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APPENDIX

A PROOF OF LEMMA 1

We restate the lemma below.

Lemma. If f : Rd → R is µ-PL*, L-smooth and f(x) ≥ 0 for all x ∈ Rd, then gradient descent
with learning rate η < 2

L converges linearly to x∗ satisfying f(x∗) = 0.

Proof. The proof follows exactly from Theorem 1 of Karimi et al. (2016). Since f is L-smooth, by
Lemma 2a it holds that:

f(w(t+1))− f(w(t)) ≤ 〈∇f(w(t)), w(t+1) − w(t)〉+ L

2
‖w(t+1) − w(t)‖2.

=⇒ f(w(t+1) − f(w(t)) ≤ −η‖∇f(w(t))‖2+L
2
η2‖∇f(w(t))‖2

=⇒ f(w(t+1) − f(w(t)) ≤
(
−η + η2L

2

)
2µf(w(t))

=⇒ f(w(t+1) ≤
(
1− 2µη + µη2L

)
f(w(t))

Hence, if η < 2
L , then C =

(
1− 2µη + µη2L

)
< 1. Thus, we have f(w(t+1)) ≤ Cf(w(t)) for

C < 1. Thus, as f is bounded below by 0 and the sequence {f(w(t))}t∈N monotonically decreases
with infimum 0, the monotone convergence theorem implies lim

t→∞
f(w(t)) = 0.

B PROOF OF LEMMA 3

Proof. From Lemma 2 and from the PL condition, we have:

2µ(f(x)− f(x∗)) ≤ ‖∇f(x)‖2≤ 2L(f(x)− f(x∗)) =⇒ µ ≤ L

C PROOF OF THEOREM 1

Proof. Since f is L-smooth, by Lemma 2a it holds that:

f(w(t+1))− f(w(t)) ≤ 〈∇f(w(t)), w(t+1) − w(t)〉+ L

2
‖w(t+1) − w(t)‖2. (5)

Now by the condition on φ(t) in Theorem 1, we bound the first term on the right as follows:

〈φ(t)(w(t+1))− φ(t)(w(t)), w(t+1) − w(t)〉 ≥ α(t)
l ‖w

(t+1) − w(t)‖2

=⇒ 〈−η∇f(w(t)), w(t+1) − w(t)〉 ≥ α(t)
l ‖w

(t+1) − w(t)‖2 using Equation (2)

=⇒ 〈∇f(w(t)), w(t+1) − w(t)〉 ≤ −
α
(t)
l

η
‖w(t+1) − w(t)‖2.

Substituting this bound back into the inequality in (5), we obtain

f(w(t+1))− f(w(t)) ≤

(
−
α
(t)
l

η
+
L

2

)
‖w(t+1) − w(t)‖2.
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Since the learning rate is selected so that the coefficient of ‖w(t+1)−w(t)‖2 on the right is negative,
we obtain

f(w(t+1))− f(w(t)) ≤

(
−
α
(t)
l

η
+
L

2

)
‖w(t+1) − w(t)‖2

≤

(
−
α
(t)
l

η
+
L

2

)
1

α
(t)
u

2 ‖φ
(t)(w(t+1))− φ(t)(w(t))‖2

=

(
−
α
(t)
l

η
+
L

2

)
1

α
(t)
u

2 ‖−η∇f(w
(t))‖2 using Equation (1)

≤

(
−
α
(t)
l

η
+
L

2

)
2µ

η2

α
(t)
u

2 (f(w
(t))− f(w∗)) as f is µ-PL

=⇒ f(w(t+1))− f(w∗) ≤

(
1− 2µ

ηα
(t)
l

α
(t)
u

2 + µ
Lη2

α
(t)
u

2

)
(f(w(t))− f(w∗)),

where the second inequality follows since φ(t) is α(t)
u -Lipschitz. For linear convergence, we need.

0 < 1− 2µ
ηα

(t)
l

α
(t)
u

2 + µ
Lη2

α
(t)
u

2 < 1. (6)

From Lemma 3, µ < α(t)
u

2
L

α
(t)
l

always holds and implies that the left inequality in (6) is satisfied for all

η(t). The right inequality holds by our assumption that η(t) < 2α
(t)
l

L , which completes the proof.

D PROOF OF THEOREM 2
We repeat the theorem below for convenience.

Theorem. Suppose f : Rd → R is L-smooth and µ-PL and φ : Rd → Rd is an infinitely differen-
tiable, analytic function with analytic inverse, φ−1. If there exist αl, αu > 0 such that:

(a) αlI 4 Jφ 4 αuI,

(b) |∂i1,...ikφ
−1
j (x)|≤ k!

2αud
∀x ∈ Rd, i1, . . . ik ∈ [d], j ∈ [d], k ≥ 2,

then generalized mirror descent converges linearly for η(t) < min
(

4α2
l

5Lαu
, 1
2
√
d‖∇f(w(t))‖

)
.

Proof. Since f is L-smooth, it holds by Lemma that 2:

f(w(t+1))− f(w(t)) ≤ 〈∇f(w(t)), w(t+1) − w(t)〉+ L

2
‖w(t+1) − w(t)‖2.

Next, we want to bound the two quantities on the right hand side by a multiple of ‖∇f(w(t))‖2. We
do so by expanding w(t+1) − w(t) using the Taylor series for φ−1 as follows:

w(t+1) − w(t) = φ−1(φ(w(t))− η∇f(w(t)))− w(t)

= −ηJφ−1(φ(w(t)))∇f(w(t))

+

∞∑
k=2

1

k!

[∑d
i1,i2...ik=1(−η)k∂i1,...ikφ

−1
j (φ(w(t)))(∇f(w(t))i1 . . .∇f(w(t))ik)

]
.

The quantity in brackets is a column vector where we only wrote out the jth coordinate for j ∈ [d].
Now we bound the term 〈∇f(w(t)), w(t+1) − w(t)〉:

〈∇f(w(t)), w(t+1) − w(t)〉 = −η∇f(w(t))TJ−1φ (w(t))∇f(w(t))

+∇f(w(t))T
∞∑
k=2

1

k!

[
d∑

i1,i2...ik=1

(−η)k∂i1,...ikφ
−1
j (φ(w(t)))(∇f(w(t))i1 . . .∇f(w(t))ik)

]
.
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We have separated the first order term from the other orders because we will bound them separately
using conditions (a) and (b) respectively. Namely, we first have:

−η∇f(w(t))TJ−1φ (w(t))∇f(w(t)) ≤ − η

αu
‖∇f(w(t))‖2.

Next, we use the Cauchy-Schwarz inequality on inner products to bound the inner product of
∇f(w(t)) and the higher order terms. In the following, we use α to denote 1

2αud
.

∇f(w(t))T
∞∑
k=2

1

k!

[∑d
i1,i2...ik=1(−η)k∂i1,...ikφ

−1
j (φ(w(t)))(∇f(w(t))i1 . . .∇f(w(t))ik)

]
≤‖∇f(w(t))‖

∞∑
k=2

1

k!

∥∥∥[∑d
i1,i2...ik=1(−η)k∂i1,...ikφ

−1
j (φ(w(t)))(∇f(w(t))i1 . . .∇f(w(t))ik)

]∥∥∥
≤‖∇f(w(t))‖

∞∑
k=2

αk!

k!
(η)k

∥∥∥[∑d
i1,i2...ik=1(|∇f(w(t))i1 |. . . |∇f(w(t))ik |)

]∥∥∥
=‖∇f(w(t))‖α

∞∑
k=2

√
d(η)k(|∇f(w(t))1|+ . . . |∇f(w(t)))d|)k

=‖∇f(w(t))‖α
∞∑
k=2

(η)k
√
d|〈


|∇f(w(t))1|

...
|∇f(w(t))d|

 ,1〉|k
≤‖∇f(w(t))‖α

∞∑
k=2

(η)k
√
d‖∇f(w(t))‖k(

√
d)k

=α

∞∑
k=2

(
√
d)k+1(η)k‖∇f(w(t))‖k+1

=α(
√
d)3(η)2‖∇f(w(t))‖3

∞∑
k=0

(
√
d)k(η)k‖∇f(w(t))‖k= α(

√
d)3(η)2‖∇f(w(t))‖3

1−
√
dη‖∇f(w(t))‖

.

Hence we can select η < 1
2
√
d‖∇f(w(t))‖ such that:

α(
√
d)3(η)2‖∇f(w(t))‖3

1−
√
dη‖∇f(w(t))‖

≤ α(
√
d)3(η)2‖∇f(w(t))‖3√
dη‖∇f(w(t))‖

= dαη‖∇f(w(t))‖2.

Thus, we have established the following bound:

〈∇f(w(t)), w(t+1) − w(t)〉 ≤
(
− η

αu
+ dαη

)
‖∇f(w(t))‖2=

(
− η

2αu

)
‖∇f(w(t))‖2.

Proceeding analogously as above, we establish a bound on ‖w(t+1) − w(t)‖2:

‖w(t+1) − w(t)‖2≤
(
η2

α2
l

+ α2d2η2
)
‖∇f(w(t))‖2=

(
η2

α2
l

+
η2

4α2
u

)
‖∇f(w(t))‖2.

Putting the bounds together we obtain:

f(w(t+1))− f(w(t)) ≤
(
− η

2αu
+
Lη2

2α2
l

+
Lη2

8α2
u

)
‖∇f(w(t))‖2.

We select our learning rate to make the coefficient of ‖∇f(w(t)‖2 negative, and thus by the PL-
inequality (4), we have:

f(w(t+1))− f(w(t)) ≤
(
− η

2αu
+
Lη2

2α2
l

+
Lη2

8α2
u

)
2µ(f(w(t))− f(w∗))

=⇒ f(w(t+1))− f(w∗) ≤
(
1− µη

αu
+
µLη2

α2
l

+
µLη2

4α2
u

)
(f(w(t))− f(w∗)).
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Hence, w(t) converges linearly when:

0 < 1− µη

αu
+
µLη2

α2
l

+
µLη2

4α2
u

< 1.

To show that the left hand side is true, we analyze when the discriminant is negative. Namely, we
have that the left side holds if:

µ2

α2
u

− 4µL

α2
l

− µL

α2
u

< 0

=⇒ µ

α2
u

<
4L

α2
l

+
L

α2
u

=⇒ µ <
4Lα2

u

α2
l

+ L.

Since µ < L by Lemma 3, this is always true. The right hand side holds when η < 4α2
l

5Lαu
, which

holds by the assumption of the theorem, thereby completing the proof.

Note that if f is non-negative and µ-PL*, then we have:

η(t) ≤ 1

2
√
2Ld

√
f(w(0))

≤ 1

2
√
2Ld

√
f(w(t))

≤ 1

2
√
d‖∇f(w(t))‖

Hence, we can use a fixed learning rate of η = min

(
4α2

l

5Lαu
, 1

2
√
2Ld
√
f(w(0))

)
in this setting.

E CONDITIONS FOR MONOTONICALLY DECREASING GRADIENTS

As discussed in the remarks after Theorem 2, we can provide a fixed learning rate for linear conver-
gence provided that the gradients are monotonically decreasing. As we show below, this requires
special conditions on the PL constant, µ, and the smoothness constant, L, for f .

Proposition 1. Suppose f : Rd → R is L-smooth and µ-PL and φ : Rd → Rd is an infinitely
differentiable, analytic function with analytic inverse, φ−1. If there exist αl, αu > 0 such that:

(a) αlI 4 Jφ 4 αuI,

(b) |∂i1,...ikφ
−1
j (x)|≤ k!

2αud
∀x ∈ Rd, i1, . . . ik ∈ [d], j ∈ [d], k ≥ 2,

(c)
µ

L
>

4α2
u + α2

l

4α2
u + 2α2

l

,

then generalized mirror descent converges linearly for any η < min
(

4α2
l

5Lαu
, 1
2
√
d‖∇f(w(0))‖

)
.

Proof. Let C = 1 − µη
αu

+ µLη2

α2
l

+ µLη2

4α2
u

. We follow exactly the proof of Theorem 2 except that
at each timestep we need C < µ

L (which is less than 1 by Lemma 3) in order for the gradients to
converge monotonically since:

‖∇f(w(t+1))‖2 ≤ 2L(f(w(t+1))− f(w∗)) See Lemma 2

≤ 2LC(f(w(t))− f(w∗))

≤ LC

µ
‖∇f(w(t))‖2 As f is µ-PL.

Hence in order for ‖∇f(w(t+1))‖2< ‖∇f(w(t))‖2, we need C < µ
L . Thus, we select our learning

rate such that:

0 < 1− µη

αu
+
µLη2

α2
l

+
µLη2

4α2
u

<
µ

L
.
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Now, in order to have a solution to this system, we must ensure that the discriminant of the quadratic
equation in η when considering the right hand side inequality is larger than zero. In particular we
require:

µ2

α2
u

− 4
(
1− µ

L

)(µL
α2
l

+
µL

4α2
u

)
> 0

=⇒ µ

L
>

4α2
u + α2

l

4α2
u + 2α2

l

,

which completes the proof.

F PROOF OF THEOREM 3
We repeat the theorem below for convenience.

Theorem. Suppose f(x) = 1
n

∑n
i=1 fi(x) where fi : Rd → R are non-negative, Li-smooth func-

tions with L = supi∈[n] Li and f is µ-PL*. Let φ : Rd → Rd be an infinitely differentiable, analytic
function with analytic inverse, φ−1. SGMD is used to minimize f according to the updates:

φ(w(t+1)) = φ(w(t))− η(t)∇fit(w(t)),

where it ∈ [n] is chosen uniformly at random and η(t) is an adaptive step size. If there exist
αl, αu > 0 such that:

(a) αlI 4 Jφ 4 αuI,

(b) |∂i1,...ikφ
−1
j (x)|≤ k!µ

2αudL
∀x ∈ Rd, i1, . . . ik ∈ [d], j ∈ [d], k ≥ 2,

then SGMD converges linearly to a global minimum for any η(t) <

min
(

4µα2
l

5L2αu
, 1
2
√
dmaxi‖∇fi(w(t))‖

)
.

Proof. We follow the proof of Theorem 2. Namely, Lemma 4 implies that f is L-smooth and hence

f(w(t+1))− f(w(t)) ≤ 〈∇f(w(t)), w(t+1) − w(t)〉+ L

2
‖w(t+1) − w(t)‖2.

As before, we want to bound the two quantities on the right by ‖∇f(w(t))‖2. Following the bounds
from the proof of Theorem 2, provided η(t) < 1

2
√
d‖∇fi(w(t))‖ , we have

∇f(w(t))T
∞∑
k=2

1

k!

[∑d
i1,i2...ik=1(−η)k∂l1,...lkφ

−1
j (φ(w(t)))(∇fit(w(t))l1 . . .∇fit(w(t))lk)

]
≤ η(t)µ

2αuL
‖∇f(w(t))‖‖∇fit(w(t))‖.

To remove the dependence of η(t) on it, we take η(t) < 1
2
√
dmaxi‖∇fi(w(t))‖ . Since f is µ−PL* and

fi is non-negative for all i ∈ [n], ‖∇fi(w(t)‖≤
√
2Lfi(w(t)). Thus, we can take

η(t) <
1

2
√
2dLn

√
f(w(t))

≤ 1

2
√
dmaxi‖∇fi(w(t))‖

This implies the following bounds:

〈∇f(w(t)), w(t+1) − w(t)〉 ≤ −η(t)∇f(w(t))
T
J−1φ (w(t))∇fit(w(t)) +

(
η(t)µ

2αuL

)
‖∇f(w(t))‖‖∇fit(w(t))‖,

‖w(t+1) − w(t)‖2≤

(
η(t)

2

α2
l

+
η(t)

2

4α2
u

)
‖∇fit(w(t))‖2.
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Putting the bounds together we obtain:

f(w(t+1))− f(w(t)) ≤ −η(t)∇f(w(t))
T
J−1φ (w(t))∇fit(w(t)) +

(
η(t)µ

2αuL

)
‖∇f(w(t))‖‖∇fit(w(t))‖

+

(
η(t)

2

α2
l

+
η(t)

2

4α2
u

)
‖∇fit(w(t))‖2

≤ −η(t)∇f(w(t))
T
J−1φ (w(t))∇fit(w(t)) +

(
η(t)µ

2αuL

)
2L
√
f(w(t))fit(w

(t))

+

(
η(t)

2

α2
l

+
η(t)

2

4α2
u

)
‖∇fit(w(t))‖2

Now taking expectation over it, we obtain

E[f(w(t+1))]− f(w(t)) ≤
(
−η

(t)

αu

)
‖∇f(w(t))‖2+

(
η(t)µ

αu

)√
f(w(t))E

[√
fit(w

(t))

]
+

(
Lη(t)

2

2α2
l

+
Lη(t)

2

8α2
u

)
E[‖∇fit(w(t))‖2]

≤
(
−η

(t)

αu

)
‖∇f(w(t))‖2+

(
η(t)µ

αu

)
f(w(t))

+

(
Lη(t)

2

2α2
l

+
Lη(t)

2

8α2
u

)
E[‖∇fit(w(t))‖2]

≤
(
−2µη(t)

αu

)
f(w(t)) +

(
η(t)µ

αu

)
f(w(t))

+

(
Lη(t)

2

2α2
l

+
Lη(t)

2

8α2
u

)
E[2L(fit(w(t))− fit(w∗))]

≤

(
−µη

(t)

αu
+
L2η(t)

2

α2
l

+
L2η(t)

2

4α2
u

)
(f(w(t))).

where the second inequality follows from Jensen’s inequality and the third inequality follows from
Lemma 2. Hence, we have:

E[f(w(t+1))] ≤

(
1− µη(t)

αu
+
L2η(t)

2

α2
l

+
L2η(t)

2

4α2
u

)
(f(w(t))).

Now let C =
(
−µη

(t)

αu
+ L2η(t)

2

α2
l

+ L2η(t)
2

4α2
u

)
. Then taking expectation with respect to it, it−1, . . . i1,

yields

Eit,...,i1 [f(w(t+1))] ≤ (1 + C)(Eit,...,i1 [f(w(t))]

= (1 + C)(Eit−1,...,i1 [Eit|it−1,...i1 [f(w
(t))]])

= (1 + C)(Eit−1,...,i1f(w
(t))]).

Hence, we can proceed inductively to conclude that

Eit,...,i1 [f(w(t+1))] ≤ (1 + C)t+1(f(w(0)))).

Thus if 0 < 1+C < 1, we establish linear convergence. The left hand side is satisfied since µ < L,
and the right hand side is satisfied for η(t) < 4µα2

l

5L2αu
, which holds by the theorem’s assumption,

thereby completing the proof.

G PROOF OF THEOREM 4
We restate the theorem below.
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Theorem. Suppose φ : Rd → Rd is an invertible, αu-Lipschitz function and that f : Rd →
R is non-negative, L-smooth, and µ-PL* on B̃ = {x ; φ(x) ∈ B(φ(w(0)), R)} with R =
2
√
2L
√
f(w(0))α2

u

αlµ
. If for all x, y ∈ Rd there exists αl > 0 such that

〈φ(x)− φ(y), x− y〉 ≥ αl‖x− y‖2,

then,

(1) There exists a global minimum w(∞) ∈ B̃.

(2) GMD converges linearly to w(∞) for η =
αl
L

.

(3) If w∗ = argmin
w∈B̃ ; f(w)=0

‖φ(w)− φ(w(0))‖ then, ‖φ(w∗)− φ(w(∞))‖≤ 2R.

Proof. The proof follows from the proofs of Lemma 1, Theorem 1, and Theorem 4.2 from Liu et al.
(2020). Namely, we will proceed by strong induction. Let κ = Lαu

2

µαl
2 . At timestep 0, we trivially

have that w(0) ∈ B̃ and f(w(0)) ≤ f(w(0)). At timestep t, we assume that w(0), w(1), . . . w(t) ∈ B̃
and that f(w(i)) ≤ (1 − κ−1)f(w(i−1)) for i ∈ [t]. Then at timestep t + 1, from the proofs of
Lemma 1 and Theorem 1, we have:

f(w(t+1)) ≤ (1− κ−1)f(w(t))

Next, we need to show that w(t+1) ∈ B̃. We have that:

‖φ(w(t+1))− φ(w(0))‖ =

∥∥∥∥∥
t∑
i=0

−η∇f(w(i))

∥∥∥∥∥
≤ η

t∑
i=0

‖∇f(w(i))‖ By the Triangle Inequality

≤ η

√
2
Lα2

u

α2
l

t∑
i=0

√
f(w(t))− f(w(t+1)) (7)

≤ η

√
2
Lα2

u

α2
l

t∑
i=0

√
f(w(t))

≤ η
√
2L
αu
αl

t∑
i=0

√
(1− κ−1)i

√
f(w(0))

= η
√

2Lf(w(0))
αu
αl

t∑
i=0

(1− κ−1) i
2

≤ η
√

2Lf(w(0))
αu
αl

1

1−
√
1− κ−1

≤ η
√

2Lf(w(0))
αu
αl

2

κ−1

=
αl
L

√
2Lf(w(0))

αu
αl

2
αuL

αlµ

=
2
√
2L
√
f(w(0))α2

u

αlµ
= R
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The identity in (7) follows from the proof of f(w(t+1)) ≤ (1− κ−1)f(w(t)). Namely,

f(w(t+1))− f(w(t)) ≤ − L

2α2
u

‖−η∇f(w(t))‖2

=⇒ ‖∇f(w(t))‖≤
√

2α2
u

L

√
f(w(t))− f(w(t+1))

=⇒ ‖∇f(w(t))‖≤ η

√
2Lα2

u

α2
l

√
f(w(t))− f(w(t+1))

Hence we conclude that w(t+1) ∈ B̃ and so induction is complete.

In the case that φ(t) is time-dependent, we establish a similar convergence result by assuming that∥∥∥∥ ∞∑
i=1

φ(i)(w(i))− φ(i−1)(w(i))

∥∥∥∥ = δ <∞. Additionally if α(t)
u has a uniform upper bound and α(t)

l

has a uniform lower bound, then:

‖φ(t)(w(t+1))− φ(0)(w(0))‖ = ‖φ(t)(w(t+1))− φ(t)(w(t)) + φ(t)(w(t))− φ(t−1)(w(t))

+ φ(t−1)(w(t))− φ(t−1)(w(t−1)) + . . . φ(0)(w(1))− φ(0)(w(0))‖

≤

∥∥∥∥∥
t∑
i=0

φ(i)(w(i+1))− φ(i)(w(i))

∥∥∥∥∥+
∥∥∥∥∥

t∑
i=1

φ(i)(w(i))− φ(i−1)(w(i))

∥∥∥∥∥
≤ R+ δ

Hence we would conclude that φ(t)(w(t+1)) ∈ B(φ(0)(w(0)), R+ δ).

H PROOF OF COROLLARY 1 AND COROLLARY 2

We repeat Corollary 1 below.

Corollary. Let f : Rd → R be an L-smooth function that is µ-PL. Let α(t)
l

2
= mini∈[d] G

(t)
i,i and

α
(t)
u

2
= maxi∈[d] G

(t)
i,i . If lim

t→∞
α

(t)
l

α
(t)
u

6= 0, then Adagrad converges linearly for adaptive step size

η(t) =
α

(t)
l

L .

Proof. By definition of G(t), we have that:

(1) α
(t)
l

2
= min
i∈[d]
G(t)i,i

(2) α(t)
u

2
= max

i∈[d]
G(t)i,i

From the proof of Theorem 1, using learning rate η(t) = α
(t)
l

L at timestep t gives:

f(w(t+1))− f(w∗) ≤

1−
µα

(t)
l

2

Lα
(t)
u

2

 (f(w(t))− f(w∗))

Let κ(t) =
µα

(t)
l

2

Lα
(t)
u

2 . Although we have that (1 − κ(t)) < 1 for all t, we need to ensure that
∞∏
i=0

(1 − κ(i)) = 0 (otherwise we would not get convergence to a global minimum). Using the

assumption that lim
t→∞

α
(t)
l

α
(t)
u

6= 0, let lim
t→∞

(1 − κ(t)) = 1 − c < 1. Then using the definition of

the limit, for 0 < ε < c, there exists N such that for t > N ,
∣∣κ(t) − c∣∣ < ε. Hence, letting

18
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c∗ = min

(
c− ε, min

t∈{0,1,...N}
κ(t)
)

, implies that (1 − κ(t)) < 1 − c∗ for all timesteps t. Thus, we

have that:
∞∏
i=0

(1− κ(i)) <
∞∏
i=0

(1− c∗) = 0

Thus, Adagrad converges linearly to a global minimum.

We present Corollary 2 below.

Corollary 2. Let f : Rd → R be an L-smooth function that is µ-PL. Let α(t)
l

2
= mini∈[d] G

(t)
i,i .

Then Adagrad converges linearly for adaptive step size η(t) =
α

(t)
l

L or fixed step size η =
α

(0)
l

L if
α

(0)
l

2

2L(f(w(0))−f(w∗))
> L

µ .

Proof. By definition of G(t), we have that:

(1) α
(t)
l

2
= min
i∈[d]
G(t)i,i

(2) α(t)
u

2
= max

i∈[d]
G(t)i,i

In particular, we can choose αl = α
(0)
l uniformly. We need to now ensure that α(t)

u does not diverge.

We prove this by using strong induction to show that α(t)
u

2
≤ S uniformly for some S > 0. The

base case holds by Lemma 2 since we have:

α(0)
u

2
≤ ‖∇f(w(0))‖2= S

Now assume that α(i)
u

2
< S for i ∈ {0, 1, . . . t− 1}. Then we have:

α(t)
u

2
≤

t∑
i=0

‖∇f(w(i))‖2

≤
t∑
i=0

2L(f(w(i))− f(w∗)) by Lemma 2

≤ 2L(f(w(0))− f(w∗))
t−1∑
i=0

i∏
j=0

1−
µα

(j)
l

2

Lα
(j)
u

2


≤ 2L(f(w(0))− f(w∗))

t−1∑
i=0

i∏
j=0

1−
µα

(0)
l

2

LS


≤ 2L(f(w(0))− f(w∗)) 1

1− 1 +
µα

(0)
l

2

LS

= 2L(f(w(0))− f(w∗)) LS

µα
(0)
l

2 < S by assumption

Hence, by induction, α(t)
u is bounded uniformly for all timesteps t.
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I PROOF OF COROLLARY 3
We present the corollary below.

Corollary 3. Suppose ψ is an αl-strongly convex function and that ∇ψ is αu-Lipschitz. Let
Dψ(x, y) = ψ(x) − ψ(y) − ∇ψ(y)T (x − y) denote the Bregman divergence for x, y ∈ Rd. If
f : Rd → R is non-negative, L-smooth, and µ-PL* on B̃ = {x ; ∇ψ(x) ∈ B(∇ψ(w(0)), R)} with

R =
2
√
2L
√
f(w(0))α2

u

αlµ
, then:

(1) There exists a global minimum w(∞) ∈ B̃ such that Dψ(w
(∞), w(0)) ≤ R2

2αl
.

(2) Mirror descent with potential ψ converges linearly to w(∞) for η =
αl
L
.

(3) If w∗ = argmin
{w ; f(w)=0}

Dψ(w,w
(0)), then D(w∗, w(∞)) ≤ αuR

2

α3
l

+
R2

αl
.

Proof. The proof of existence and linear convergence follow immediately from Theorem 4. All that
remains is to show that Dψ(w

(∞), w(0)) ≤ R2

2µ . As ψ is αl-strongly convex, we have:

ψ(w(∞)) ≤ ψ(w(0)) + 〈∇ψ(w(0)), w(∞) − w(0)〉+ 1

2αl
‖∇ψ(w(∞))−∇ψ(w(0))‖2 By Lemma 5

=⇒ Dψ(w
(∞), w(0)) ≤ 1

2αl
‖∇ψ(w(∞))−∇ψ(w(0))‖2≤ R2

2αl

Now let w∗ = argmin{w ; f(w)=0}Dψ(w,w
(0)). Hence Dψ(w

∗, w(0)) < R2

2αl
by definition. Then

we have:

Dψ(w
∗, w(∞)) ≤ 1

2αl
‖∇ψ(w∗)−∇ψ(w(∞))‖2

≤ 1

2αl
(2‖∇ψ(w∗)−∇ψ(w(0))‖2+2‖∇ψ(w(0))−∇ψ(w(∞))‖2)

≤ αu
αl
‖w∗ − w(0)‖2+R

2

αl

≤ αu
αl

2

αl
Dψ(w

∗, w(0)) +
R2

αl
By Definition 3

≤ αuR
2

α3
l

+
R2

αl

J EXPERIMENTS ON OVER-PARAMETERIZED NEURAL NETWORKS

Below, we present experiments in which we apply the learning rate given by Corollary 1 to over-
parameterized neural networks. Since the main difficulty is estimating the parameter L in neural
networks, we instead provide a crude approximation for L by setting L(t) = .99‖∇f(w

(t))‖2
2f(w(t))

. The
intuition for this approximation comes from Lemma 2. While there are no guarantees that this
approximation yields linear convergence according to our theory, Figure 2 suggests empirically that
this approximation provides convergence. Moreover, this approximation allows us to compute our
adaptive learning rate in practice.

Code for all experiments is available at:

https://anonymous.4open.science/r/cef30260-473d-4116-bda1-1debdcc4e00a/
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(a) (b)

Convergence of Adagrad in Over-parameterized Neural Networks

1 Hidden Layer, Leaky ReLU Activation 1 Hidden Layer, x + sin(x) Activation

Figure 2: Using the adaptive rate provided by Corollary 1 with L approximated by L(t) =

.99‖∇f(w
(t)‖2

2f(w(t))
leads to convergence for Adagrad in the noisy linear regression setting (60 exam-

ples in 50 dimensions with uniform noise applied to the labels). (a) 1 hidden layer network with
Leaky ReLU activation Xu et al. (2015) and 100 hidden units. (b) 1 hidden layer network with
x+ sin(x) activation with 100 hidden units. All networks were trained using a single Titan Xp, but
can be trained on a laptop as well.
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