1D2D3D4D5 P1 P2 P3 P4 P5 C1C2 C3 C4 C5R1R2R3R4 RS

ADV(obl)_SEEDa
D1D2D3D4D5 P1 P2 P3 P4 P5S C1 C2C3C4 C5R1R2R3 R4 RS

ADV(obl)_SEEDb
D1D2D3D4D5 P1 P2 P3 P4 P5 C1C2 C3C4 C5R1R2R3R4 RS

ADV(obl)_SEEDc
D1D2D3D4D5 P1 P2 P3 P4 P5 C1C2C3 C4 C5R1R2R3R4RS

Figure 4: Action matrices for all SPWR agents.

14

Under review as a conference paper at ICLR 2023

ADV(rb)_SEEDa ADV(rb)_SEEDb
D1D2D3D4D5 P1 P2 P3 P4 P5 C1C2C3 C4 C5R1R2R3IR4 RS D1D2D3D4D5 P1 P2 P3 P4 P5 C1C2 C3 C4 C5R1R2R3R4 RS

ADV(rb)_SEEDc
D1D2D3D4D5 P1 P2 P3 P4 PS5 C1C2C3C4 C5R1R2R3R4RS

ADV(cb)_SEEDC

ADV(cb)_SEEDa)¢
D1D2D3D4D5 P1 P2 P3 P4 PS5 C1C2C3C4 C5R1R2R3R4RS

D1D2D3D4 D5 P1 P2 P3 P4 P5 C1 C2 C3 C4 C5R1R2R3IR4 RS

ADV(cb)_SEEDb
D1D2D3D4D5 P1 P2 P3 P4 P5 C1C2 C3 C4 C5R1R2R3R4 RS

ADV(clone)_SEEDc

ADV(clone)_SEEDa -
D1D2D3D4D5 P1 P2 P3 P4 P5 C1C2C3C4 C5R1R2R3R4RS5

X ADV(clone)_SEEDb
D1D2D3D4D5P1 P2 P3 P4 P5C1C2C3C4C5R1R2R3R4RS

D1D2D3D4D5 P1 P2 P3 P4 P5 C1C2 C3 C4 C5R1R2R3R4 RS

ADV(obl)_SEEDa
D1D2D3D4D5 P1 P2 P3 P4 P5S C1 C2C3C4 C5R1R2R3 R4 RS

ADV(obl)_SEEDb
D1D2D3D4D5 P1 P2 P3 P4 P5 C1C2 C3C4 C5R1R2R3R4 RS

ADV(obl)_SEEDc
D1D2D3D4D5 P1 P2 P3 P4 P5 C1C2C3 C4 C5R1R2R3R4RS

Figure 5: Action matrices for all ADVERSITY agents.

15

Under review as a conference paper at ICLR 2023

Convergence

rank_bot 4.77 | 9.25 112.21 0.01

color_bot

clone_bot

-20

obl
SPWR(rb)_SEEDa
SPWR(rb)_SEEDb
SPWR(rb)_SEEDc
SPWR(cb)_SEEDa
SPWR(cb)_SEEDD

SPWR(cb)_SEEDC 0.00 . 0.00

SPWR(clone)_SEEDa X 0.00 5.23

SPWR(clone)_SEEDb 0 0 0 0 0 0 0 00 0.00

SPWR(clone)_SEEDc 0 0 0 0 0 0.00 O 0.00 5.11
SPWR(obl)_SEEDa -y 0 0 0 X 0.00 0.00 0.00

SPWR(obl)_SEEDb 0 B 0.00 0.00 0.00

SPWR(obl)_SEEDc

& & F & & & &L &L S S S
PO S & & & &£ &£ &£ &£ &£ & K
& & A 7 A o N Y N D &7 7 » N

© & QT T & T S & &
S & @ 2 @ @ @& TS
& S & & & & & & &g F K
£ § S

Figure 6: XP matrix of the four repulser candidates and all the SPWR bots. Red rectangles indicate
pairs of the form (X, SPWR(X)). Numbers below the diagonal were not computed.

rank_bot {2 X 218 156 2.07
color_bot ;
clone_bot 1590 9.76 10.43 10.07

obl
ADV(rb)_SEEDa
ADV(rb)_SEEDb

ADV(rb)_SEEDc 0 .0 0.1 0 .0 L. 4.84 4.44

ADV(cb)_SEEDa 0 .0 0.1 0 .0 0.1 8.67 12.58
ADV(cb)_SEEDb X .0 X 0 X 0.1 0.00 pERLY 2.97 10.31
ADV(cb)_SEEDc X X X X 0.00 00 7.34

ADV(clone)_SEEDa 0.00 0. 0. 0.00
ADV(clone)_SEEDDb -J#} 0.00 0 X (X
ADV(clone)_SEEDc X 0.00 X .00 0. 0.00 0.00
ADV(obl)_SEEDa -li¢ 0.00 i 0.00 | 0.00
ADV(obl)_SEEDb 0.00 0 0 0.00 | 0.00

ADV(obl)_SEEDC

Figure 7: XP matrix of the four repulser candidates and all the ADVERSITY bots. Red rectangles
indicate pairs of the form (X, Adv(X)). Numbers below the diagonal were not computed.

16

