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Abstract

We study the problem of active pure exploration with fixed confidence in generic
stochastic bandit environments. The goal of the learner is to answer a query about
the environment with a given level of certainty while minimizing her sampling
budget. For this problem, instance-specific lower bounds on the expected sample
complexity reveal the optimal proportions of arm draws an Oracle algorithm would
apply. These proportions solve an optimization problem whose tractability strongly
depends on the structural properties of the environment, but may be instrumental in
the design of efficient learning algorithms. We devise Frank-Wolfe-based Sampling
(FWS), a simple algorithm whose sample complexity matches the lower bounds
for a wide class of pure exploration problems. The algorithm is computationally
efficient as, to learn and track the optimal proportion of arm draws, it relies on a
single iteration of Frank-Wolfe algorithm applied to the lower-bound optimization
problem. We apply FWS to various pure exploration tasks, including best arm
identification in unstructured, thresholded, linear, and Lipschitz bandits. Despite
its simplicity, FWS is competitive compared to state-of-art algorithms.
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1 Introduction

Pure exploration in stochastic bandits [33] refers to the task of answering a given question about the
reward distributions of the different arms, using as few arm pulls (or samples) as possible. The task
may correspond to identifying the best arm [20], the top-m arms [49], all ε-good arms [36], a set of
arms whose expected rewards exceed a given threshold [35], etc. To reduce the sample complexity of
such a task, the learner needs to leverage as much as possible the information available about reward
distributions, which typically comes as known structural properties of the set of their expected rewards.
Exploiting particular structures (e.g., unimodal, Lipschitz, convex, linear) has been thoroughly studied
in the regret minimization setting (see [10], and references therein), but less in the pure exploration
framework, where most efforts have focused on linear structures [46, 27, 51, 47, 17, 25, 13].

In this paper, we investigate a generic learning problem proposed in [12] and covering the afore-
mentioned pure exploration tasks with or without structure. Consider K arms whose reward distri-
butions (ν1, . . . , νK) come from a one-dimensional exponential family and are of unknown means
µ = (µ1, . . . , µK). The parameter µ is known to belong to Λ ⊂ RK , the set of possible instances.
For each µ ∈ Λ, we assume that there is a unique true answer i?(µ) that belongs to the finite set I of
possible answers1 (e.g., for the best arm identification task, i?(µ) = arg maxk µk). We consider pure
exploration tasks in the fixed confidence setting where the learner wishes, for any possible µ ∈ Λ, to
discover i?(µ) with a certain level of confidence 1− δ, for some δ ∈ (0, 1). The learner’s strategy
is defined by (i) an adaptive sampling rule dictating the sequence of arm pulls, (ii) a stopping rule
defining τ , the round where, based on the data gathered so far, the learner decides to stop pulling
arms, and (iii) a decision rule specifying her answer. The goal is to devise a δ-PAC (it outputs the
right answer with probability at least 1− δ for any µ ∈ Λ) strategy minimizing the expected sample
complexity Eµ[τ ].

Using the same arguments as those used in [20] for classical MAB problems, we may derive a
lower bound of the expected sample complexity satisfied by any δ-PAC strategy. This lower bound,
whose proof can be found in Appendix B for completeness, is given by T ?(µ)kl(δ, 1− δ), where the
characteristic time T ?(µ) is defined through the following optimization problem:

T ?(µ)−1 = sup
ω∈Σ

inf
λ∈Alt(µ)

K∑
k=1

ωkd(µk, λk), (1)

where Σ is the (K − 1)-dimensional simplex, Alt(µ) is the set of confusing parameters λ ∈ Λ such
that i?(µ) 6= i?(λ), kl(a, b) is the KL divergence between two Bernoulli distributions of means a and
b, and d(µk, λk) denotes the KL divergence of arm-k reward distributions under parameters µ and λ
. A solution ω?(µ) of (1) can be interpreted as an optimal allocation, in the sense that pulling each
arm i a proportion of round equal to ω?i (µ) (in expectation) constitutes an optimal sampling rule.

Most existing algorithms achieving an asymptotically (when δ goes to 0) minimal sample complexity
leverage a Track-and-Stop (TaS) framework [20]. In each round t, they plug µ̂(t) the estimated
expected arm rewards in the lower bound optimization problem (1), and track the allocation w?(µ̂(t)).
As already noticed in [38], the main drawback of the Track-and-Stop framework is that it requires
a recurrent access to an Oracle able to solve (1) (actually existing analyses usually assume that the
Oracle outputs the exact solution for any µ). (1) is a concave program but can become difficult to
solve depending the underlying structure Λ. Indeed, for complex structures, identifying the most
confusing parameters leading to the objective function infλ∈Alt(µ)

∑K
k=1 ωkd(µk, λk) can be hard.

Contributions. 1) Instead of solving (1) in each round as in the TaS framework, we propose an
online iterative method to approach the optimal allocation of arm pulls. Specifically, we devise
Frank-Wolfe-based Sampling (FWS), a computationally efficient algorithm that just relies, in each
round, on a single iteration Frank-Wolfe (FW) algorithm applied to (1) instantiated at µ̂(t).
2) For a wide class of pure exploration problems with or without structure, we derive an upper bound
of the expected sample complexity of FWS for any certainty level δ, and show that this bound matches
the lower bound T ?(µ)kl(δ, 1− δ) asymptotically as δ goes to 0.
3) We illustrate the performance of FWS on various pure exploration problems, including best arm
identification in unstructured, linear, and Lipschitz bandits. In all tested scenarios, and despite its
simplicity, FWS matches the performance of the best existing algorithms.

1Scenarios with several correct answers require a more involved analysis, see [11].
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The use of the FW algorithm has been suggested in [20] in the case of best arm identification problem
in unstructured bandits. In this case, FW iterations take a very simple and intuitive form (see Example
1 introduced in §3). The corresponding sampling rule is referred to as Best Challenger in [20], and
leads to algorithms with remarkably low sample complexity empirically – sometimes lower than that
of TaS algorithms solving (1) in each round. So far however, as discussed in [38], the analysis of
FW-type sampling rules, and even their convergence, have eluded researchers. Towards the design of
FWS algorithm, we devise a simple variant of the FW algorithm that yields a sampling rule whose
sample complexity can be analyzed. We confirm the asymptotic optimality of as well as its empirical
superiority, not only for the case of best arm identification in unstructured bandits as predicted by
[20], but also for a wide class of pure exploration problems. We believe that our analysis also brings
interesting solutions to the three important obstacles we needed to tackle to devise and analyze a
FW-type sampling rule: (i) the objective function in (1) is not smooth; (ii) its curvature becomes
infinite in general close to the boundary of Σ; and (iii) the estimate µ̂(t) is evolving and might be far
from µ.

2 Related Work

Best Arm Identification (BAI) has recently received a lot of attention, either in unstructured bandit
problems, see [20, 44], or in problems with various kinds of structure, e.g., linear [46, 27, 51, 47,
17, 25, 13, 42], combinatorial [32, 26, 43], spectral [30], monotone [21], cascading [54]. For BAI in
unstructured bandits with fixed confidence, [20] developed the celebrated Track-and-Stop framework
leading to algorithms able to asymptotically converge towards the optimal allocation of arm draws,
and in turn, to achieve the lowest sample complexity possible in the high confidence regime (as δ
goes to 0). It is possible to apply the TaS framework to specific structures, as this was proposed in
[25] for linear bandits. However, for more involved structures, this might become computationally
too difficult. Indeed TaS requires the learner to repeatedly solve the optimization problem (1).

The authors of [12] propose and exploit an interpretation of the lower bound optimization problem
(1) as the solution of a 2-players game – the ω-player playing the ’sup’ and the λ-player playing the
’inf’. The algorithm presented in [12] combines two zero-regret algorithms applied sequentially by
the two players, and converge to an optimal allocation. Interestingly, the algorithm uses the optimism
in face of uncertainty principle to remove the need of forced exploration (the ω-player is fed with
upper-confidence bounds on her rewards). As shown later, the algorithm does not perform as well as
FWS. The applicability of the framework used in [12] remains unclear to us: in [13] and in [26], the
authors claim that the framework cannot be applied to linear and combinatorial bandits, respectively.

In [38], the author proposes a solution close to ours. His algorithm, LMA (Lazy Miror Ascent), just
runs in each round one iteration of a sub-gradient ascent algorithm applied to (1). Fortunately, the
projection step usually involved in such algorithm is simple. Numerically, as illustrated later in the
paper, we found that LMA may not be as efficient as TaS or FWS. We could try to explain this by
remarking that LMA has similarities with the Exponential Weights algorithm (see Appendix F in
[38]), an algorithm designed for adversarial online optimization problem, and may be too conservative
in a stochastic setting.

As already mentioned in the introduction, FW-based algorithms for BAI in unstructured bandits
have been mentioned first in [20] for their simplicity and good performance. Applying FW as if
the objective function was smooth may fail at converging [38] experimentally. We believe that we
manage to make, in our algorithm, the minimal modification of the FW-based algorithm so that
convergence and asymptotic optimality are guaranteed. Finally note that [5] uses FW in a regret
minimization problem but with a smooth objective function.

We conclude this section by mentioning existing works on the FW algorithm when applied to
optimizing non-smooth functions. The proposed solutions consist by either smoothing objective
function or enlarging the set of differential (this is the second approach we chose). [18, 22] apply
FW on the randomly smoothed surrogate instead of the original non-smooth objective. However,
computing the gradient at each iteration requires to query many time on the objective function, which
may not be practical. [1, 40] use a proximal operator to replace the objective function, but as pointed
out in [8], the smoothing parameters of the proximal operator are not trivial to tune. Our solution
is close to those developed in [41, 8]. There, inspired by the approximate subdifferential [50], the
authors propose to collect the set of the gradients in the neighborhood at each round. They show that
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these collection is continuous even when the objective functions is non-smooth, which allows for the
use of FW. The way we deal with the non-smoothness issue is similar but simplified by the fact that
the specific form of our objective function.

3 Preliminaries

We consider the pure exploration task described in the introduction. This section presents the
additional assumptions made towards the design and analysis of our algorithm. These assumptions
are here illustrated for the classical Best Arm Identification (BAI) task in unstructured bandits (see
Example 1); they will be verified for all other examples of pure exploration problems presented in
Section 5. This section also provides useful properties of the lower bound optimization problem (1),
and finally describes our choice of stopping and decision rules.

3.1 Assumptions and properties of the lower bound optimization problem

The answer map i? : Λ → I allows us to decompose Λ into a union of non-overlapping sets:
Λ = ∪i∈ISi, where Si = {µ ∈ Λ : i?(µ) = i} for all i ∈ I. The answer map is known (i.e.,
knowing µ is enough to output the right answer), and hence without loss of generality, we can assume
that Si 6= ∅ for all i ∈ I. Using this notation, the set of confusing parameters can be written as
Alt(µ) = ∪i6=i?(µ)Si.
Assumption 1. For each i ∈ I, Si is an open set and the complementary of Si is a finite union of
convex sets. Namely, there exists a finite collection Ji of convex sets Cij s.t. Λ \ Si = ∪j∈JiCij .

Example 1. The BAI task in unstructured bandits with Bernoulli rewards. For this task, we have
Λ = (0, 1)K , I = {1, . . . ,K}, and for all arm i, the set of parameters for which arm i is the best arm
is Si = {µ ∈ Λ : µi > µk,∀k 6= i}. We have: Λ \ Si = ∪j∈JiCij where Ji = I \ {i} is the set of
arms different than i and Cij = {µ ∈ Λ : µj > µi} is the convex set of parameters for which arm j is
better than arm i. �

Now under Assumption 1, we can decompose the lower bound optimization problem as follows:
T ?(µ)−1 = supω∈Σ Fµ(ω) where Fµ(ω) = minj∈Ji?(µ)

fj(ω,µ) and for all j ∈ Ji?(µ),

fj(ω,µ) = inf
λ∈Ci

?(µ)
j

K∑
k=1

ωkd(µk, λk). (2)

Note that (2) is convex program (by convexity of the KL divergence), and that fj is a concave function
in ω (as the minimum of concave functions). As a consequence, the objective function Fµ is also
concave, but not smooth. The following proposition summarizes insightful properties of the functions
fj , j ∈ Ji?(µ). It is a consequence of the envelope theorem and proved in Appendix K.2.

Proposition 1. Let i ∈ I, j ∈ Ji. Define for all (ω,µ) ∈ Σ× Si,

λj(ω,µ) = arg min
λ∈cl(Cij)

K∑
k=1

ωkd(µk, λk), (3)

where cl(Cij) is the closure of Cij . Then under Assumption 1, λj(ω,µ) is unique for all (ω,µ) ∈
Σ̊× Si, where Σ̊ is the interior of Σ. In addition, fj is continuously differentiable on Σ̊× Si, and
∀(ω,µ) ∈ Σ̊× Si,

∇ωfj(ω,µ) =

K∑
k=1

d(µk,λj(ω,µ)k)ek, (4)

where ek denotes the K-dimensional vector whose k-th coordinate is 1 and whose other coordinates
are 0.

A key insight from the above result is that the objective function Fµ is the minimum of a finite
number of continuously differentiable functions. This observation will make the use of a slightly
modifed FW algorithm possible (remember that the FW algorithm is known to converge for smooth
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functions only). We use an additional assumption on the gradient and curvature of fj . A controlled
curvature is an essential ingredient when analyzing the convergence of FW-based algorithms, see
e.g. [24]. Define Σγ = {ω ∈ Σ : mink ωk ≥ γ} for any γ ∈ (0, 1/K). Following [24], we define
Cψ(K), the curvature constant of the concave differentiable function ψ : K → R with respect to the
compact set K, as

Cψ(K) = sup
x,z∈K
α∈(0,1]

y=x+α(z−x)

1

α2
[ψ(x)− ψ(y) + 〈y − x,∇ψ(x)〉] . (5)

Refer to [24], for the intuition behind this defintion and examples.
Assumption 2. For all µ ∈ Λ,
(i) there exists L > 0 such that ∀j ∈ Ji?(µ), ω ∈ Σ, ‖∇ωfj(ω,µ)‖∞ ≤ L;
(ii) there exists D > 0 such that ∀γ ∈ (0, 1/K) and ∀j ∈ Ji?(µ), Cfj(·,µ)(Σγ) ≤ D

γ .

There is a simple way to verify whether a pure exploration problem satisfies Assumption 2, by looking
at the second derivative of the function y 7→ d(x, y) at the points (µk, (λj(ω,µ))k) for all k. Refer
to Appendix C for details.

Example 1 (cont’d). For unstructured bandits with Bernoulli rewards, we can easily compute fj and
its gradient [20, 38]: for all j 6= i?(µ) and all ω ∈ Σ̊, define mj(ω,µ) =

ωi?(µ)µi?(µ)+ωjµj
ωi?(µ)+ωj

. Then

λj(ω,µ)k = µk if k /∈ {i?(µ), j} and λj(ω,µ)k = mj(ω,µ) otherwise. As a consequence:{
fj(ω,µ) = ωi?(µ)d(µi?(µ),mj(ω,µ)) + ωjd(µj ,mj(ω,µ)),
∇ωfj(ω,µ) = d(µi?(µ),mj(ω,µ))ei?(µ) + d(µj ,mj(ω,µ))ej .

(6)

For this example, we can verify that Assumption 2 holds, either directly or using the tool described in
Appendix C. �

3.2 Stopping and decision rules

Next we present the two last components of the FWS algorithm, namely the stopping and decision rules.
These components are standard and borrowed from the existing literature. We need a few notations.
For any t ≥ 1, let At denote the arm selected in round t. Define Nk(t) =

∑t
s=1 1{As = k} the

number of times arm k has been selected up to round t, and by ωk(t) = Nk(t)/t the corresponding
empirical proportion of draw. When Nk(t) > 0, the empirical average reward of arm k up to round t
is denoted by µ̂k(t) =

∑t
s=1Xk(s)1{As = k}/Nk(t), where Xk(s) is the random reward received

from pulling arm k in round s.

Let us denote by τ , the stopping time defining when the algorithm stops exploring and has to output a
decision. Our decision rule is obviously to output the best empirical answer: ı̂τ = i?(µ̂(τ)).

For the stopping rule, as in other existing algorithms, we leverage a Generalized Likelihood Ratio
Test (GLRT). Our test boils down to comparing tFµ̂(t)(ω(t)) to a threshold β(t, δ) (recall that Fµ is
the objective function of the lower bound optimization problem):

τ = inf{t ≥ 1 : tFµ̂(t)(ω(t)) ≥ β(t, δ)}. (7)

Many thresholds β(t, δ) have been proposed in the literature [29, 20, 25, 38]. For FWS and its analysis,
we just need that the threshold statisfies the two following properties:

∀t ≥ 1,
(
tFµ̂(t)(ω(t)) ≥ β(t, δ)

)
=⇒ (Pµ [i?(µ̂(t)) 6= i?(µ)] ≤ δ) , (8)

∃c1(Λ), c2(Λ) > 0 : ∀t ≥ c1(Λ), β(t, δ) ≤ log

(
c2(Λ)t

δ

)
. (9)

The first of the above properties will naturally imply that FWS returns the true answer with probability
at least 1−δ when stopping, whereas the second will be instrumental in the sample complexity analysis
(there, c1(Λ), c2(Λ) may depend on the set of possible instances, and on the reward distributions).
In [29], the authors manage to provide, for any generic pure exploration task, a single threshold
satisfying (8)-(9)). Unless otherwise mentioned, we will use the stopping rule implementing this
threshold.
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4 The FWS Algorithm and its Sample Complexity

In the FWS algorithm, we use the FW algorithm to learn an optimal allocation ω?(µ). In each round,
an iteration of FW updates the allocation that the FWS algorithm aims at approaching using some
tracking procedure. We describe this learning and tracking procedure below.

4.1 Adapting Frank-Wolfe to the non-smooth function Fµ

The FW algorithm [19] solves smooth convex programs by linearizing, in each iteration, the objective
function and moving towards a minimizer of this linear function. Compared to the projected gradient
and proximal methods, FW is computationally more efficient (e.g. it avoids the projection step),
and is particularly well-suited when optimizing over polyhedra [7] (which is our case here). For a
contemporary treatment of FW, refer to [24]. FW was suggested in [20] for BAI in unstructured
bandits to update the allocation to be tracked. For this BAI problem, an iteration of the FW algorithm
takes an intuitive form (see also Appendix A2 in [38]):

Example 1 (cont’d). For BAI in unstructured bandits, the optimal allocation ω?(µ) is the max-
imizer of the function ω 7→ Fµ(ω) = minj fj(ω,µ). Fµ is smooth at points when the mini-
mum is realized at a single arm j? = arg minj fj(ω,µ), and there, in view of (6), its gradient is
∇Fµ(ω) = d(µi?(µ),mj?(ω,µ))ei?(µ) + d(µj? ,mj?(ω,µ))ej? . Now in an iteration of the FW
algorithm, one would follow the direction given by arg maxω′∈Σ ω

′>∇Fµ(ω). This direction is
ej? if d(µj? ,mj?(ω,µ)) > d(µi?(µ),mj?(ω,µ)), and ei?(µ) otherwise. This is precisely what
the FW-type sampling rule suggested in [20] is doing: in round (t + 1), the best challenger is
defined as j? = arg minj fj(ω(t), µ̂(t)), and the arm selected corresponds to the direction given
by arg maxω′∈Σ ω

′>∇Fµ̂(t)(ω(t)), i.e., it is either the best challenger j? or the best empirical arm
i?(µ̂(t)). �

The convergence analysis of FW usually requires that the objective function is smooth, and that its
curvature can be controlled. When applying FW-type algorithms to design an optimal sampling rule
(a rule that converges to the allocation ω?(µ) maximizing Fµ), we face three issues: (i) Fµ is not
smooth; (ii) Fµ has an unbounded curvature close to the boundary of Σ; (iii) µ is unknown initially,
so the FW iteration in round t can be applied to Fµ̂(t) only. We discuss below how we circumvent
these issues in the design of our algorithm.

(i) Non-smoothness of Fµ. In view of Proposition 1, Fµ is the minimum of a finite number of
smooth concave functions fj . Hence at points where two of these functions are equal in ω, Fµ is not
differentiable in ω. The FW algorithm has been adapted to cope with non-smooth functions, see e.g.
[41]. Typically, one constructs continuous approximations of the gradient close to non-smooth points
of the functions. This construction often involves the r-subdifferential [23]2, which would be too
costly to compute for Fµ. Instead, we can leverage the fact Fµ is the minimum of concave functions,
and construct the called r-subdifferential subspace: for r ∈ (0, 1),

HFµ(ω, r) = cov
{
∇fj(ω,µ) : j ∈ Ji?(µ), fj(ω,µ) < Fµ(ω) + r

}
, (10)

where cov{S} denotes the convex hull of the set S. This choice greatly simplifies because it does not
require to compute the gradient of fj in a neighborhood of ω. Since the fj are continuously differen-
tiable, we can prove that ω 7→ HFµ(ω, r) is a continuous (i.e. upper- and lower-hemicontinuous).
Using the r-subdifferential subspace, the modified FW update is given as follows. Let x(t) be the
estimated optimizer of Fµ in round t. In round (t+ 1), it is updated as:{

z(t+ 1) = argmaxz∈Σ minh∈HFµ (x(t),rt)〈z − x(t), h〉 (ties broken arbitrarily) ,
x(t+ 1) = t

t+1x(t) + 1
t+1z(t+ 1).

(11)

Of course in the FWS algorithm, µ is unknown, and will be simply replaced by µ̂(t) in the above
update. The way we choose the sequence of parameters {rt}t≥1 will be discussed later. Computing
z(t) is equivalent to solving a zero-sum game, which can be further formulated as a LP [52] (Chapter
20). Refer to Appendix H for a detailed description of this LP.

(ii) Unbounded curvature of Fµ and (iii) unknown µ. These two issues are solved by a single
trick. We impose that in the FW iterations, the update directions z(t) cover all ek, k = 1, . . . ,K

2For r ∈ (0, 1), the r-subdifferential of ψ : K → R (where K ⊂ RK is compact and convex) is defined as
∂rψ(x) = {h ∈ RK : ψ(y) < ψ(x) + 〈y − x, h〉+ r for all y ∈ K}.
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sufficiently often. This ensures that the target allocation x(t) stays away from the boundary of Σ,
which in turn allows us to control the curvature of Fµ̂(t) thanks to Assumption 2. This imposed
constraint can be seen as a sort of forced exploration, and further implies (thanks to our tracking
procedure) that each arm is played often enough. Now, with this kind of forced exploration, µ̂(t) will
concentrate around the true µ.

4.2 Algorithm

The FWS algorithm proceeds as follows. FWS maintains a target allocation, denoted by x(t), its
empirical allocation ω(t), and the empirical average rewards µ̂(t) after round t. After an initialization
phase (K rounds where each arm is selected), FWS alternates between forced exploration and FW
updates. More precisely:
Forced exploration occurs at rounds t where

√
bt/Kc is an integer and at those where µ̂(t− 1) /∈ Λ

(in this case, we cannot compute the objective function). In forced exploration round t, the target
allocation is updated towards the center of the simplex: x(t) = t−1

t x(t− 1) + 1
t (1/K, . . . , 1/K).

FW updates happen in other rounds. There, the target allocation is updated according to our adapted
version of FW (11), where in round t the unknown µ is replaced by µ̂(t− 1). In the successive FW
updates, we use r-subdifferential subspaces with varying parameter r. For the analysis of FWS, we
will select a sequence of parameters {rt}t≥1 with an appropriate decay rate.

After the target allocation is updated in round t, the algorithm tracks this allocation by selecting the
arm maximizing over k the ratio xk(t)/ωk(t − 1). Finally, FWS, whose pseudo-code is presented
below, uses the stopping and decision rules described in §3.2.

Algorithm 1: FWS algorithm
Input: Confidence level δ, sequence {rt}t≥1

Initialization: Sample each arm once and update ω(K), x(K) = ( 1
K , . . . ,

1
K ), and µ̂(K)

t← K
While (tFµ̂(t)(ω(t)) < β(δ, t) or µ̂(t− 1) /∈ Λ)

t← t+ 1
If (
√
bt/Kc ∈ N or µ̂(t− 1) /∈ Λ) (forced exploration) z(t)← ( 1

K , . . . ,
1
K )

Else (FW update)

z(t)← argmax
z∈Σ

min
h∈HFµ̂(t−1)

(x(t−1),rt)
〈z − x(t− 1), h〉 (ties broken arbitrarily)

Update x(t)← t−1
t x(t− 1) + 1

t z(t)
Sample the arm At ← argmaxk xk(t)/ωk(t− 1) (ties broken arbitrarily)
Update ω(t) and µ̂(t)

Output: i?(µ̂(t))

4.3 Sample complexity

In the following theorem, we establish the asymptotic optimality of FWS.
Theorem 1. Consider the FWS algorithm with a sequence {rt}t≥1 of strictly positive reals satisfying
(i) limt→∞

1
t

∑t
s=1 rs = 0, and (ii) limt→∞ trt = ∞. Under Assumptions 1, 2, the algorithm

terminates in finite time almost surely and is δ-PAC. Its sample complexity τ satisfies:

∀µ ∈ Λ, Pµ
[
lim sup
δ→0

τ

log(1/δ)
≤ T ?(µ)

]
= 1, and lim sup

δ→0

Eµ [τ ]

log(1/δ)
≤ T ?(µ).

The proof is given in Appendix I. We sketch the proof of the guarantees in expectation. The proof
relies on classical concentration results, but more critically combines continuity arguments (developed
in Appendix K) to account for the varying µ̂(t), and tools to analyze the convergence of the modified
FW algorithm (reported in Appendix L).
1. First using concentration inequalities and the fact that FWS includes forced exploration rounds,
we can define, for round t, a "good" event Et under which µ̂(t) is very close to µ and such that
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∑∞
t=1 Pµ [Ect ] <∞. Then, several continuity arguments have to be made. In Lemma 6 (Appendix K)

we show that µ 7→ Fµ is continuous (w.r.t. the uniform convergence norm). In Theorem 3 (Appendix
K) we also prove that the solution z(t+ 1) of the FW update (11) is continuous in µ. The arguments
above allow us to analyze the convergence of the FW updates almost as if µ̂(t) was replaced by µ
provided that the event Et occurs.
2. Now we can study under the event Et, the impact of the FW update on the target allocation.
The main step of our proof is Theorem 6 (Appendix L) characterizing how Fµ(x(t)) get closer
to Fµ(ω?(µ)) in each FW update. We then deduce that after a time T1, Fµ̂(t)(x(t)) is a good
approximation of Fµ(ω?(µ)).
3. We conclude the proof using similar arguments as those in [20]. According to
our stopping rule, t > τ if and only if tFµ̂(t)(ω(t)) > β(t, δ). Hence Eµ [τ ] =∑∞
t=1 Pµ [τ > t] =

∑∞
t=1 Pµ

[
tFµ̂(t)(ω(t)) ≤ β(t, δ)

]
which can be approximately upper bounded

by T1 +
∑∞
t=T1

Pµ [Ect ] +
∑∞
t=1 Pµ [tFµ(ω?(µ)) ≤ β(t, δ)]. The proof is concluded by remarking

that in view of the property (9) of our stopping threshold, the last sum is close to T ?(µ) log(1/δ) as
δ → 0.
Note that our proof of Theorem 1 accounts for the possibility in certain structures (e.g. linear) of
having multiple optimal allocations (these allocations form a convex set). We just reason in terms of
the objective function (as in [25] for linear bandits).

Under the following additional assumption, we can derive non-asymptotic sample complexity upper
bound for FWS. The proof of the following theorem is presented in Appendix N.
Assumption 3. For any µ ∈ Λ, there exist constants κ,E > 0, s.t. if ‖π − µ‖∞ ≤ κ, then

π ∈ Si?(µ), ∀ω ∈ Σ̊, j ∈ Ji?(µ),∇πd(πk,λj(ω,π)k) is continuous and
∥∥∥∇πd(πk,λj(ω,π)k)

∥∥∥
1

≤ E, ∀k = 1, . . . ,K.

Theorem 2. Consider the FWS algorithm with a sequence {rt}t≥1 as in Theorem 1. Under Assump-
tions 1, 2, and 3, the sample complexity τ of the algorithm satisfies: for any µ ∈ Λ, δ ∈ (0, 1), and
any ε < min{κE/2, 1}, ε̃ < 1,

Eµ [τ ] ≤ 1 + ε̃

Fµ(ω?(µ))− 6ε

[
log

(
(1 + ε̃)c2(Λ)e

δ(Fµ(ω?(µ))− 6ε)

)
+ log log

(
(1 + ε̃)c2(Λ)

δ(Fµ(ω?(µ))− 6ε)

)]
+ Ψ(K,D,E,L, c1(Λ), ε) + T

5
4

ε,L,

where Tε,L is a constant such if t ≥ Tε,L, then
∑t
s=1 rs < tε and trt > L. The constant Ψ is

polynomial in (D,E,L, c1(Λ), 1/ε) and exponential in K. The precise definition of Ψ is given in
Appendix N.

5 Examples and Experiments for Linear Bandits

5.1 Examples

Our framework can be applied to many pure exploration problems, including BAI in unstructured (see
Example 1), linear, Lipschitz bandits. It further covers threshold bandits (the problem of identifying
all arms with rewards greater than a threshold), linear threshold bandits, top-m bandits (where we
wish to identify the best m arms), and dueling bandits. All these examples are presented in Appendix.
Using numerical experiments, we show that FWS is competitive with state-of-the-art algorithms for
BAI in unstructured, linear, and Lipschitz bandits, see Appendices D-E-F, respectively. To the best of
our knowledge, we report the first results for BAI in Lipschitz bandits. We quote some of our results
for BAI in linear bandits below.

When facing a new pure exploration problem, one can check whether it falls into our framework,
by first directly verifying Assumption 1. In Appendix C, we provide a simple sufficient condition
ensuring that Assumption 2 holds, and explain why all the aforementioned pure exploration problems
satisfy this condition.

5.2 BAI in linear bandits

Linear bandits constitute arguably the most popular and important bandit problems with structure, and
have found many applications [34, 9]. BAI in linear bandits has received a lot of attention recently,
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see §2. To model linear bandits, we slightly modify our framework. The reason for this modification
is that the linear structure is so strong that using our initial framework, the set Λ would be small, and
we would have problems ensuring that µ̂(t) ∈ Λ after some reasonable time t. Alternatively (rather
than modifying the framework), we could modify the FWS algorithm so that µ̂(t) is projected onto Λ.

Consider a set of K arms. Arm k is attached a d-dimensional feature vector ak and its average reward
〈ak,µ〉, where µ ∈ Rd is unknown. Without loss of generality, we assume that {ak}k∈[K] spans Rd.
We modify the definition of Λ as follows: Λ =

{
µ ∈ Rd : ∃k ∈ [K] s.t.〈ak − ai,µ〉 > 0,∀i 6= k

}
.

Hence µ parametrizes the average rewards of the arms, but µk is not the average reward of arm k.
The true answer is i?(µ) = argmaxk〈ak,µ〉. The lower bound optimization problem (1) becomes:
supω∈Σ Fµ(ω) where Fµ(ω) = infλ∈Alt(µ)

1
2 (µ− λ)>

∑
k ωkaka

>
k (µ− λ) and Alt(µ) = {λ ∈

Λ : ∃k 6= i?(µ) s.t.〈ak − ai?(µ),λ〉 > 0}, see e.g. [25]. From there, we can reproduce our

framework: for Assumption 1, for all j 6= i?(µ), Ci
?(µ)
j = {λ ∈ Λ : 〈aj − ai?(µ),λ〉 > 0}; as for

the functions fj , they are defined through:

λj(ω,µ) = µ+

 〈ai?(µ) − aj ,µ〉∥∥ai?(µ) − aj
∥∥2

V −1
ω

V −1
ω

(aj − ai?(µ)

)
, (12)

where Vω =
∑
k ωkaka

>
k . In the FWS algorithm for linear bandits, we use the Least-Squares

Estimator (LSE) µ̂(t) given past observations, see [25] or Appendix E for an explicit expression.
It can be readily seen that this slight modification of our framework does not affect the validity of
Theorem 1. We just need to use the concentration inequalities derived in [25] for µ̂(t) in the first step
of its proof.

Numerical experiments. We consider the example proposed by [46]. The unknown parameter
µ = e1 and there are d+ 1 arms, e1, · · · , ed, cos(φ)e1 + sin(φ)e2 in Rd, where (e1, · · · , ed) form
the standard orthonormal basis. We set d = 6 and φ = 0.1. To assess the performance of the FWS
algorithm, we compare with the following algorithms: the Lazy Track and Stop algorithm (LT)
from [25]; LineGame-C (CG-C) and LineGame (Lk-C) from [13] and implemented by [45]; the
XY-Adaptive algorithm (XY-A) from [46]. For information, we also run the Round Robin algorithm
RR selecting each equally. For comparison, we finally compute the sample complexity lower bound
LBlin(δ) (equal to T ?(µ)kl(δ, 1− δ)).

Except for XY-A, all algorithms implement the same stopping rule defined in (7) with threshold
β(t, δ) = log((log(t) + 1)/δ) (this threshold was initially suggested in [20], and is also used in [45]
for CG-C and Lk-C). For XY-A, we use the stopping rule advocated in the corresponding papers.
Refer to Appendix E for the detailed implementations.

In Table 1, we present the sample complexity (the number of samples gathered before the algorithm
stops) averaged over 1000 runs for the various algorithms and for different confidence levels δ ∈
{0.1, 0.01, 0.001, 0.0001}. In Appendix E, we provide detailed results, e.g. including box-plots (to
show how confident we are about the values displayed in Table 1), as well as the empirical allocations
achieved under the various algorithms.

Table 1: Sample complexity for the linear bandit benchmark example of [46], averaged over 1000
runs. Refer to Appendix E for details, including box-plots.

FWS LT CG-C Lk-C XY-A RR LBlin(δ)

δ = 0.1 1 030 919 2 498 2 319 7 016 5 451 359
δ = 0.01 1 614 1 464 3 501 3 431 7 779 8 814 920
δ = 0.001 2 229 1 982 4 324 4 326 9 090 12 101 1 408
δ = 0.0001 2 839 2 518 5 118 5 120 9 723 15 314 1 881

6 Conclusion

We have developed FWS, a computationally and statistically efficient algorithm for active pure
exploration in bandit problems with fixed confidence. In each round, FWS performs a single iteration
of a modified FW algorithm to approach an optimal allocation of arm draws predicted by the
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asymptotic lower bound. In the FWS algorithm, the FW iterations aim at maximizing a non-smooth
function. Our main contribution is here to adapt the design of FW so that its convergence can
be analyzed even for this non-smooth function. FW-based pure exploration algorithms have been
discussed in the literature, with the belief that they would perform well. We confirm this belief, and
even establish the asymptotic optimality of FWS in wide class of pure exploration problems.

Many interesting research directions could be investigated. Our analysis of the sample complexity in
the moderate confidence regime has the advantage of being applicable to generic pure exploration
problems, but may not be always tight. For bandits with specific structures, we may refine the analysis
in this regime to get better upper bounds. We are also interested in investigating whether the iterative
approach used in the FWS algorithm can be extended to more complex problems such as learning an
optimal policy in MDPs, as well as to regret minimization problems. There, instance-specific regret
lower bounds and the corresponding optimal exploration process are characterized by the solution of
an optimization problem, just as in pure exploration problems.
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A Table of Notations

Setting: pure exploration task
K Number of arms

[m] for any m ∈ N The set {1, 2 . . . ,m}
νk Reward distribution for arm k

Xk(t) Random reward received from pulling arm k in round t
µ ∈ RK Vector of the expected rewards of the various arms

Λ Set of all possible parameters µ
I Set of the answers

i?(µ) Correct answer for parameter µ
Si Set of parameters for which i is the correct answer
δ Targeted confidence level

Lower bound properties
ω Vector of the proportions of arm draws
Σ Simplex
Σ̊ Interior of Σ
Σγ {ω ∈ Σ : mink ωk ≥ γ}
ek The K-dimensional vector with a 1 in the k-th coordinate and 0’s elsewhere.

Eµ and Pµ The expectation and probability measure corresponding to the parameter µ
Alt(µ) Set of confusing parameters for µ
ω?(µ) Optimal allocation for parameter µ
T ?(µ) Characteristic time for parameter µ
d(µ, µ′) KL divergence between the distributions parametrized by µ and µ′

kl(a, b) KL divergent between two Bernoulli distributions of means a and b

Assumptions on the objective function
Ji Finite set of indexes associated with answer i ∈ I

Cij where j ∈ Ji A convex set in Λ \ Si
fj(ω,µ) inf

λ∈Ci
?(µ)
j

∑K
k=1 ωkd(µk, λk)

cl(K) The closure of K
λj(ω,µ) arg min

λ∈cl(Ci
?(µ)
j )

∑K
k=1 ωkd(µk, λk)

Fµ(ω) minj∈Ji?(µ)
fj(ω,µ)

Cψ(K) sup x,z∈K
α∈(0,1]

y=x+α(z−x)

1
α2 [ψ(x)− ψ(y) + 〈y − x,∇ψ(x)〉]

L Upper bound of ‖∇ωfj(ω,µ)‖∞
D Upper bound of γCfj(·,µ)(Σγ)

τ Stopping rule
ı̂τ Decision rule

β(t, δ) Stopping threshold
c1(Λ), c2(Λ) The constants needed for property of β(t, δ) (see (8))

Notations for FWS
Nk(t) Number of pulls of arm k up to t
ωk(t) Nk(t)/t
At The arm pulled in time t
µ̂k(t)

∑t
s=1 Xk(s)1{As = k}/Nk(t)

HFµ(ω, r) r-subdifferential subspace
x(t) The allocation tracked at time t
z(t) The solution for FW update at time t
{rt}t≥1 A sequence of positive numbers for FWS
Tε,L Constant needed for the assumption on {rt}t≥1

κ,E Constants needed for Assumption 3
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B Proof of the Lower Bound of Eµ[τ ]

Definition 1. A δ-PAC strategy with stopping rule τ and decision rule ı̂τ is a strategy such that for
any µ ∈ Λ, Pµ (τ <∞) = 1 and Pµ (̂ıτ 6= i?(µ)) ≤ δ.

Proposition 2. Let δ ∈ (0, 1) and µ ∈ Λ. For any δ-PAC strategy,

Eµ [τ ] ≥ T ?(µ)kl(δ, 1− δ), (13)

where

T ?(µ)−1 = sup
ω∈Σ

inf
λ∈Alt(µ)

K∑
k=1

ωkd(µk, λk). (14)

Note that kl(δ, 1− δ) ≈ log(1/δ) as δ → 0. Hence (13) yields that

lim inf
δ→0

Eµ [τ ]

log( 1
δ )
≥ T ?(µ). (15)

Proof. Consider a δ-PAC strategy. Let λ ∈ Alt(µ). Let Pµ and Pλ denote the probability measures
generated by the parameter µ and λ, respectively. τ is a stopping time w.r.t. the filtration (Ft)t≥1

where Ft = σ(A1, XA1(1), . . . , At, XAt(t)), and where At is the arm selected under the algorithm
in round t and XAt(t) is the corresponding reward. According to Definition 1, τ is almost surely
finite, and Lemma 19 in [28] directly implies that

K∑
k=1

Eµ [Nk(τ)] d(µk, λk) ≥ kl(Pµ(E),Pλ(E)), (16)

where E can be any Fτ -measurable event. With the choice, E = {ı̂τ = i?(λ)}, the definition of δ-
PAC strategy and λ ∈ Alt(µ) imply that the right-hand side of inequality (16) is kl(Pµ(E),Pλ(E)) ≥
kl(δ, 1− δ). (16) holds for any λ ∈ Alt(µ). Thus,

kl(δ, 1− δ) ≤ inf
λ∈Alt(µ)

Eµ [τ ]

K∑
k=1

Eµ [Nk(τ)]

Eµ [τ ]
d(µk, λk)

≤ Eµ [τ ] sup
ω∈Σ

inf
λ∈Alt(µ)

K∑
k=1

ωkd(µk, λk). (17)

This completes the proof. �
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C A Generic Method to Verify Assumptions 2

Recall that Assumption 2 is:

Assumption 2. For all µ ∈ Λ,
(i) there exists L > 0 such that ∀j ∈ Ji?(µ), ‖∇ωfj(ω,µ)‖∞ ≤ L;
(ii) there exists D > 0 such that ∀γ ∈ (0, 1/K) and ∀j ∈ Ji?(µ), Cfj(·,µ)(Σγ) ≤ D

γ .

Notation. In this appendix, we often use the function d : (µ, π) 7→ d(µ, π), defined as the KL
divergence between reward distributions parametrized µ and π. π will denote its second argument.
For example, ∂d∂π (µ, λ) is the partial derivate of d w.r.t. its second argument evaluated at the point
(µ, λ).

C.1 Preliminaries: BAI in unstructured bandits

Before we introduce a generic way to check the assumption, we discuss the insightful case of the
BAI problem in unstructured bandits with Bernoulli rewards. In this case, the gradients of fj’s are:

∀j 6= i?(µ), ∇fj(ω,µ) = d(µi?(µ),mj(ω,µ))ei?(µ) + d(µj ,mj(ω,µ))ej ,

where
mj(ω,µ) =

ωi?(µ)µi?(µ) + ωjµj

ωi?(µ) + ωj
.

We deduce that ‖∇fj(ω,µ)‖∞ ≤ L = maxk 6=i?(µ) d(µi?(µ), µk) for any ω ∈ Σ. Hence, this
constant L satisfies Assumption 2 (i) and depends µ only. As for the Assumption 2 (ii), the Hessian
∇2
ω,ωfj(ω) has elements almost all equal to 0 except for those corresponding to the basis ei?(µ), ej .

Extracting the non-zero elements of the Hessian, we get:
mj(ω,µ)−µi?(µ)

mj(ω,µ)(1−mj(ω,µ))

(µi?(µ)−µj)ωj
(ωi?(µ)+ωj)2

mj(ω,µ)−µi?(µ)

mj(ω,µ)(1−mj(ω,µ))

(µj−µi?(µ))ωi?(µ)

(ωi?(µ)+ωj)2

mj(ω,µ)−µj
mj(ω,µ)(1−mj(ω,µ))

(µi?(µ)−µj)ωj
(ωi?(µ)+ωj)2

mj(ω,µ)−µj
mj(ω,µ)(1−mj(ω,µ))

(µj−µi?(µ))ωi?(µ)

(ωi?(µ)+ωj)2

 .
Notice that

∣∣∣ mj(ω,µ)−µi?(µ)

mj(ω,µ)(1−mj(ω,µ))

∣∣∣ < 4µi?(µ). Thus
∥∥∇2

ω,ωfj(ω,µ)
∥∥
∞ (defined as the maximum

over rows of the L1-norm of a row), is smaller than 4Lµi?(µ)

γ when ω ∈ Σγ . Invoking Lemma 1.2.2
in [3] (more precisely, in its proof), one can immediately deduce that ∇fj is D

γ -Lipschitz, where
D = 4Lµi?(µ). Finally, Lemma 7 in [24] implies that a function with gradient Dγ -Lipschitz satisfies
Assumption 2 (ii).

From the above observations, we note that the value of mj(ω,µ), or equivalently the most
confusing parameter λj(ω,µ), plays an essential role in our assumptions. In view of Proposi-
tion 1, ∇ωfj(ω,µ) =

∑
k d(µk,λj(ω,µ)k)ek. First, if d(µk,λj(ω,µ)k) is bounded for any

k ∈ [K], ω ∈ Σ̊ and j ∈ Ji?(µ), then Assumption 2 (i) holds because the k-th component of
∇ωfj(ω,µ) is exactly d(µk,λj(ω,µ)k). Then, the chain rule yields:(

∇2
ω,ωfj(ω,µ)

)
k,k′

=

(
∂d

∂π
(µk,λj(ω,µ)k)

)
∂

∂ωk′
λj(ω,µ)k. (18)

For the BAI in unstructured bandits, we can derive Assumption 2 (ii) if ∂d∂π (µk,λj(ω,µ)k) is bounded

and
∥∥∥∇ωλj(ω,µ)

∥∥∥
∞

is shown to scale as O( 1
mink ωk

). Sometimes, however, ∇ωλj(ω,µ) is not
easy to compute. Next we provide a sufficient condition for Assumption 2 which is easier to check.

C.2 Constraint function and a sufficient condition for Assumption 2

Constraint function. To state our sufficient condition, we introduce the constraint function cij to
describe the set Cij . Let us fix i ∈ I and j ∈ Ji. The constraint function cij : Λ \ Si → R is a
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mapping such that:
Cij =

{
µ ∈ Λ \ Si : cij(µ) > 0

}
.

Namely, we can define Cij by using cij . For concreteness, we list below examples in which there is a
constraint function.

Example 1 – BAI in unstructured bandits with Bernoulli rewards. For this task, we have Λ = (0, 1)K ,
I = {1, . . . ,K}, and for all arm i, the set of parameters for which arm i is the best arm is
Si = {µ ∈ Λ : µi > µk,∀k 6= i}. We have: Λ \ Si = ∪j∈JiCij where Ji = I \ {i} is the set of
arms different than i and Cij = {µ ∈ Λ : µj > µi}. Thus a constraint function is cij(µ) = µj − µi.

Example 2 – Threshold bandits. In this task, the objective is to identify all arms whose average
rewards are above a threshold I. With Bernoulli rewards, we have Λ = (0, 1)K and the set of possible
answers is I = 2[K]. We can decompose the set Λ \ SA = ∪k∈[K]CAk , where

CAk =

{
{µ ∈ Λ \ SA : µk > I} if k /∈ A,
{µ ∈ Λ \ SA : µk < I} if k ∈ A.

Then a constraint function is: cAk (µ) = (1{k /∈ A} − 1{k ∈ A})(µk − I).

Example 3 – Top-m bandits. The task is to identify the best m arms. Assuming Bernoulli rewards,
we have Λ = {µ ∈ (0, 1) : µ[1] ≥ . . . µ[m] > µ[m+1]}, where µ[k] denotes the average reward of the
arm with the k-th highest reward. The set of possible answers is I = {A ∈ [K] : |A| = m}. Define
JA = {j /∈ A} and CAj = {µ ∈ Λ \ SA : µj > mink∈A µk}. Then, we have: Λ \ SA = ∪j /∈JACAj
and a constraint function can be cAj (µ) = µj −mink∈A µk.

As illustrated in the above examples, the constraint functions cij depend on the pure exploration task,
but are simple and usually differentiable. The following lemma provides a sufficient condition for 2,
involving the constraint functions only. In all the examples considered in this paper, this lemma can
be applied. Its proof, provided at the end of this appendix, combines the Lagrange multiplier theorem
and the implicit function theorem, and leverages similar techniques as those developed in [14, 2].

Lemma 1. Let µ ∈ Λ. Assume that, for any j ∈ Ji?(µ),

(a) ci
?(µ)
j is twice differentiable at the point (λj(ω,µ)) and ∇2c

i?(µ)
j (λj(ω,µ)) = 0,∀ω ∈ Σ̊,

(b) the reward distributions are Gaussian or Bernoulli,
(c) there is a constant M > 0 such that

max

{∣∣∣d(µk,λj(ω,µ)k)
∣∣∣ , ∣∣∣∣ ∂d∂π (µk,λj(ω,µ)k)

∣∣∣∣} ≤M, ∀k ∈ [K],ω ∈ Σ̊.

Then Assumption 2 holds.

C.3 Applications of Lemma 1

We apply Lemma 1 to verify Assumption 2 for the pure exploration tasks presented Appendix D, E,
F, and G.

Conditions (a) and (b). These conditions hold trivially because in all examples, the constraint
functions are linear, and we consider only Bernoulli or Gaussian rewards.

Condition (c). First observe that:
for Bernoulli rewards,

d(µ, π) = µ log
µ

π
+ (1− µ) log

1− µ
1− π

and
∂d

∂π
(µ, π) =

−µ
π

+
1− µ
1− π

, ∀µ, π ∈ (0, 1),

and for Gaussian rewards,

d(µ, π) =
1

2
(µ− π)2 and

∂d

∂π
(µ, π) = π − µ, ∀µ, π ∈ R.
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In the case of BAI for unstructured bandits (Appendix D), λj(ω,µ)k = µk if k /∈ {i?(µ), j} and
λj(ω,µ)k = mj(ω,µ) otherwise, where mj(ω,µ) =

ωi?(µ)µi?(µ)+ωjµj
ωi?(µ)+ωj

,∀ω ∈ Σ̊. Hence, (c) holds
for mj(ω,µ) is bounded in the interval [µj , µi?(µ)].

For BAI in linear bandits (Appendix E), according to (12), we have that for any ω ∈ Σ̊,∥∥∥λBAI
j (ω,µ)

∥∥∥
∞
≤ ‖µ‖∞ +

∥∥∥∥∥
(
〈ai? − aj ,µ〉
‖ai? − aj‖2V −1

ω

V −1
ω

)
(aj − ai?)

∥∥∥∥∥
∞

≤ ‖µ‖∞ + ‖ai? − aj‖∞ ‖µ‖∞ <∞.
Thus, (c) holds. The condition can be checked similarly for the threshold linear bandits. As for BAI
in Lipschitz bandits (Appendix F), each component of the most confusing parameter (see (31)) is
bounded in the interval of [mink µk,maxk µk], and thus, (c) holds. Finally, for the threshold bandit
problem with monotone structure and the top-m arm problem in dueling bandits (Appendix G), (c)
directly holds as the most confusing parameter λj(ω,µ) and λσ(ω,µ) are fixed for any ω ∈ Σ̊.

C.4 Proof of Lemma 1

We first prove that Assumption 2 (i) holds. Let L = M . Observe that ‖∇ωfj(ω,µ)‖∞ =

maxk

∣∣∣d(µk,λj(ω,µ)k)
∣∣∣ < M , then (i) holds directly.

Let us verify Assumption 2 (ii). Let γ ∈ (0, 1
K ). We will prove that for ω ∈ Σγ ,

∥∥∇2
ω,ωfj(ω,µ)

∥∥
∞

is bounded by D
γ by some constant D > 0. This will imply that Assumption 2 (ii) holds, see

e.g.,[3, 24].

We have: {
∂2d
∂π2 (µ, π) = µ

π2 + 1−µ
(1−π)2 ≥ 1,∀µ, π ∈ (0, 1), for Bernoulli rewards,

∂2d
∂π2 (µ, π) = 1, ∀µ, π ∈ R, for Gaussian rewards.

(19)

We deduce that ∂
2d
∂π2 (µ, π) ≥ 1. Now, recall that λj(ω,µ) is the solution of the following optimization

problem:
min

π∈Λ,c
i?(µ)
j (π)≥0

∑
k

ωkd(µk, πk).

Let L : RK × RK × R× RK 7→ RK be the Lagrangian defined as

L(ω,µ, α,π) =
∑
k

ωkd(µk, πk)− αci
?(µ)
j (π).

The solution λj(ω,µ) can be identified by solving∇αL(ω,µ, α,λj(x,µ)) = −ci
?(µ)
j (λj(ω,µ))

and

∇πL(ω,µ, α,λj(ω,µ)) =
∑
k

ωk
∂d

∂π
(µk,λj(ω,µ)k)ek − α∇ci

?(µ)
j (λj(ω,µ)). (20)

By differentiating (20) with respect to π, we get the Hessian of ∇2
π,πL(ω,µ, α,λj(ω,µ)): it is a

diagonal matrix and for any k ∈ [K], its (k, k)-th entry is

∇2
π,πL(ω,µ, α,λj(ω,µ))k,k = ωk

∂2d

∂2π
(µk,λj(ω,µ)k)− α∇2c

i?(µ)
j (λj(ω,µ))

= ωk
∂2d

∂2π
(µk,λj(ω,µ)k)

≥ ωk. (21)

Since ω ∈ Σγ , we deduce from (21) that ∇2
π,πL(ω,µ, α,λj(x,µ)) is invertible, and that we can

apply the implicit function theorem:

∇ωλj(ω,µ) = −
(
∇2
π,πL(ω,µ, α,λj(ω,µ))

)−1 (
∇ω∇πL(ω,µ, α,λj(ω,µ))

)
. (22)
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In addition, we have: ∥∥∥∥(∇2
π,πL(ω,µ, α,λj(ω,µ))

)−1
∥∥∥∥
∞
≤ 1

γ
. (23)

To derive an upper bound of
∥∥∥∇ωλj(ω,µ)

∥∥∥
∞

, we compute the second factor in the r.h.s. of (22)

by differentiating (20) with respect to ω. We can see that ∇ω∇πL(ω,µ, α,λj(ω,µ) is a diagonal
matrix whose (k, k)-th entry is ∂d

∂π (µk,λj(ω,µ)k) for any k ∈ [K]. Combining this observation
with (22)-(23), we deduce that

∥∥∥∇ωλj(ω,µ)
∥∥∥
∞
≤

maxk

∣∣∣ ∂d∂π (µk,λj(ω,µ)k)
∣∣∣

γ
≤ M

γ
, (24)

where the last inequality stems from (c). Finally, using (24), (c), and (18), we can upper bound∥∥∇2
ω,ωfj(ω,µ)

∥∥
∞ as:

∥∥∇2
ω,ωfj(ω,µ)

∥∥
∞ = max

k

K∑
k′=1

∣∣∣∣( ∂d∂π (µk,λj(ω,µ)k)

)
∂

∂ωk′
λj(ω,µ)k

∣∣∣∣ ≤ M2K

γ
.

We have proved Assumption 2 (ii) with D = M2K. �
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D BAI in Unstructured Bandits

About all our experiments. All the experiments are executed on a machine with Intel Core i5 at 1.8
GHz with 8 GB RAM. We implemented all the algorithms3 in Julia 1.5.4 and part of the baselines
are taken from the implementation by [31, 45]. Throughout the experiments, we fix the parameters of
our Frank-Wolfe-based sampling (FWS): rt = t−0.9/K, where K is the number of arms.

D.1 Preliminaries and competing algorithms

The BAI in unstructured bandits with Bernoulli rewards has been treated in Example 1 (in the main
document). It is obtained by assuming Λ = {µ ∈ (0, 1)K : ∃i ∈ [K] s.t µi > µk,∀k 6= i}. The set of
answers is I = [K] and i?(µ) = argmaxk∈[K] µk and hence Si = {µ ∈ (0, 1)K : µi > µk,∀k 6= i}.
For this BAI, we set Ji = [K] \ i and Cij = {µ ∈ Λ : µj > µi}. Obviously, {Si}i∈[K] are
open sets and {Cij}j 6=i are convex sets, so Assumption 1 holds. As already mentioned, we have:
∀(ω,µ) ∈ Σ̊× Si?(µ), ∀j 6= i?(µ),

λj(ω,µ) = mj(ω,µ)ei?(µ) +mj(ω,µ)ej +
∑

k 6=j,i?(µ)

µkek,

fj(ω,µ) = ωi?(µ)d(µi?(µ),mj(ω,µ)) + ωjd(µj ,mj(ω,µ)),

∇fj(ω,µ) = d(µi?(µ),mj(ω,µ))ei?(µ) + d(µj ,mj(ω,µ))ej ,

where
mj(ω,µ) =

ωi?(µ)µi?(µ) + ωjµj

ωi?(µ) + ωj
.

Assumption 2 is verified in Appendix C.

FWS algorithm and the FW update. To illustrate the implementation of FWS, we provide an example
on how the FW update (11) is implemented. This update is translated into a zero-sum game that can
be solved using any LP solver. Refer to Appendix H for a discussion on how to get this game in
general pure exploration problems.

Let K = 3. Assume that we are in round t, and that we wish to apply the FW update:

z(t)← argmax
z∈Σ

min
h∈HFµ̂(t−1)

(x(t−1),rt)
〈z − x(t− 1), h〉 (ties broken arbitrarily) .

Further assume that i?(µ̂(t− 1)) = 3 and that f1(x(t− 1), µ̂(t− 1)) ∨ f2(x(t− 1), µ̂(t− 1)) <
Ft(x(t − 1)) + rt. We then create a 3 × 2 payoff matrix M , whose (k, j)-th entry is Mk,j =
〈ek−x(t−1),∇fj(x(t−1), µ̂(t−1))〉 for all k = 1, 2, 3 and j = 1, 2. In this example, the update
can be formulated as

max
z∈Σ

min
y∈R2

z>My (25)

s.t. y1, y2 ≥ 0 and y1 + y2 = 1.

Let (z?,y?) denote the solution of (25). Then we have

z(t) = x(t− 1) +

3∑
k=1

z?k(ek − x(t− 1)) = z?.

A standard method to solve the zero-sum game (25) is to apply any LP solver to the following problem
[37, 48, 52]:

max
z∈Σ,u∈R

u (26)

s.t. (z>M)1, (z
>M)2 ≥ u.

The solution of (26) provides z? and the value of (25). Appendix H explains why and gives a short
introduction for the transformation of a zero-sum game to an LP.

Competing algorithms. The list of algorithms used for comparison is provided below.
3https://github.com/rctzeng/NeurIPS2021-Fast-Pure-Exploration-via-Frank-Wolfe
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• FWS: Our algorithm with parameters rt = t−0.9/K, where K is the number of arms.

• T-D: Track-and-Stop [28] with D-Tracking implemented by [31].

• D-C: AdaHedge as the λ-player and Best-Response as the ω-player described in Section 3.1
in [12] implemented by [31].

• M-C: Lazy Mirror Ascent by [38] implemented by [31]. This method is very sensitive to
the learning rate ηt = 1/(L

√
t) (L > 0 is a hyperparameter). Note that the implementation

[31] chooses L assuming the knowledge of µ. This choice is for experimental comparison
only and cannot be used in real-world scenarios.

• O-C: Optimistic Track and Stop [12] implemented by [31].

• RR: Sample arms in a round-robin manner.

• LB(δ): T ?(µ)kl(δ, 1− δ).

The Track-and-Stop algorithm has two versions, one with D-tracking (directly tracking the optimal
allocation) and another one with C-tracking (tracking the cumulative optimal allocation). We found
that D-tracking always performs better than C-tracking numerically. Hence, we report the performance
of Track-and-Stop with D-tracking only.

Stopping rule. In all the algorithms, we use the same stopping rule (7) for unstructured bandits, with
the same threshold β(t, δ) = log((log(t) + 1)/δ), suggested in [20].

D.2 Numerical experiments

Bernoulli rewards. In the first experiment, we consider Bernoulli rewards with µ =
[0.3, 0.21, 0.2, 0.19, 0.18] used in [28]. We average our results over 3000 runs. In Table 2, we
provide the sample complexity for various confidence levels δ ∈ {0.1, 0.01, 0.001, 0.0001}. To pro-
vide a more detailed comparison, at the confidence level δ = 0.01, we show the sample complexity in
box-plot in Figure 3a and compare the allocation of arm draws achieved under the various algorithms
in Table 3.

In Figure 1, we plot the number of rounds (the median over all runs) FWS is in force exploration or
the r-subdifferential subspace used in FWS contains the gradient of only one function (in this round,
our FW update coincides with the traditional FW update as if the objective function was smooth). In
Figure 2, we provide the distribution of the number of functions involved in the FW updates. It is
interesting to note that 60% of the time our update differs from the usual FW update.

Table 2: Sample complexity in unstructured bandits with Bernoulli rewards with µ =
[0.3, 0.21, 0.2, 0.19, 0.18] and δ = 0.01, averaged over 3000 runs.

FWS T-D D-C M-C O-C RR LB(δ)

δ = 0.1 1 365 1 337 1 859 1 668 1 818 2 326 574
δ = 0.01 2 125 2 066 2 674 2 509 2 706 3 460 1 471
δ = 0.001 2 899 2 823 3 465 3 362 3 584 4 555 2 252
δ = 0.0001 3 645 3 589 4 279 4 231 4 457 5 621 3 008

Table 3: Allocation of arm draws in unstructured bandits with Bernoulli rewards with µ =
[0.3, 0.21, 0.2, 0.19, 0.18] and δ = 0.01, averaged over 3000 runs.

FWS T-D D-C M-C O-C RR ω?(µ)

a1 34.08 35.60 29.40 31.72 31.31 20.00 32.59
a2 24.82 23.47 21.46 22.37 20.94 20.00 25.15
a3 17.45 17.30 17.94 17.81 17.99 20.00 17.66
a4 13.38 13.22 16.11 15.06 15.79 20.00 13.24
a5 10.27 10.42 15.08 13.04 13.97 20.00 10.36
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Figure 1: Number of rounds where FWS is in forced exploration or the FW update in FWS cor-
responds to the usual FW update. BAI in unstructured bandits with Bernoulli rewards and
µ = [0.3, 0.21, 0.2, 0.19, 0.18], δ = 0.0001.

Figure 2: Proportions of rounds where we have m functions in the linear program involved in the FW
updates (i.e. m =

∣∣{j : fj(x(t), µ̂(t)) < Fµ̂(t−1)(x(t)) + rt}
∣∣, and m = 0 in forced exploration).

BAI in unstructured bandits with Bernoulli rewards and µ = [0.3, 0.21, 0.2, 0.19, 0.18], δ = 0.0001.

(a) Bernoulli rewards: µ = [0.3, 0.21, 0.2, 0.19, 0.18]. (b) Gaussian rewards: µ = [1, 0.85, 0.8, 0.7].

Figure 3: Sample complexity for the unstructured best-arm identification problem at δ = 0.01, plotted
in boxplots where the stars represent the averaged sample complexity and the outliers are hidden.
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Gaussian rewards. In the second experiment, we consider Gaussian rewards with means µ =
[1, 0.85, 0.8, 0.7] and unit variance as proposed in [38]. The results are averaged over 1000 runs. In
Table 4, we compare the sample complexity for δ ∈ {0.1, 0.01, 0.001, 0.0001}. At the confidence
level δ = 0.01, we show the sample complexity in box-plot in Figure 3b and compare the allocation
of arm draws achieved under the various algorithms in Table 5.

Table 4: Sample complexity in unstructured bandits with Gaussian rewards andµ = [1, 0.85, 0.8, 0.7]
and δ = 0.01, averaged over 1000 runs.

FWS T-D D-C M-C O-C RR LB(δ)

δ = 0.1 1 857 1 874 2 286 2 160 2 272 2 994 791
δ = 0.01 2 919 2 891 3 487 3 313 3 528 4 659 2 026
δ = 0.001 3 990 4 000 4 640 4 449 4 732 6 219 3 101
δ = 0.0001 5 056 5 038 5 739 5 575 5 896 7 855 4 142

Table 5: Allocation of arm draws in unstructured bandits with Gaussian rewards µ =
[1, 0.85, 0.8, 0.7] and δ = 0.01, averaged over 1000 runs.

FWS T-D D-C M-C O-C RR ω?(µ)

a1 41.05 42.00 34.37 37.46 39.70 25.00 41.25
a2 36.01 36.04 30.94 32.47 31.60 25.00 37.93
a3 16.94 16.11 19.56 18.51 18.92 25.00 15.21
a4 6.00 5.85 15.13 11.56 9.78 25.00 5.61

In all these results, we observe that FWS and T-D exhibit very close performance. FWS is as efficient
as T-D. The two algorithms outperform other algorithms. We further observe that the allocations
achieved under FWS and T-D are closer to the optimal allocationω?(µ) than those of other algorithms.
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E Linear Bandits

E.1 Preliminaries and competing algorithms

Linear bandits have been extensively applied in online advertisement, [34, 9], and have become the
most relevant of bandit problems with structure. BAI in linear bandits has been investigated for
example in [25, 46, 13].

Consider a bandit problem with K arms and Gaussian rewards. Each arm k is associated with a
d-dimensional vector ak. Without loss of generality, we assume that {ak}k∈[K] spans the space Rd.
We study two learning tasks: BAI and the so-called threshold bandit task where the objective is to
identify the set of arms whose expected rewards are above a given threshold.

We slightly modify our framework as described in Section 5. We define for the two tasks:

ΛBAI =
{
µ ∈ Rd : ∃k ∈ [K] s.t.〈ak − ai,µ〉 > 0,∀i 6= k

}
, i?BAI(µ) = argmax

k
〈ak,µ〉;

ΛI =
{
µ ∈ Rd : 〈ak,µ〉 6= I,∀k ∈ [K]

}
, i?I(µ) = {k ∈ [K] : 〈ak,µ〉 > I} .

For BAI, Si = {µ ∈ Rd : 〈ak − ai,µ〉 > 0,∀i 6= k} is clearly an open set. For the threshold
problem, SA = {µ ∈ Rd : 〈ak,µ〉 > I,∀k ∈ A}, where A is a subset of [K], is an open set too. To
implement our algorithm, we introduce Vω =

∑
k ωkaka

>
k , and build the Least-Squares Estimator

of µ:

µ̂(t) = V †ω(t)

t∑
s=1

XAt(t)aAt .

For this LSE, we use in the analysis the concentration results derived in Lemmas 3 and 4 in [25]. The
objective function that has to be maximized to get an optimal allocation is:

Fµ(ω) = inf
λ∈Alt(µ)

‖µ− λ‖2Vω
2

,

where Alt(µ) depends on the task. Let us describe the most confusing parameter λj(ω,µ) for both
tasks.

BAI. Let µ ∈ ΛBAI and j 6= i?BAI(µ), let Ci
?
BAI(µ)
j = {λ ∈ ΛBAI : 〈λ,aj〉 > 〈λ,ai?BAI(µ)〉}, which

is a convex set (as any convex combination of two points in Ci
?
BAI(µ)
j is still in Ci

?
BAI(µ)
j ). Applying the

Lagrange multiplier theorem (see Appendix of [13]), we get that:

λBAI
j (ω,µ) = µ+

 〈ai?BAI(µ) − aj ,µ〉∥∥ai?BAI(µ) − aj
∥∥2

V −1
ω

V −1
ω

(aj − ai?BAI(µ)

)
, ∀ω ∈ Σ̊. (27)

Threshold bandit. For all j ∈ [K], we let Ci
?
I(µ)
j = {λ ∈ ΛI : sign(I − 〈aj ,λ〉) 6= sign(I −

〈aj ,µ〉)}, which is a convex set (as again any convex combination of two points in Ci
?
I(µ)
j is still in

Ci
?
I(µ)
j ). Likewise, the Lagrange multiplier theorem yields that

λI
j (ω,µ) = µ+ sign(I− 〈aj ,µ〉)

(
(I− 〈aj ,µ〉)
‖aj‖2V −1

ω

V −1
ω

)
aj , ∀ω ∈ Σ̊. (28)

∇ωfj(ω,µ) can be obtained by directly plugging (27) or (28) into (4) and Proposition 1 shows that
fj(ω,µ) = 〈ω,∇fj(ω,µ)〉. We have checked Assumption 2 in Appendix C.3, using Lemma 1.

Competing algorithms. For BAI in linear structure, we compare the performance of the following
algorithms.

• FWS: Our algorithm with parameters rt = t−0.9/K.
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• LT: Lazy Track and Stop (LT) by [25].
• CG-C and Lk-C: LineGame-C (CG-C) and LineGame (Lk-C) from [13] implemented by

[45].
• XY-A: XY-Adaptive [46]. The hyperparameter α is set equal to 0.1 as done by [46].
• RR: Round Robin
• LBlin(δ): T ?(µ)kl(δ, 1− δ) exploiting the linear structure

To our best knowledge, the linear threshold bandit problem was only studied in [13]. Hence for this
problem, we only compare our algorithm with CG-C, Lk-C and RR.

Stopping rules. For BAI in linear bandits, except for XY-A, all algorithms use the same stopping rule
(7), with the same threshold β(t, δ) = log((log(t) + 1)/δ) (Note that the implementations in [45]
make this choice as well).
For linear threshold bandits, we also use the stopping rule (7) with the same threshold β(t, δ) =
log((log(t) + 1)/δ) for all algorithms.

E.2 Numerical experiments

BAI in linear bandits. We consider the example proposed by [46]. The unknown parameter is
µ = e1 and there are d+ 1 arms, e1, · · · , ed, cos(φ)e1 + sin(φ)e2 in Rd, where e1, · · · , ed form
the standard orthonormal basis. We set d = 6 and φ = 0.1.

In Table 6, we provide the sample complexity of the various algorithms averaged over 1000 runs for
various confidence levels δ ∈ {0.1, 0.01, 0.001, 0.0001}. To provide a more detailed comparison, at
the confidence level δ = 0.01, we show the sample complexity in box-plot in Figure 6a and compare
the allocation of arm draws achieved under the various algorithms in Table 7.

Table 6: Sample complexity for BAI in linear bandits for the benchmark example of [46], averaged
over 1000 runs.

FWS LT CG-C Lk-C XY-A RR LBlin(δ)

δ = 0.1 1 030 919 2 498 2 319 7 016 5 451 359
δ = 0.01 1 614 1 464 3 501 3 431 7 779 8 814 920
δ = 0.001 2 229 1 982 4 324 4 326 9 090 12 101 1 408
δ = 0.0001 2 839 2 518 5 118 5 120 9 723 15 314 1 881

Table 7: Allocation of arm draws for the benchmark example of [46] at δ = 0.01, averaged over
1000 runs.

FWS LT CG-C Lk-C XY-A RR ω?(µ)

a1 1.02 4.4 13.64 13.10 9.35 14.29 0.38
a2 94.22 91.11 35.75 36.66 69.80 14.28 97.72
a3 0.93 1.02 12.46 12.25 4.35 14.28 0.38
a4 0.93 1.01 12.43 12.22 3.63 14.28 0.38
a5 0.93 1 12.38 12.25 4.45 14.28 0.38
a6 0.93 1 12.44 12.23 2.64 14.28 0.38
a7 1.01 0.46 0.89 1.29 5.78 14.28 0.38

All the results above suggest that FWS is really competitive with the state-of-art algorithm, LT, and
it achieves an allocation closer to the optimal allocation than its competitors. In Figure 4, we plot
the number of rounds (the median over all runs) FWS is in force exploration or the r-subdifferential
subspace used in FWS contains the gradient of only one function (in this round, our FW update
coincides with the traditional FW update as if the objective function was smooth). In Figure 5, we
provide the distribution of the number of functions involved in the FW updates. Most of the time,
the update used in FWS coincides with the usual FW update (which contrasts with the case of BAI in
unstructured bandits).
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Figure 4: Number of rounds where the FW update in FWS corresponds to the usual FW update, and
the force exploration. BAI in linear bandits for the benchmark example of [46] with δ = 0.0001.

Figure 5: Proportions of rounds where we have m functions in the linear program involved in the FW
updates (i.e. m =

∣∣{j : fj(x(t), µ̂(t)) < Fµ̂(t−1)(x(t)) + rt}
∣∣, and m = 0 in forced exploration).

BAI in linear bandits for the benchmark example of [46] with δ = 0.0001.

(a) Linear best-arm identification problem. (b) Linear threshold problem.

Figure 6: Sample complexity for linear bandits at δ = 0.01, plotted in boxplots where the stars
represent the averaged sample complexity and the outliers are hidden.

Threshold bandit. Consider the linear threshold bandit problem, obtained by modifying the example
of [46]: µ = e1 and there are d+ 1 actions associated with e1, · · · , ed, cos(φ)e1 + sin(φ)e2 in Rd,
where (e1, · · · , ed) form the standard orthonormal basis.
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Table 8: Sample complexity for the linear threshold bandit problem, averaged over 1000 runs.

FWS CG-C Lk-C RR LBlin(δ)

δ = 0.1 874 2 673 2 511 2 904 374
δ = 0.01 1 362 3 618 3 494 4 540 957
δ = 0.001 1 865 4 437 4 372 6 213 1465
δ = 0.0001 2 398 5 163 5 132 7 807 1957

Table 9: Allocation of arm draws for the linear threshold bandit problem at δ = 0.01, averaged over
1000 runs.

FWS CG-C Lk-C RR ω?(µ)

a1 19.62 19.08 19.19 14.30 0.38
a2 1.26 12.94 12.72 14.28 1.13
a3 1.34 12.75 12.45 14.28 1.17
a4 1.35 12.71 12.43 14.28 1.17
a5 1.30 12.73 12.45 14.28 1.17
a6 1.28 12.73 12.46 14.28 1.17
a7 73.84 17.07 18.31 14.28 93.80

We set d = 6, φ = 0.01, and the threshold I = 0.9. The goal is to identify all arms whose mean is
larger than the I.

In Table 8, we provide the sample complexity of the various algorithms for δ ∈
{0.1, 0.01, 0.001, 0.0001} and averaged over 1000 runs. To provide a more detailed comparison, at
the confidence level δ = 0.01, we show the sample complexity in box-plot in Figure 6b and compare
the allocation of arm draws achieved under the various algorithms in Table 9.

We have the similar observations as those made for the BAI task. FWS clearly outperforms its
competitors.
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F BAI in Lipschitz Bandits

F.1 Preliminaries and competing algorithms

We consider the BAI task in the following Lipschitz bandit. There is a finite number K of arms.
Each arm k is associated with a feature vector or position ak ∈ Rd for some d ∈ N. The reward
distributions are assumed to be Gaussian with a fixed and known variance. The mapping from the
arm feature vector to the corresponding average reward is known to be Lipschitz, which means that:

Λ =
{
µ ∈ RK : ∃i ∈ [K] s.t. µi > µk,∀k 6= i and |µk − µk′ | < ` ‖ak − ak′‖∞ , ∀k, k′ ∈ [K]

}
,

where the constant ` > 0 is known in advance. The answer map is i?(µ) = argmaxi µi, since we
consider a BAI task. Let us fix some i ∈ [K] and µ ∈ Si, Alt(µ) can be divided into a union of sets
∪j 6=i{λ ∈ Λ : λj > λi}. Hence Ji = [K] \ {i}. Assumption 1 holds as the set

Si =
{
µ ∈ RK : µi > µk,∀k 6= i and |µk − µk′ | < ` ‖ak − ak′‖∞ , ∀k, k′ ∈ [K]

}
is open set for all i ∈ [K] and

Cij = {λ ∈ Λ : λj > λi, and |λk − λk′ | < ` ‖ak − ak′‖∞ , ∀k, k′ ∈ [K]}
is a convex set, for all j 6= i (one can readily check that any convex combination of any two points in
Cij is still in Cij).

Most confusing parameter. Unlike in the previous examples, there is no close form for the λj(ω,µ).
However, there is a simple strategy to compute it efficiently. Fix µ ∈ Λ, a suboptimal arm j 6= i?(µ),
and ω ∈ Σ̊. The most confusing parameter solves (2), which in the case of Gaussian rewards
translates to:

min
λ∈Ci

?(µ)
j

K∑
k=1

ωk(λk − µk)2

2
. (29)

Observe that for the solution of (29), we should have λj = λi?(µ). Hence, the problem (29) can be
simplified by setting λj = λi?(µ) = θ ∈ [µj , µi?(µ)] and by remarking that other values are decided
by exploiting Lipschitz structure and minimizing the distance to µ. After simplification, we get a
single-parameter (here θ) optimization problem:

min
θ∈[µj ,µi?(µ)]

∑
k

ωk
2

{
[(θ − ` ‖ak − aj‖∞ − µk)+]2 + [(µk − θ − `

∥∥ak − ai?(µ)

∥∥
∞)+]2

}
.

(30)
Figure 7 provides a simple example to explain this transformation.

0.15 0.00 0.50 0.85

0.588

1.000

1.000

0.000

Figure 7: An example of most confusing parameters λ ∈ Ci
?(µ)
j . Along the x-axis, we have

arm positions, and on the y-axis, the average rewards. Dots represent µ and crosses λ. Note that
λi?(µ) = λj = θ and that other components of λ are selected to get a minimal modification of µ
to satisfy the Lipschitz constraint. µk = cos(2π(−0.15 + 0.05k)),∀k = 0, 1, . . . , 20, ` = 2π and
θ = 0.

The minimal value of the above problem (30) is exactly fj(ω,µ) and for any k, the k-th component
of λj(ω,µ) is

min{max{θ?j − ` ‖ak − aj‖∞ , µk}, θ?j + `
∥∥ak − ai?(µ)

∥∥
∞}, (31)
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where θ?j is the solution of the problem (30). θ?j can be found by using simple binary search.
∇ωfj(ω,µ) can be obtained by directly plugging λj(ω,µ) into the equation (4) and Proposition 1
shows that fj(ω,µ) = 〈ω,∇fj(ω,µ)〉. To check Assumption 2, we can use Lemma 1 as shown in
Appendix C.

Implementing FWS. When the Lipschitz constant ` is tight, (i.e. maxk 6=k′
|µk−µk′ |
‖ak−ak′‖∞

≈ `), we need
accurate estimate of µ so that µ̂(t) satisfies the Lipschitz assumption, and belongs to Λ. In this case,
the Lipschitz structure is too strong and in its initial design, FWS may use numerous rounds of forced
exploration so that finally µ̂(t) ∈ Λ. To circumvent this issue, we could project µ̂(t) to Λ. We use
another solution that consists in artificially enlarging Λ. To this aim, we pick a Lipschitz constant `′
larger than `, and define

Λ`′ =
{
µ ∈ RK : ∃i ∈ [K] s.t. µi > µk,∀k 6= i and |µk − µk′ | < `′ ‖ak − ak′‖∞ , ∀k, k′ ∈ [K]

}
.

Note that Λ ⊂ Λ`′ . Now when µ̂(t) /∈ Λ (although there exists an unique empirical best arm under
µ̂(t)), we can find `′ > ` s.t. µ̂(t) ∈ Λ`′ . Inspired by this observation, we just replace in FWS the
condition µ̂(t) /∈ Λ by µ̂(t) /∈ Λ`pseudo(t), where

`pseudo(t) = max

{
`,max
k 6=k′

|µ̂k(t)− µ̂k′(t)|
‖ak − ak′‖∞

}
.

Note that `pseudo(t) ≥ ` and µ̂(t) ∈ Λ if and only if `pseudo(t) = `. After this change, FWS does not
have a forced exploration round each time µ̂(t) /∈ Λ. Removing this forced exploration condition
does not affect our analysis.

Competing algorithms. As far as we know, this paper is the first to consider BAI in Lipschitz
bandits. Hence, for this task, we just investigate the following algorithms and baselines:

• FWS: Our algorithm with parameters r = t−0.9/K, where K is the number of arms.
• T-D: Track and Stop [28] with D-Tracking. T-D is the strongest baseline without prior

knowledge of the structure, and we include it to estimate the gains achieved when exploiting
the Lipschitz structure.

• M-C: Here we use `pseudo(t), introduced above, and Proposition 1 to construct the subdiffer-
ential for LMA [38]. The learning rate ηt is chosen with the knowledge of µ (as discussed
previously). Note that there is not known theoretical guarantees for LMA in Lipschitz
bandits.

• LBLip(δ): T ?(µ)kl(δ, 1− δ) with Lipschitz structure.

Stopping rules. FWS and M-C use the stopping rule (7) for Lipschitz bandits while T-D uses the same
stopping rule for the unstructured bandits. The threshold is set equal to β(t, δ) = log((log(t) + 1)/δ)
for both algorithms.

F.2 Numerical experiments

We consider two experiments.

Experiment L1. In this experiment, the average rewards are given by the `-Lipschitz function
f(x) = 9 cos(x)/(x2 + 10), where ` = 0.9. We have 20 arms with mean µ = [f(x1), · · · , f(x20)],
where xi = 1.25 + 0.25(i− 1),∀i = 1, · · · , 20, as shown in Figure 8.

In Table 10, we provide the sample complexity of the various algorithms averaged over 100 runs for
confidence levels δ ∈ {0.1, 0.01}. To provide a more detailed comparison, at the confidence level
δ = 0.01, we show the sample complexity in box-plot in Figure 11a and compare the allocation of
arm draws achieved under the various algorithms in Table 11. Observe that FWS outperforms M-C,
and manages to almost halve the sample complexity compared to T-D. Exploiting the structure yields
critical improvements.

In Figure 9, we plot the number of rounds (the median over all runs) FWS is in force exploration or
the r-subdifferential subspace used in FWS contains the gradient of only one function (in this round,
our FW update coincides with the traditional FW update as if the objective function was smooth). In
Figure 10, we provide the allocation that number of functions are involved in FW update.
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0.2454

0.4737

0.1879

Figure 8: Experiment L1. The positions of the arms (x-axis) and their expected rewards (y-axis).

Table 10: Sample complexity for Experiment L1 averaged over 100 runs.

FWS M-C T-D LBLip(δ)

δ = 0.1 21 791 30 999 41 182 6 798
δ = 0.01 30 051 41 481 56 810 17 415

Table 11: The average rewards and the allocation of arm draws (%) in Experiment L1 with δ = 0.01
averaged over 100 runs.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

Positions 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5
µ 0.25 0.05 -0.12 -0.27 -0.38 -0.44 -0.47 -0.47 -0.44 -0.38

Allocation (%) FWS 29.15 1.14 0.34 0.39 0.15 0.15 0.14 0.14 0.14 0.15
M-C 24.56 2.88 2.79 1.93 1.67 1.59 1.57 1.57 1.58 1.65
T-D 35.08 0.85 0.39 0.38 0.38 0.38 0.38 0.38 0.38 0.38

a11 a12 a13 a14 a15 a16 a17 a18 a19 a20

Positions 3.75 4.0 4.25 4.5 4.75 5.0 5.25 5.5 5.75 6.0
µ -0.31 -0.23 -0.14 -0.06 0.01 0.07 0.12 0.16 0.18 0.19

Allocation (%) FWS 0.17 0.21 0.29 0.43 0.79 1.56 3.04 7.25 23.00 31.57
M-C 1.92 2.17 2.68 2.90 3.09 3.41 4.35 6.90 13.00 17.78
T-D 0.38 0.38 0.38 0.41 0.52 1.09 2.59 7.53 19.44 28.30

Experiment L2. In the second experiment, we consider the arms with positions and average
rewards presented in the second and third rows of Table 12, respectively. The reward function is
Lipschitz, and the learner is informed that this function has a Lipschitz constant ` = 0.01. This
example is chosen because identifying the best arm a1 is hard without leveraging the Lipschitz
structure. Indeed, to identify a1, the learner will need to select a1 and a6 (the second best arm) often.
Imagine now that the average rewards of these two arms are well known. If the learner is not aware of
the Lipschitz structure, she will need to further explore all other arms. However, if she is aware that
the reward function is 0.01-Lipschitz, knowing that the average reward of a6 is roughly 1, she will
deduce that the average rewards of all other arms (except a1) must be in the interval [0.96, 1.04] (a2

and a10 are at a distance 4 from a6). These arms are then worse than a1, and an informed learner
does not really need to explore them. In summary, we expect that exploiting the structure in L2 will
bring significant improvement in the sample complexity.

In Table 13, we report the sample complexity of the various algorithms averaged over 100 runs for
confidence levels δ ∈ {0.1, 0.01}. To provide a more detailed comparison, at the confidence level
δ = 0.01, we show the sample complexity in box-plot in Figure 11b and compare the allocation of
arm draws achieved under the various algorithms in Table 12. Observe that again, FWS outperforms
M-C, and in this experiment, it manages to almost divide the sample complexity by factor 3 compared
to T-D. As expected, exploiting the structure yields an even greater improvement than in Experiment
L1.
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Table 12: Average rewards and allocation of arm draws (%) at δ = 0.01 averaged over 100 runs.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

Positions 0 96 97 98 99 100 101 102 103 104
µ 1.06 0.99 0.99 0.99 0.99 1 0.99 0.99 0.99 0.99

Allocations (%) FWS 26.63 7.30 8.45 6.47 7.69 12.39 7.26 7.93 7.95 7.92
M-C 27.85 7.76 8.05 8.16 7.99 8.81 8.21 7.86 8.09 7.22
T-D 25.37 7.84 10.06 8.10 5.50 15.20 7.06 9.16 5.59 6.11

Table 13: Sample complexity for Experiment L2 averaged over 100 runs.

FWS M-C T-D LBLip(δ)

δ = 0.1 29 308 35 582 75 154 6 046
δ = 0.01 41 909 47 759 98 188 15 490

Figure 9: Number of rounds where FWS is in forced exploration or the FW update in FWS corresponds
to the usual FW update. Experiment L1.

Figure 10: Proportions of rounds where we havem functions in the linear program involved in the FW
updates (i.e. m =

∣∣{j : fj(x(t), µ̂(t)) < Fµ̂(t−1)(x(t)) + rt}
∣∣, and m = 0 in forced exploration).

Experiment L1.
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(a) Experiment L1 (b) Experiment L2

Figure 11: Sample complexity averaged over 100 runs at δ = 0.01. The stars in the boxplots represent
the averaged sample complexity and the outliers are hidden.
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G Additional Examples

In this section, we present two additional examples to illustrate the applicability of our framework.
We do not report any numerical experiments on these.

G.1 Threshold problem in monotone bandits

This task has applications in clinical trials. The learner aims at determining the maximum tolerable
dose (MTD) (the maximum amount of the drug that can be given to a person without any potential
danger). Arms represent the increasing doses, and the risk the potential adverse effects is drawn from
a Gaussian distribution whose average increases with the dose. The learner is given a threshold of
tolerance risk I ∈ R, and wish to identify the first arm with risk that exceeds this threshold. Refer to
[21] for details.

This pure exploration task can be investigated using our framework. We have: Λ = {µ ∈ RK :
µ1 < µ2 < . . . < µK , and µk 6= I, ∀k ∈ [K]}. the set of possible answer is I = [K] ∪ ∅: if
the true answer is k, arm k is the last arm below the threshold, and ∅ refers to the case where all
arms have a risk above the threshold. The set of parameters µ for which k is the correct answer is
Sk = {µ ∈ Λ : µk < I < µk+1}, which is an open set. Observe that it is also convex. Similarly
S∅ = {µ ∈ Λ : µ1 > I} is also open and convex.

Let us now identify the set of confusing parameters. To simplify the presentation, we assume
that µ is such that 1 < i?(µ) < K. The set of confusing parameters can be decomposed as
Alt(µ) = ∪u6=i?(µ)C

i?(µ)
u , where Ci

?(µ)
u = Su is convex. Assumption 1 is hence verified. Let

u 6= i?(µ) and ω ∈ Σ̊. Elementary calculus yields that

λu(ω,µ) =

 µ+
∑i?(µ)
s=u (I− µs)es if u < i?(µ),

µ+
∑u
s=i?(µ)(I− µs)es, otherwise.

This implies that

∇ωfu(ω,µ) =


∑i?(µ)
s=u

(I−µs)2
2 es if u < i?(µ),∑u

s=i?(µ)
(I−µs)2

2 es, otherwise.
(32)

As shown in Proposition 1, 〈ω,∇fu(ω,µ)〉 = fu(ω,µ), and thus

f`(ω,µ) =


∑i?(µ)
s=u ωs

(I−µs)2
2 if u < i?(µ),∑u

s=i?(µ) ωs
(I−µs)2

2 , otherwise.
(33)

In view of (32), Assumptions 2 (i) holds (as ∇ωfj is bounded). Assumption 2 (ii) can be easily
verified by differentiating (32) with respect toω or using the sufficient condition provided in Appendix
C.

G.2 Top-m arms indentification in dueling bandits

The top-m arms identification task consists in identifying the m best arms. To solve this task in
dueling bandits [53], the learner is allowed to sequentially pick pairs of arms. If the pair (i, j) is
selected, the learner observes the realization of a Bernoulli r.v. with mean µi,j . If µi.j > 1/2, we say
that arm i is better than arm j. The preference matrix µ = (µi,j) is assumed to satisfy:

(a) µi,j = 1− µj,i, ∀(i, j) ∈ [K]2.

(b) µi,i =
1

2
.

(c) if min(µi,j , µj,k) ≥ 1

2
, then µi,k ≥

1

2
.
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Under this assumption, µ induces a total order �µ, defined by i �µ j if and only if µi,j ≥ 1/2. Also
note that under this assumption, µ is defined only through its entries above the diagonal, hence by
K(K−1)

2 parameters. We denote by σµ a permutation of [K], such that σµ(1) �µ σµ(2) �µ . . . �µ
σµ(m) �µ . . . �µ σµ(K). We are ready to define

Λ =
{
µ ∈ (0, 1)

K(K−1)
2 : µ satisfies (c) and (d)

}
,

where (d) ensures that the set of m best arms is unique:

(d) we can select σµ such that µσµ(m),σµ(m+1) >
1

2
.

In our framework, the set of answers is I = {A ⊂ [K] : |A| = m} and for any A ∈ I, SA = {µ ∈
Λ : µi,j > 1/2 if i ∈ A but j /∈ A}. We can readily check that SA is open.

Now let µ ∈ Λ. Assume w.l.o.g. that σµ = Id (identity permutation); in particular 1 �µ 2 �µ
. . . �µ m �µ . . . �µ K. The true answer is [m]. If we define:

J[m] = {σ ∈ Θ : ∃k > m s.t σ(k) ≤ m} and ∀σ ∈ J[m], C[m]
σ = {λ ∈ Λ : σλ = σ},

where Θ is the set of all the permutations of [K], then Alt(µ) = ∪σ∈J[m]
C[m]
σ and C[m]

σ is a convex

set (for any λ, λ̃ ∈ C[m]
σ , for any of their convex combinations λ′, we have σλ′ = σ). Assumption 1

is hence verified. For each σ ∈ J[m], we discuss the most confusing parameter in the set C[m]
σ against

µ at the point ω. Namely, we solve

min
λ∈C[m]

σ

∑
k<`

ωk,`d(µk,`, λk,`),

where ωk,` is the proportion of times that (k, `) is pulled (in dueling bandits, pulling (k, `) is
equivalent to pulling (`, k), hence we only count for k < `). For any k < `, we can readily show that

λσ(ω,µ)k,` =

{
1
2 if σ(`) < σ(k),

µk,`, otherwise.

This implies that

∇ωfσ(ω,µ) =
∑
k<`

σ(`)<σ(k)

d(µk,`,
1

2
). (34)

As shown in Proposition 1, 〈ω,∇fσ(ω,µ)〉 = fσ(ω,µ), and thus

fσ(ω,µ) =
∑
k<`

σ(`)<σ(k)

ωk,`d(µk,`,
1

2
). (35)

In view of (34), Assumptions 2 (i) holds (as ∇ωfσ is bounded). Assumption 2 (ii) can be easily
verified by differentiating (34) with respect toω or using the sufficient condition provided in Appendix
C.
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H Zero-sum Game: the Equivalent Linear Program

In this section, we explain how to transform the zero-sum game (11) used in our FW update to a
simple Linear Program (LP). The zero-sum game is:

z(t)← argmax
z∈Σ

min
h∈HFµ̂(t−1)

(x(t−1),rt)
〈z − x(t− 1), h〉

For clarity, we use the following notations: x = x(t − 1) ∈ Σ̊, µ = µ̂(t − 1), r = rt, and we
assume w.l.o.g. that j = 1, . . . , J are the indexes in Ji?(µ) verifying fj(x,µ) < Fµ(x) + r. Hence,
HFµ(x, r) = cov({∇ωfj(x,µ)}Jj=1).

Define the payoff matrix M ∈ RK×J with Mk,j = 〈ek − x,∇ωfj(x,µ)〉, for all k ∈ [K], j ∈ [J ].
Then the problem (11) can be formulated as

max
z∈Σ

min
y∈RJ

z>My (36)

s.t. yj ≥ 0,∀j ∈ [J ] and y1 + y2 + . . .+ yJ = 1.

Denote by (z?,y?) the solution of the problem (36). Then the solution z(t) of (11) is

z(t) = x+
∑
k

z?k(ek − x) = z?.

Standard textbooks in game theory present procedures to solve (36) by transforming it into an LP
[37, 48, 52]. We give below the method we used in our experiments.

If z ∈ RK is fixed, the best response of the y-player is a pure strategy. The pay-off of this strategy is
of course min{(z>M)1, . . . , (z

>M)J}. As a consequence, the optimal strategy for the z-player is
to solve the following problem:

max
z∈Σ

{
min{(z>M)1, . . . , (z

>M)J}
}
. (37)

(37) is transformed to an LP by introducing an auxiliary parameter u ∈ R as a lower bound of
(z>M)j . The problem (37) becomes

max
z∈Σ,u∈R

u (38)

s.t. (z>M)j ≥ u,∀j = 1, . . . , J.
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I Asymptotic Sample Complexity Upper Bound

This section is devoted to the proof of Theorem 1. This theorem summarizes our analysis of FWS, and
its proof heavily relies on results presented in subsequent appendices. Specifically in Appendix J, we
state and prove concentration results quantifying how µ̂(t) concentrates around µ, and how the FW
update in FWS differs from the same update obtained assuming that µ is known. In turn, to establish
these results, we will need continuity arguments presented in Appendix K (e.g., our FW update needs
to be continuous in ω, µ and the parameter r). In Appendix L, we provide useful results related to
the convergence of our variant of the FW algorithm. The proof of Theorem 1 will finally require us to
study the tracking rule, which is done in Appendix M.

Coming back to the present appendix, we start with the almost sure upper bound and then proceed
with the expected upper bound.

I.1 Almost sure upper bound

The proof starts by defining the event

E =
{
Fµ(ω(t))

t→∞−−−→ Fµ(ω?(µ)) and µ̂(t)
t→∞−−−→ µ

}
.

We know that Pµ[E ] = 1 based on the Theorem 7 in Appendix L and on the law of the large number
(every arm will be pulled infinite times because of forced exploration rounds). Since Fµ(ω) is
continuous w.r.t. µ (Lemma 6 in Appendix K), we also have that Fµ̂(t)(ω)

t→∞−−−→ Fµ(ω) uniformly

over ω ∈ Σ̊ almost surely. This further implies that Fµ̂(t)(ω(t))
t→∞−−−→ Fµ(ω?(µ)) a.s. (by applying

triangular inequality). Let ε ∈ (0, 1). Under the event E , there exists a constant t1 such that for
t ≥ t1, Fµ̂(t)(ω(t)) ≥ (1− ε)Fµ(ω?(µ)). Hence, denoting N∗ = N ∪ {∞}, we get:

τ = inf
{
t ∈ N∗ : tFµ̂(t)(ω(t)) ≥ β(t, δ)

}
≤ t1 ∨ inf {t ∈ N∗ : t(1− ε)Fµ(ω?(µ)) ≥ β(t, δ)}

≤ t1 ∨ inf

{
t ∈ N∗ : t ≥ β(t, δ)T ?(µ)

(1− ε)

}
≤ c1(Λ) ∨ t1 ∨ inf

{
t ∈ N∗ : t ≥ log(c2(Λ)t)T ?(µ)

(1− ε)δ

}
.

where the second inequality stems from the fact that T ?(µ)−1 = Fµ(ω?(µ)) and the final inequality
stems from (7). Finally, applying Lemma 4 (presented at the end of this appendix) with α = 1, c1 =
(1−ε)δ
T?(µ) and c2 = c2(Λ) to the above inequality yields that

τ ≤ c1(Λ) + t1 +
T ?(µ)

(1− ε)δ

[
log

(
T ?(µ)c2(Λ)e

δ(1− ε)

)
+ log log

(
T ?(µ)c2(Λ)

δ(1− ε)

)]
.

This implies Pµ
[
lim supδ→0

τ
log(1/δ) ≤ T

?(µ)
]

= 1 and Pµ [τ <∞] = 1, for all δ ∈ (0, 1). The
fact that the algorithm is δ-PAC directly follows from the property of β(t, δ), i.e. (8).

I.2 Expected upper bound

Let ε ∈ (0, 1). Based on the conditions imposed on {rt}, there exist Tε,L ∈ N such that

t∑
s=1

rs < tε and trt > L if t ≥ Tε,L. (39)

Let M = max{
(

32D+3L
ε

)11
, T

11
8

ε,L, (4K + 1)
11
8 } and for any T ≥M , define the functions h(T ) = min

{
t ∈ N : t ≥ T 8

11 + 2,
√
t/K ∈ N

}
,

h(T ) = min
{
t ∈ N : t ≥ T 2

11h(T ),
√
t/K ∈ N

}
.

(40)
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We are now ready to introduce our "good" events E1,ε(T ) =
(⋂T

t=h(T ) E
(t)
1,ε

)
and E2,ε(T ) =(⋂T

t=h(T ) E
(t)
2,ε

)
, where

E(t)
1,ε =

{
max
z∈Σ

min
h∈HFµ (x(t−1),rt)

〈z − x(t− 1), h〉 − ε < min
h∈HFµ (x(t−1),rt)

〈z(t)− x(t− 1), h〉

}
E(t)

2,ε =
{
µ̂(t) ∈ Si?(µ) and

∣∣Fµ̂(t)(ω)− Fµ(ω)
∣∣ < ε, ∀ω ∈ Σ̊

}
.

E(t)
1,ε can be seen as the event that the error of solution in FW-update (11) is bounded by ε, which yields

that Fµ(x(t)) converges to Fµ(ω?). As a consequence of the tracking rule, Fµ(ω(t)) converges to
Fµ(ω?) as well. More precisely, as stated in Lemma 3 at the end of this appendix, under E1,ε(T ),
Fµ(ω?)− Fµ(ω(t)) < 5ε. Now, E(t)

2,ε is the event that the error of objective function is bounded by ε
uniformly, so that FWS can stop while it is close to the real maximum. Overall, under E1,ε(T )∩E2,ε(T ),
we obtain that

min{τ, T} ≤ h(T ) +

T∑
t=h(T )

1{τ > t}

≤ h(T ) +

T∑
m=h(T )

1{tFµ̂(t)(ω(t)) < β(t, δ)}

≤ h(T ) +

T∑
t=h(T )

1{t(Fµ(ω?(µ))− 6ε) < β(t, δ)}

≤ h(T ) +
β(T, δ)

Fµ(ω?(µ))− 6ε
,

where the third inequality is due to the fact that under event E2,ε(T ) and in view of Lemma 3, when
t ≥ h(T ), we have Fµ̂(t)(ω(t)) ≥ Fµ(ω(t))− ε ≥ Fµ(ω?(µ))− 6ε.

Now introduce a constant

T0(δ) = inf{T ∈ N : h(T ) +
β(T, δ)

Fµ(ω?(µ))− 6ε
≤ T}.

The above inequalities show that E1,ε(T ) ∩ E2,ε(T ) ⊂ {τ ≤ T}. Therefore,

Eµ [τ ] ≤
∞∑
T=1

Pµ [τ ≥ T ]

≤
(

32D + 3L

ε

)11

+ T
11
8

ε,L + (4K + 1)
11
8 + T0(δ) +

∞∑
T=M+1

Pµ[(E1,ε(T ) ∩ E1,ε(T ))
c
].

(41)

The term
∑
T≥1 Pµ[(E1,ε(T ) ∩ E2,ε(T ))

c
] on the right-hand side of the inequality (41) can be upper

bounded by concentration inequalities, which we summarize in Lemma 2 and prove in the next
appendix. As for T0(δ), we further introduce another small constant ε̃ ∈ (0, 1) and observe that

T − h(T ) ≥ T

1 + ε̃
when T ≥

(
2

ε̃

)11

.
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Therefore, based on the above fact, and (7),

T0(δ) ≤
(

2

ε̃

)11

+ inf

{
T ∈ N :

β(T, δ)

Fµ(ω?(µ))− 6ε
≤ T

1 + ε̃

}
≤ max

{(
2

ε̃

)11

, c1(Λ)

}
+ inf

{
T ∈ N :

1

Fµ(ω?(µ))− 6ε
log(

c2(Λ)T

δ
) ≤ T

1 + ε̃

}

≤ max

{(
2

ε̃

)11

, c1(Λ)

}

+
1 + ε̃

Fµ(ω?(µ))− 6ε

[
log

(
(1 + ε̃)c2(Λ)e

δ(Fµ(ω?(µ))− 6ε)

)
+ log log

(
(1 + ε̃)c2(Λ)

δ(Fµ(ω?(µ))− 6ε)

)]
,

(42)

where the second inequality is due to (7) and the last inequality is a consequence of Lemma 4 with
α = 1, c1 = (Fµ(ω?(µ))− 6ε)/(1 + ε̃) and c2 = c2(Λ)/δ. Substituting the upper bounds provided
by (42) and Lemma 2 into (41), we obtain that

lim sup
δ→0

Eµ [τ ]

log(1/δ)
≤ 1 + ε̃

Fµ(ω?(µ))− 6ε
.

Since ε and ε̃ can be arbitrary small and T ?(µ) = 1
Fµ(ω?(µ)) , we get the desired result.

I.3 Additional lemmas

Lemma 2. Under Assumptions 1, we have
∞∑

T=M

Pµ[(E1,ε(T ) ∩ E1,ε(T ))
c
] <∞.

Refer to Appendix J for a proof.

Lemma 3. For any T ≥M = max{
(

32D+3L
ε

)11
, T

11
8

ε,L, (4K+1)
11
8 }, under event E1,ε(T )∩E2,ε(T )

and Assumption 2, FWS algorithm with a sequence {rt}t≥1, satisfying (i), (ii) stated in Theorem 1
attains that

Fµ(ω?)− Fµ(ω(t)) ≤ 5ε, ∀t = h(T ), h(T ) + 1, . . . , T.

Refer to Appendix L.3 for a proof.

Lemma 4 (Lemma 18 in [20]). For α ∈ [1, e/2], any two constants c1, c2,

x =
1

c1

[
log

(
c2e

cα1

)
+ log log

(
c2
cα1

)]
is such that c1x ≥ log(c2x

α).
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J Concentration Results

This section presents the proof of Lemma 2 and the necessary technical lemmas (see Appendix J.2).
We restate the lemma:

Lemma 2. Under Assumptions 1, we have
∞∑
T=1

Pµ[(E1,ε(T ) ∩ E1,ε(T ))
c
] <∞.

J.1 Proof of Lemma 2

We first derive sufficient conditions for the events E1,ε(T ) and E2,ε(T ) to hold separately. Then, we
will conclude applying the concentration inequality.

(i) The event E1,ε(T ):
Let t = h(T ), . . . , T . Applying the second part of Theorem 3 in Appendix K withω = x(t−1) , r =
rt, and π = µ̂(t− 1), and hence z(ω, r,π) = z(t), we get that: if ‖µ̂(t− 1)− µ‖∞ < ξ1,ε,

max
z∈Σ

min
h∈HFµ (x(t−1),rt)

〈z − x(t− 1), h〉 − ε < min
h∈HFµ (x(t−1),rt)

〈z(t)− x(t− 1), h〉.

From the definition of E(t)
1,ε , we deduce that:

E(t)
1,ε ⊂ {‖µ̂(t− 1)− µ‖∞ < ξ1,ε} , ∀t = h(T ), . . . , T.

(ii) The event E2,ε(T ):
From Lemma 6 in Appendix K, we directly deduce that

E(t)
2,ε ⊂ {‖µ̂(t)− µ‖∞ < ξ2,ε} , ∀t = h(T ), . . . , T.

Summarizing (i), (ii), we get that

Pµ [(E1,ε(T ) ∩ E2,ε(T ))
c
] ≤

T∑
t=h(T )−1

K∑
k=1

Pµ [|µ̂k(t)− µk| ≥ ξ(ε)] , (43)

where ξ(ε) = min{ξ1,ε, ξ2,ε}. To ensure the distance between the µ̂(t) and µ is small, we need to
pull each arm sufficiently often up to t. From Lemma 13 in Appendix M, we have

min
k
txk(t) ≥

√
t

K
− 1,∀t ≥ 4K.

Hence, Lemma 12 from Appendix M implies that

Nk(t) ≥
√

t

K
−K,∀k ∈ [K], t ≥ 4K.

Applying Chernoff inequalities yields that ∀k ∈ [K], t ≥ 4K,

Pµ [|µ̂k(t)− µk| ≥ ξ(ε)] ≤ eK
[
exp

(
−
√
tA−k

)
+ exp

(
−
√
tA+

k

)]
, (44)

where A−k = d(µk− ξ(ε), µk)/
√
K and A+

k = d(µk + ξ(ε), µk)/
√
K. Substituting the upper bound

(44) into (43), we get using a union bound for any T ≥M ,

Pµ [(E1,ε(T ) ∩ E2,ε(T ))
c
] ≤ eK

K∑
k=1

T∑
t=h(T )−1

[
exp

(
−
√
tA−k

)
+ exp

(
−
√
tA+

k

)]

≤ eK
K∑
k=1

∫ ∞
T

8
11

[
exp

(
−
√
tA−k

)
+ exp

(
−
√
tA+

k

)]
dt,
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where the second inequality follows from the definition (40) of h(T ). We then apply Lemma 5
presented below with α = 8

11 , β = 1
2 and A = A+

k (= A−k resp.) and deduce that

∞∑
T=M

Pµ [(E1,ε(T ) ∩ E2,ε(T ))
c
] ≤ eK

K∑
k=1

∫ ∞
0

(∫ ∞
T

8
11

exp
(
−
√
tA−k

)
+ exp

(
−
√
tA+

k

)
dt

)
dT

= eK
K∑
k=1

2Γ( 19
4 )

d(µk − ξ(ε), µk)
19
4

+
2Γ( 19

4 )

d(µk + ξ(ε), µk)
19
4

< 34eK
K∑
k=1

1

d(µk − ξ(ε), µk)
19
4

+
1

d(µk + ξ(ε), µk)
19
4

<∞,

where the second inequality is due to Γ( 19
4 ) < 17. This concludes the proof.

J.2 Technical lemmas

Lemma 5. Let α, β ∈ (0, 1) and A > 0.∫ ∞
0

(∫ ∞
Tα

exp(−Atβ)dt

)
dT =

Γ( 1
αβ + 1

β )

βA
1
αβ+ 1

β

.

Proof. ∫ ∞
0

(∫ ∞
Tα

exp(−Atβ)dt

)
dT =

∫ ∞
0

αTα exp(−ATαβ)dT

=
1

βA
1
αβ+ 1

β

∫ ∞
0

x
1
αβ+ 1

β−1e−xdx

=
Γ( 1

αβ + 1
β )

βA
1
αβ+ 1

β

.
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K Continuity Arguments

The main goal of this section is to prove Proposition 1. We also state and prove Theorem 3 and
Lemma 6. These results are used in Appendix J.

In the first subsection K.1, we present some of the ingredients used to establish our continuity results.
The proofs of Proposition 1, Theorem 3 and Lemma 6 are presented in K.2, K.3 and K.4, respectively.

Theorem 3. For any ε > 0, there exist a constant ξ1,ε > 0, which depends on µ and ε, such that if
‖π − µ‖∞ < ξ1,ε , then µ ∈ Λ,∣∣∣∣∣max

z∈Σ
min

h∈HFπ (ω,r)
〈z − ω, h〉 −max

z∈Σ
min

h∈HFµ (ω,r)
〈z − ω, h〉

∣∣∣∣∣ < ε

2
, ∀(ω, r) ∈ Σ̊× (0, 1), (45)

and ∣∣∣∣∣ min
h∈HFπ(ω,r)

〈z − ω, h〉 − min
h∈HFµ (ω,r)

〈z − ω, h〉

∣∣∣∣∣ < ε

2
, ∀(z,ω, r) ∈ Σ× Σ̊× (0, 1). (46)

As a consequence, if we fix some (ω, r,π) ∈ Σ̊× (0, 1)× Λ, where ‖π − µ‖∞ < ξ1,ε, and further
select z(ω, r,π) ∈ argmaxz∈Σ minh∈HFπ (ω,r)〈z − ω, h〉, the above two inequalities yield that

max
z∈Σ

min
h∈HFµ (ω,r)

〈z − ω, h〉 − ε < min
h∈HFµ (ω,r)

〈z(ω, r,π)− ω, h〉.

Lemma 6. For any ε > 0, there is ξ2,ε > 0, which depends on µ and ε, s.t. if ‖π − µ‖∞ < ξ2,ε,
then

π ∈ Si?(µ) and |Fπ(ω)− Fµ(ω)| < ε,∀ω ∈ Σ̊.

K.1 Continuity and differentiablity of value functions

We introduce some definitions and results taken from [16], and also used recently in [11, 10] in
the bandit literature. [11] concerns the continuity of the optimal allocation when there are multiple
correct answers for active learning. [10] applies it for the regret minimization problem, but it is
restricted to the single-valued analysis.

Definition 2. Let f : U → R be a function where U is a non-empty subset of a topological space.
The level sets of f is defined as for y ∈ R,

Lf (y, U) = {x ∈ U : f(x) ≤ y} ,
L<f (y, U) = {x ∈ U : f(x) < y} .

We say that f is lower semi-continuous on U if all the level sets Lf (y, U) are closed. It is inf-
compact on U if all these level sets are compact. And it is upper semi-continuous if all the strict
level sets L<f (y, U) are open.

Suppose X and Y are Hausdorff topological spaces. Let u : X × Y → R be a function and
Φ : X ⇒ S(Y) be a set-valued function, where S(Y) is the set of non-empty subsets of Y. We are
interest in a minimization problem of the form:

v(x) = inf
y∈Φ(x)

u(x, y) ,

Φ∗(x) = {y ∈ Φ(x) : u(x, y) = v(x)} .

For U ⊂ X, let the graph of Φ restricted to U be GrU (Φ) = {(x, y) ∈ U × Y : y ∈ Φ(x)} .

Definition 3. A function u : X× Y → R is called K-inf-compact on GrX(Φ) if for all non-empty
compact subset C of X, u is inf-compact on GrC(Φ).
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There are two versions of Berge’s theorem used in our paper. The first one asks Φ to be compact-
valued. The second one relaxes this assumption but requires an additional assumption on the object
function u. Besides, we introduce K(X) = {F ∈ S(X) : F is compact }.

Theorem 4 ([4]). Let X and Y be Hausdorff topological spaces. Assume that

• Φ : X ⇒ K(X) is continuous (i.e. both lower and upper hemicontinous),

• u : X× Y→ R is continuous.

Then the function v : X→ R is continuous and the solution multifunction Φ∗ : X→ S(Y) is upper
hemicontinuous and compact valued.
Theorem 5 ([16]). Assume that

• X is compactly generated,

• Φ : X ⇒ S(Y) is lower hemicontinuous,

• u : X× Y→ R is K-inf-compact and upper semi-continuous on GrX(Φ).

Then the function v : X→ R is continuous and the solution multifunction Φ∗ : X ⇒ S(Y) is upper
hemicontinuous and compact valued.

All the above theorems are about the continuity of the value function of a parameterized optimization
problem. We also need an additional lemma to guarantee the differentiability. The following lemma
is one of the variant of the envelope theorem, which provides an important tool in optimization and
has several applications in economics.

Lemma 7 (Corollary 299 in [6]). Let X be a metric space and Y is a nonempty open subset in RK .
Let u : X× Y → R and assume ∂u

∂y exists and is continuous in X× Y . For each y ∈ Y , let x?(y)

minimizes u(x, y) over x ∈ X. Set
v(y) = u(x?(y), y).

Assume that x? : Y → X is a continuous function. Then v is continuously differentiable and
d

dy
v(y) =

∂u

∂y
(x?(y), y) .

K.2 Proof of Proposition 1

With fixed j ∈ Ji, we prove the proposition in two steps.

(i) fj is continuous on Σ× Si and λj is unique, continuous on Σ̊× Si.

We apply Theorem 4 with the following substitutions:
• X = Σ× Si,
• Y = cl(Cij),

• Φ(ω,µ) = cl(Cij),

• u(ω,µ,λ) =
∑K
k=1 ωkd(µk, λk).

As Φ is a constant correspondence and u is a continuous mapping, we immediate obtain that λj is
upper hemicontinuous and fj is continuous on Σ× Si by Theorem 4.

Observe that d(µ, ·) is strictly convex on cl(Cij) when the distributions are from a one-parameter
exponential family and recall mink ωk > 0 for all ω ∈ Σ̊, so is the weighted sum. We conclude that
the uniqueness of the solution function, λj , stems from the strict convexity of the objective function.
Thus, the continuity of λj holds as the consequence of the uniqueness and its upper hemicontinuity.

(ii) fj is differentiable on Σ̊× Si and ∇ωfj(ω,µ) =
∑K
k=1 d(µk,λj(ω,µ)k) on Σ̊× Si.

This is a consequence of Lemma 7 using the following substitutions:
• X = cl(Cij),

• Y = Σ̊× Si,
• x?(ω,µ) = λj(ω,µ),

• u(λj(ω,µ),ω,µ) =
∑K
k=1 ωkd(µk,λj(ω,µ)k).
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Under these substitutions, fj is continuously differentiable as x? is continuous from (i). The results
follow directly.

K.3 The continuity of solution of (11) – Proof of Theorem 3

Before we prove the theorem, we state and prove some preliminary results. For the simplicity and
clarity, we make a convention that µ ∈ Si for some i ∈ I. We also define the maps ψ1 and ψ2 as:

ψ1 :(ω, r,π, z) 7→ min
h∈HFπ(ω,r)

〈z − ω, h〉,

ψ2 :(ω, r,π) 7→ max
z∈Σ

min
h∈HFπ(ω,r)

〈z − ω, h〉.

Lemma 8. ψ1(ω, r,π, z) is continuous on Σ̊× (0, 1)× Si × Σ.

Proof. We apply Theorem 4 with the following substitutions:

• X = Σ̊× (0, 1)× Si × Σ,
• Y = RK ,

• Φ(ω, r,π, z) = HFπ (ω, r),
• u(ω, r,π, z, h) = 〈z − ω, h〉.

As u is obviously continuous, it only remains to prove that Φ is continuous.

Let {(ωn, rn,πn)}∞n=1 be a sequence converging to (ω, r,π) ∈ Σ̊ × (0, 1) × Si. Also, let
HFπ (ω, r) = cov{∇ωfjm(ω,π)}Mm=1 for some {jm}Mm=1 ∈ Ji. Arbitrarily select h ∈ HFπ (ω, r).
Then there exists α1, . . . , αm ≥ 0 such that

M∑
m=1

αjm = 1 and h =

M∑
m=1

αjm∇ωfjm(ω,π).

As (ωn, rn,πn)
n→∞−−−−→ (ω, r,π) and {fj}j∈Ji are continuous from Proposition 1, there is N ∈ N

such that

∇ωfjm ∈ HFπ(ωn,rn), or equivalently fjm(ωn,πn) < F (ωn,πn) + rn,

for all m = 1, . . . ,M, n ≥ N. In the following, we show lower and upper hemicontinuity for Φ
separately.

Lower hemicontinuity:
For n ≥ N , we select hn =

∑M
m=1 αjm∇ωfjm(ωn,πn) then hn

n→∞−−−−→ h as ∇ωfjm’s are
continuous by Proposition 1. This implies the lower hemicontinuity of Φ

Upper hemicontinuity:
Let U be an open set containing HFπ (ω, r) = cov{∇ωfjm(ω,π)}Mm=1. Because U is open, there
exist ε > 0 such that HFπ (ω, r) +B(0, ε) ⊂ U , where + is a Minkowski addition and B(0, ε) is the
K-dimensional ball with diameter ε. According to Proposition 1, there exists an integerN ′ ≥ N such
that ‖∇ωfjm(ωn,πn)−∇ωfjm(ω,π)‖∞ < ε for all m = 1, . . . ,M, n ≥ N ′. Thus, if n ≥ N ′,

HFπn (ωn, rn) = cov{∇ωfjm(ωn,πn)}Mm=1} ⊂ HFπ (ω, r) +B(0, ε) ⊂ U ,

and the upper hemicontinuity follows.

Summarizing, by continuity of Φ and u, we conclude that ψ1 is also continuous by Theorem 4.

Lemma 9. ψ2(ω, r,π) is continuous on Σ̊× (0, 1)× Si.

Proof. We apply Theorem 4 with the following substitutions:

• X = Σ̊× (0, 1)× Si,
• Y = Σ,

• Φ(ω, r,π) = Σ,
• u(ω, r,π, z) = ψ1(ω, r,π, z).
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From Lemma 8, ψ1 is continuous. Notice that Φ is a constant map and hence continuous, so Theorem
4 directly implies the conclusion.

We are now ready to prove the theorem.

Proof of Theorem 3: We prove the inequality (45) using Lemma 9. The inequality (46) can be
obtained analogously using Lemma 8. Let φ be a function defined on Si as

φ(π) = min
{
− |ψ2(ω, r,π)− ψ2(ω, r,µ)| : (ω, r) ∈ Σ̊× (0, 1)

}
.

φ is a continuous function on Σ̊× Si:
We apply Theorem 5 with the following substitutions:

• X = Si,
• Y = Σ̊× (0, 1),

• Φ(π) = Σ̊× (0, 1),
• u(λ,ω, r) = − |ψ2(ω, r,π)− ψ2(ω, r,µ)|.

As X = Si is a metric space, it is compactly generated. Φ is continuous for it is a constant map. As for
u, the upper semi-continuity follows from Lemma 9. It only remains to show that u is K-inf compact.
Let C ⊂ Si be a compact set and let y ∈ R. We show that Lu(y, C × Σ̊ × (0, 1)) is a compact
by checking that it is bounded and closed. Boundness directly follows from the fact Σ̊ × (0, 1) is
bounded and C is compact. As for closeness, u is a continuous function from Lemma 9, which also
implies that Lu(y, C × Σ̊× (0, 1)) is closed. Thus Theorem 5 implies that φ is a continuous function.

By definition of φ, φ(µ) = 0. Since φ is continuous, there exists ξ1,ε such that φ(π) > −ε/2 for all
|π − µ| < ξ1,ε. In other words, the inequality (45) holds.

K.4 Proof of Lemma 6

Assume i?(µ) = i for some i ∈ I for clarity. According to Assumption 1, Si is open, and we know
that π ∈ Si when π is close enough to µ. Hence, it remains to show that there exists a constant
ξ2,ε > 0 such that |Fπ(ω)− Fµ(ω)| < ε

2 , for all |π − µ| < ξ2,ε. We consider a function φ, which
is defined below, and show its continuity.

φ(π) = min
ω∈Σ̊
− |Fπ(ω)− Fµ(ω)| , ∀π ∈ Si.

φ is a continuous function on Si:
We apply Theorem 5 with the following substitutions:

• X = Si,
• Y = Σ̊,

• Φ(λ) = Σ̊,
• u(λ) = − |Fπ(ω)− Fµ(ω)|.

As X = Si is a metric space, it is compactly generated. Φ is continuous for it is a constant map. As
for u, the upper semi-continuity is followed by Proposition 1. It only remains to show that u is K-inf
compact. Let C ⊂ Si be a compact set and let y ∈ R. We show that Lu(y, C × Σ̊) is a compact by
checking that it is bounded and closed. Boundness directly follows from the fact Σ̊ is bounded and C
is compact. As for closeness, u is a continuous function from Proposition 1, which also implies that
Lu(y, C × Σ̊) is closed. Theorem 5 hence implies that φ is a continuous function.

By the definition of φ, φ(µ) = 0. Since φ is continuous, there exists ξ2,ε such that φ(λ) > −ε/2, or
equivalently |Fπ(ω)− Fµ(ω)| < ε

2 , for all |π − µ| < ξ2,ε. This completes the proof.
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L Convergence of the Frank-Wolfe Algorithm

In this appendix, we study the performance of our variant of the FW algorithm. We assume that the
real parameter µ is used in the updates rather than its estimate.

Notations. In the following, for brevity, we drop the subscript µ. For instance, Fµ is replaced by F ;
Ji?(µ) and i?(µ) become J and i?. We also use ∇fj instead of ∇ωfj (as we will not differentiate
fj w.r.t. another argument).

L.1 Smoothness of the objective function

We state below the main properties of the objective function F . These properties will be instrumental
in our convergence analysis.

L.1.1 F is Lipschitz

Proposition 3. F is a L-Lipschitz function on Σ with respect to the infinity norm.

Proof. Recall Assumption 2 and apply of mean value theorem. We get that fj’s are L-Lipschitz on
Σ̊. As fj’s are continuous functions on Σ (see K.2 (i)), we can further extend the Lipschitzness from
Σ̊ to Σ. Next we show that F is L-Lipstchitz. For any x,y ∈ Σ, we have that

F (x) = min
j∈J

fj(x) ≥ min
j∈J

(fj(y)− L ‖x− y‖∞)

≥ min
j∈J

fj(y)− L ‖x− y‖∞ = F (y)− L ‖x− y‖∞ .

This concludes the proof.

L.1.2 Curvature of F

The definition (5) of the curvature and Assumption 2 allow us to bound the curvature of fj inside
Σγ . The following Proposition states that inside Σγ , the first order approximation of fj remains
controlled.
Proposition 4. Let γ ∈ (0, 1

K ), x ∈ Σγ and z ∈ Σ. Under Assumption 2, we have

fj(x) + 〈y − x,∇fj(x)〉 − fj(y) ≤ 8Dα2

γ
,

where j ∈ J and y = x+ α(z − x) for some α ∈ (0, 1
2 ].

Proof. Let us drop the subscript j in fj for clarity. Consider

u =
1

2
(x+ z). (47)

As x,y, z,u are on the same line, we can re-write y as:

y = x+ α(z − x) = 2αu+ (1− 2α)x.

The definition of u implies that x,u ∈ Σ γ
2

. Let α′ = 2α ∈ [0, 1], Assumption 2 (ii) and the
definition (5) lead to

f(x) + 〈y − x,∇f(x)〉 − f(y) ≤ 2Dα′2

γ
=

8Dα2

γ
.

Next, consider F = minj∈J fj instead of fj .
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Corollary 1. Let γ ∈ (0, 1/K), r ∈ (0, 1), x ∈ Σγ and z ∈ Σ. If α is a positive number s.t.
α < min{ 1

2 ,
r
L}, then

F (y) ≥ F (x) + α min
h∈HF (x,r)

〈z − x, h〉 − 8Dα2

γ
,

where y = (1− α)x+ αz.

Proof. If F (x) = fj(x) = fj(y) = F (y) for some j ∈ J , the result directly follows from
Proposition 4 as∇fj(x) ∈ HF (x, r).

Otherwise, assume that we have two distinct j1, j2 ∈ J such that F (x) = fj1(x) < fj2(x)
and F (y) = fj2(y) < fj1(y). As shown in the proof of Proposition 3, fj is L-Lipschitz and
‖x− y‖∞ = α ‖z‖∞ < r

L . We deduce that fj2(x) < F (x) + r, which is equivalent to∇fj2(x) ∈
HF (x, r). Consequently, choosing h = ∇fj2(x) yields that

F (x) + 〈y − x, h〉 − F (y) ≤ fj2(x) + 〈y − x, h〉 − fj2(y) ≤ 8Dα2

γ
,

where the last inequality is from Proposition 4. The corollary is proved.

L.2 Properties of HΦ(x, r)

Here we consider some functions, φ1, . . . , φn on Σ and define Φ(x) = mini φi(x),∀x ∈ Σ. It is
clear that ∂Φ(x) ⊂ HΦ(x, r). The following result relates HΦ(x, r) to the r-subdifferential of Φ.
Recall that for r ∈ (0, 1), the r-subdifferential of Φ is defined as ∂rΦ(x) = {h ∈ RK : Φ(y) <
Φ(x) + 〈y − x, h〉+ r for all y ∈ Σ}.
Lemma 10. If Φ = mini∈[n] φi where {φj}nj=1 are concave differentiable functions defined on Σ̊,
then

HΦ(x, r) ⊂ ∂rΦ(x),∀x ∈ Σ̊, r > 0. (48)

Proof. Let x ∈ Σ̊, r > 0 be fixed andA = {i ∈ [n] : φi(x) < Φ(x) + r}. Let h ∈ HΦ(x, r). It can
be written as h =

∑
i∈A αi∇φi(x) ∈ HΦ(x, r), where αi ≥ 0,∀i ∈ A and

∑
i∈A αi = 1. Observe

that for any y ∈ Σ̊, Φ(y) ≤ φi(y), ∀i ∈ A. Thus,

Φ(y)− Φ(x)− 〈y − x, h〉 <
∑
i∈A

αi [φi(y)− φi(x) + r − 〈y − x,∇φi(x)〉] ≤
∑
i∈A

αir = r,

where the last inequality stems for the concavity of the φi’s. The above inequality, valid for any
h ∈ HΦ(x, r), implies that HΦ(x, r) ⊂ ∂rΦ(x).

The next property is sometimes called primal-dual gap, see [24]. Interestingly, this property together
with Lemma 10 tell us that the maxmin value computed at each iteration (11) can serve as an estimate
of the gap.
Lemma 11 ([41]). Let Φ = mini∈[n] φi where {φj}nj=1 are concave differentiable functions defined
on Σ. Then, for any x ∈ Σ,

max
z∈Σ

min
h∈∂rΦ(x)

〈z − x, h〉 ≥ max
y∈Σ

Φ(y)− Φ(x)− r.

L.3 The convergence of FWS under E1,ε(T ) ∩ E2,ε(T )

Recall the definition of our "good" event (see Appendix I): E1,ε(T ) =
(⋂T

t=h(T ) E
(t)
1,ε

)
and E2,ε(T ) =(⋂T

t=h(T ) E
(t)
2,ε

)
where

E(t)
1,ε =

{
max
z∈Σ

min
h∈HFµ (x(t−1),rt)

〈z − x(t− 1), h〉 − ε < min
h∈HFµ (x(t−1),rt)

〈z(t)− x(t− 1), h〉

}
,

E(t)
2,ε =

{
µ̂(t) ∈ Si?(µ) and

∣∣Fµ̂(t)(ω)− Fµ(ω)
∣∣ < ε, ∀ω ∈ Σ̊

}
.
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In what follows, we use the notation: ∆t = F (ω?)− F (x(t)). In our convergence analysis, we first
show that ∆t is a decreasing sequence under E1,ε(T ). Then, we prove that ∆t becomes small when
t ≥ h(T ).

Theorem 6. Let t ∈ N satisfying that b
√

t
K c /∈ N and t ≥ 4K. Under the event E(t)

1,ε ∩ E
(t)
2,ε and

iteration (11) with parameter such that L < rtt, we have

∆t ≤
t− 1

t
∆t−1 +

rt + ε

t
+

16D
√
K

t
3
2

. (49)

Proof. To simplify our presentation, we denote y = x(t), x = x(t− 1) and z = z(t). Also, let α
be the step size 1

t and r = rt.

Lemma 13 implies that x ∈ Σ 1
2
√
tK

(when t ≥ 4K), and hence, Corollary 1 with γ = 1
2
√
tK

yields:

F (y) ≥ F (x) + α min
h∈HF (x,r)

〈z − x, h〉 − 16Dα2
√
tK

≥ F (x) + α

(
max
ω∈Σ

min
h∈HF (x,r)

〈ω − x, h〉 − ε
)
− 16Dα2

√
tK, (50)

where the second inequality directly follows from the selection of z and the event E(t)
1,ε . As

HF (x, r) ⊂ ∂rF (x), shown in Lemma 10, Lemma 11 implies that the second term in the right-hand
side of inequality (50) can be lower bounded as:

max
ω∈Σ

min
h∈HF (x,r)

〈ω − x, h〉 − ε ≥ max
ω∈Σ

min
h∈∂rF (x)

〈ω − x, h〉 − ε

≥ ∆t−1 − r − ε. (51)

Substituting the inequalities (51) into (50), we obtain that

F (y) ≥ F (x) + α (∆t−1 − r − ε)− 16Dα2
√
tK.

Subtracting F (ω?) on both sides of the above inequality, we get that

∆t ≤ (1− α)∆t−1 + α(r + ε) + 16Dα2
√
tK. (52)

The result follows from the inequality (52) and α = 1
t .

The following theorem states the convergence of FWS. This convergence is obtained by repeatedly
applying Theorem 6.

Theorem 7. Let {rt}t≥1 be a sequence of positive numbers satisfying (i) limt→∞
1
t

∑t
s=1 rs = 0,

and (ii) limt→∞ trt = ∞. Suppose T ≥ max{
(

32D+3L
ε

)11
, T

11
8

ε,L, (4K + 1)
11
8 }, where Tε,L is

defined in (39). Then, under event E1,ε(T ) ∩ E2,ε(T ), applying FWS algorithm with {rt}t≥1, we have:

F (ω?)− F (x(t)) ≤ 4ε, ∀t = h(T ), h(T ) + 1, . . . , T.

Proof. We start the proof by dividing the time horizon into several blocks, where each block consists
of K successive rounds. We introduce m as the index of the block, with a slight abuse of notation,
we denote ∆̃m = ∆mK as the gap at the end of the m-th block.

We provide recursive properties of ∆̃m in two cases (a) m is a square number, (b) m is not a square
number for mK ≥ h(T ).

Step 1. Recursive properties of ∆̃m under (a) and (b).

For (a), x(mK) = 1
m ( 1

K , . . . ,
1
K ) + m−1

m x(mK −K). Proposition 3 directly yields that

∆̃m ≤ ∆̃m−1 +
L

m
.
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Since ∆̃m−1 is bounded by L, the above equation implies that

m∆̃m ≤ (m− 1)∆̃m−1 + 2L. (53)

For (b), recall that T ≥ T
11
8

ε,L, (39) and (40), for any t ≥ h(T ), we have that t ≥ max{Tε,L, 4K}.
Thus, letting Z = 16D

√
K, Theorem 6 can be applied to derive a series of inequalities for t =

(m− 1)K + 1, . . . ,mK:

[(m− 1)K + 1]∆(m−1)K+1 ≤ (m− 1)K∆(m−1)K + ε+
Z

[(m− 1)K + 1]
1
2

+ r(m−1)K+1,

[(m− 1)K + 2]∆(m−1)K+2 ≤ [(m− 1)K + 1]∆(m−1)K+2 + ε

+
Z

[(m− 1)K + 2]
1
2

+ r(m−1)K+2,

...

(mK)∆mK ≤ (mK − 1)∆mK−1 + ε+
Z

(mK)
1
2

+ rmK .

Summing over them and dividing by K on both sides, we obtain that:

m∆̃m ≤ (m− 1)∆̃(m−1) + ε+ Z(m) + r(m), (54)

where Z(m) =
∑mK
t=(m−1)K+1

Z
K
√
t

and r(m) =
∑mK
t=(m−1)K+1

rt
K .

Our next step consists in studying the recursion between two successive square numbers. We
introduce:

p =

√
h(T )

K
, p =

√
h(T )

K
, and P(T ) = {p ∈ N : h(T ) ≤ Kp2 ≤ T}. (55)

Step 2. For any q ≥ p, ∆̃q ≤ 3ε.
We first fix some p ∈ P(T ), summing the inequalities (54) over m = p2 + 1, . . . , (p+ 1)2 − 1 and
inequality (53) with m = (p+ 1)2 gives:

(p+ 1)2∆̃(p+1)2 ≤ p2∆̃p2 + 2pε+ 2L+

(p+1)2∑
m=p2+1

Z(m) + r(m). (56)

Then for any q ≥ p, we sum the inequalities (56) from p = p to p = q − 1 and get that

q2∆̃q2 ≤ p2∆̃p2 + 2ε

q−1∑
p=p

p+ 2L(q − p− 2) +

q2∑
m=p2

Z(m) + r(m)

≤ p2L+ 2ε

∫ q

0

tdt+ 2Lq +

∫ q2K

0

Z

K
√
t
dt+

q2K∑
t=1

rt
K

≤ h(T )L

K
+ εq2 + 2Lq +

2Zq√
K

+

q2K∑
t=1

rt
K
. (57)

Recall from (40) and (55) that h(T ) ≥ T
2
11h(T ) and q2K ≥ p2K = h(T ) ≥ max{T 2

11K,Tε,L}.
Divide by q2 both sides of the inequality (57). We obtain:

∆̃q2 ≤
L

T
2
11

+ ε+
2(Z/

√
K + L)

T
1
11

+
1

q2K

q2K∑
t=1

rt

≤ ε+
2Z/
√
K + 3L

T
1
11

+
1

q2K

q2K∑
t=1

rt ≤ 3ε,
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where the last inequality stems from T ≥
(

32D+3L
ε

)11
=
(

2Z/
√
K+3L
ε

)11

and the definition of Tε,L
(see (39)).

Step 3. For any t ≥ h(T ), we have ∆t ≤ 4ε.

Now suppose t ∈ {Kq2 + 1, . . . ,K(q + 1)2 − 1} for some q ≥ p. Recall that

x(t) =
Kq2

t
x(Kq2) +

(t−Kq2)

t
u, for some u ∈ Σ,

which yields that ∥∥x(Kq2)− u
∥∥
∞ ≤

t−Kq2

t
‖u‖∞ ≤

K(2q + 1)

Kq2
≤ 3

q
≤ ε

L
,

as (40) implies that q ≥ T
2
11 h(T )
K ≥ 3L

ε . Consequently, Proposition 3 yields∣∣F (x(t))− F (x(Kq2))
∣∣ ≤ ε.

Combining this with the inequality from Step 2, we conclude that F (ω?) − F (x(t)) ≤ 4ε for all
t ≥ h(T ).

A consequence of Lemma 12 about the tracking rule (presented in the next appendix) and Theorem 7
is Lemma 3.

Proof of Lemma 3. Lemma 12 implies that ‖ω(t)− x(t)‖∞ ≤
K−1
t and then by Proposition 3,

F (ω(t)) ≥ F (x(t))− (K − 1)L

t
≥ F (x(t))− ε,

where the last inequality is due to the fact that t ≥ h(T ) ≥ T 2
11h(T ) ≥ KL

ε (see definition of h(T )

and h(T ) (40)). Combining Theorem 7 and the above inequality leads to the desired result. �
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M Tracking Rule

This section presents the analysis of the tracking rule in FWS and related results.
Lemma 12 (Lemma 7 in [12]). Let {z(s)}s∈N ∈ Σ be a sequence of vectors such that
z(1), . . . ,z(K) are e1, . . . , eK . We recursively define for t ≥ K,

∀k ∈ [K], Nk(K) = 1,

∀t ≥ K + 1, At ∈ argmax
k′

∑t
s=1 zk′(s)

Nk′(t− 1)
, ∀k ∈ [K], Nk(t) =

t∑
s=1

1{As = k},

(where the tie-breaking rule in the argmax is arbitrary). Then for all t ≥ K, all k ∈ [K],

t∑
s=1

zk(s)− (K − 1) ≤ Nk(t) ≤
t∑

s=1

zk(s) + 1.

Lemma 13. At any time t ≥ 4K, under FWS, we have x(t) ∈ Σ√ 1
Kt−

1
t

⊂ Σ 1
2
√
tK

.

Proof. This lemma directly follows from the forced exploration procedure of FWS when bt/Kc is a
square number, x(t) move to the center of Σ for K successive rounds. Hence, for all k = 1, . . . ,K

txk(t) =

t∑
s=1

zk(s) ≥ 1

K

t∑
s=1

1{z(s) = (1/K, . . . , 1/K)}

=

√
b t
K
c ≥

√
t

K
− 1 ≥ 1

2

√
t

K
.

Dividing t on the both sides, we get the result.
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N Non-asymptotic Sample Complexity

Looking back at our asymptotic sample complexity analysis, we note that the reason why we could
not derive results for the mild confidence regime (non-asymptotic) is that we cannot quantify the cost
paid for events P [(E1,ε ∩ E2,ε)c] (see (41)-(42)). Looking in more details, the probability of these
events cannot be precisely controlled because our continuity arguments (see Lemma 6 and Theorem
3 in Appendix K) rely on maximal theorems, and the constants ξ1,ε and ξ2,ε involved there have an
unknown dependence in ε.

To get non-asymptotic sample complexity upper bounds, we use mean value theorems instead, and
obtain simple upper bounds of ξ1,ε and ξ2,ε. This section is organized as follows: we present a
stronger version of Lemma 6 and Theorem 3 in N.1 and N.2, respectively; the proof of Theorem 2 is
then provided in N.3.

For convenience, we restate the additional assumption and our non-asymptotic sample complexity
upper bound.

Assumption 3. For any µ ∈ Λ, there exist constants κ,E > 0, s.t. if ‖π − µ‖∞ ≤ κ, then

π ∈ Si?(µ), ∀ω ∈ Σ̊, j ∈ Ji?(µ),∇πd(πk,λj(ω,π)k) is continuous and
∥∥∥∇πd(πk,λj(ω,π)k)

∥∥∥
1

≤ E, ∀k = 1, . . . ,K.

Theorem 2. Consider FWS algorithm with a sequence {rt}t≥1 as in Theorem 1. Under Assumptions
1, 2, and 3, the sample complexity τ of the algorithm satisfies: for any µ ∈ Λ, δ ∈ (0, 1), and any
ε < min{κE/2, 1}, ε̃ < 1,

Eµ [τ ] ≤ 1 + ε̃

Fµ(ω?(µ))− 6ε

[
log

(
(1 + ε̃)c2(Λ)e

δ(Fµ(ω?(µ))− 6ε)

)
+ log log

(
(1 + ε̃)c2(Λ)

δ(Fµ(ω?(µ))− 6ε)

)]
+ Ψ(K,D,E,L, c1(Λ), ε) + T

5
4

ε,L,

where Tε,L is a constant such if t ≥ Tε,L, then
∑t
s=1 rs < tε and trt > L. The constant Ψ is

polynomial in (D,E,L, c1(Λ), 1/ε) and exponential in K. The precise definition of Ψ is given at the
end of this section.

N.1 Continuity of the primal problem

First, we present the analogue of Lemma 6 (Appendix K).

Lemma 14. Under Assumptions 1 and 3, for any µ ∈ Λ and ε ∈ (0, κE), if ‖µ− π‖∞ ≤
ε
E , then

|Fπ(ω)− Fµ(ω)| < ε,∀ω ∈ Σ̊.

Proof. Fix j ∈ Ji?(µ), and let ω ∈ Σ̊. Define the function g : [0, 1]→ R as

g(t) = fj(ω, tµ+ (1− t)π).

Since ‖µ− π‖∞ ≤
ε
E ≤ κ, Assumption 3 says that tµ + (1 − t)π ∈ Si?(µ), which implies g is

well-defined. Based on the mean value theorem, there is t ∈ (0, 1) s.t.
〈g′(t),µ− π〉 = fj(ω,µ)− fj(ω,π). (58)

For clarity, we denote tµ + (1 − t)π = π̃ and its k-th component as π̃k. Also, ∂fj∂µ (ω,µ) is the
partial derivative of fj(ω,µ) w.r.t. µ. (58) yields that

|fj(ω,µ)− fj(ω,π)| = |g′(t)| =
∣∣∣∣〈∂fj∂µ

(ω, π̃),µ− π〉
∣∣∣∣

=

K∑
k=1

ωk〈∇π̃d(π̃k,λj(ω, π̃)k),µ− π〉

≤
K∑
k=1

ωk

∥∥∥∇π̃d(π̃k,λj(ω, π̃)k)
∥∥∥

1
‖µ− π‖∞ ≤ ε, (59)
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where the last inequality is the result of Assumption 3, ‖µ− π‖∞ < ε
E and ω ∈ Σ̊.

As for the objective function, we have

Fπ(ω)− Fµ(ω) = min
j
fj(ω,π)−min

j
fj(ω,µ) ≤ min

j
fj(ω,µ) + ε−min

j
fj(ω,µ) = ε,

where the inequality holds in view of (59). The other inequality follows similarly, which completes
the proof.

N.2 Envelope theorem at a saddle point

As Lemma 14 in Appendix K, we wish to apply the envelop theorem for the perturbation analysis of
the equation (11). For clarity, we redefine the notations used in Appendix K.

Let X and Y be Hausdorff topological spaces and u : X × Y × [0, 1] → R be a function. We
introduce K(X) (resp. K(Y)) as the collection of all compact sets in X (resp. Y). Assume that
X : [0, 1] ⇒ K(X) and Y : [0, 1] ⇒ K(Y) are nonempty correspondences. We say that (x?(t), y?(t))
is a saddle point of u at some fixed t ∈ [0, 1] if it satisfies that

max
x∈X(t)

u(x, y?(t), t) ≤ u(x?(t), y?(t), t) ≤ min
y∈Y (t)

u(x?(t), y, t). (60)

It is well-known that the existence of the above saddle point (x?(t), y?(t)) implies that (see e.g. [15]
Chapter 6. Proposition 1.2)

max
x∈X(t)

min
y∈Y (t)

u(x, y, t) = min
y∈Y (t)

max
x∈X(t)

u(x, y, t) = u(x?(t), y?(t), t). (61)

Next, introduce the value function v(t) for t ∈ [0, 1] as v(t) = maxx∈X(t) miny∈Y (t) u(x, y, t). The
existence of the saddle point (x?(t), y?(t)) further implies that there exist subsets X?(t) ⊆ X(t),
Y ?(t) ⊂ Y (t) such that ([15] Chapter 6. Proposition 1.4)

u(x, y, t) = u(x?(t), y?(t), t), ∀(x, y) ∈ X?(t)× Y ?(t).

In this case, we can derive an envelope theorem at the saddle points [39].

Theorem 8 (Theorem 5 in [39]). Let u and its derivative with respect to t, ut, be continuous functions
on X × Y × [0, 1]. Let X,Y be continuous correspondences such that the existence of saddle point
is guaranteed for all t ∈ [0, 1]. Then v(t) is differentiable in (0, 1), and

v′(t) = max
x∈X(t)

min
y∈Y (t)

ut(x, y, t) = min
y∈Y (t)

max
x∈X(t)

ut(x, y, t), ∀t ∈ (0, 1).

Using Theorem 8, we are able to develop the stronger version of Theorem 3.

Theorem 9. Let µ ∈ Λ, ε ∈ (0, κE). For any r ∈ (0, 1), and ω ∈ Σ̊, if another parameter π ∈ Λ
satisfies that ‖π − µ‖∞ ≤

ε
2E , then under Assumptions 1 and 3, we get:∣∣∣∣max

z∈Σ
min
h∈HFπ

〈z − ω, h〉 −max
z∈Σ

min
h∈HFµ

〈z − ω, h〉
∣∣∣∣ ≤ ε

2
, ∀(ω, r) ∈ Σ̊× (0, 1), (62)

and ∣∣∣∣ min
h∈HFπ

〈z − ω, h〉 − min
h∈HFµ

〈z − ω, h〉
∣∣∣∣ ≤ ε

2
, ∀(z,ω, r) ∈ Σ× Σ̊× (0, 1). (63)

Proof. We prove (62). (63) will hold for similar reasons as discussed later. Fix µ ∈ Λ, r ∈ (0, 1)

and ω ∈ Σ̊.

(i) Verifying the conditions of Theorem 8.

We apply Theorem 8 with X = Σ− ω = {x ∈ RK : ∃z ∈ Σ s.t x = z − ω} and Y = Σ(Ji?(µ)),
which denotes the

∣∣Ji?(µ)

∣∣ − 1-simplex. As ‖π − µ‖∞ ≤
ε

2E < κ, Assumption 3 holds. Thus,
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π ∈ Si?(µ), we then define u and its derivative with respect to t as:

u(x,y, t) =
∑
k

∑
j

xkyjd(π̃(t)k,λj(ω, π̃(t))k),

ut(x,y, t) =
∑
k

∑
j

xkyj〈∇π̃(t)d(π̃(t)k,λj(ω, π̃(t))k),µ− π〉.

where π̃(t) = tµ+(1−t)π, for all t ∈ [0, 1]. Observe that both u, ut are continuous on X×Y×[0, 1].
Further define the correspondences{

X(t) = X = Σ− ω,
Y (t) =

{
y ∈ Σ(Ji?(µ)) : yj = 0 if fj(ω, π̃(t)) ≥ Fπ̃(t)(ω) + r

}
.

X(t) is a constant so it is continuous. As for the continuity of Y (t), the argument is simi-
lar to that used to prove the hemicontinuity of HFπ (ω, r) (see the proof of Lemma 8). Since
maxx∈X(t) miny∈Y (t) u(x, y, t) forms a zero-sum matrix game for any t ∈ [0, 1], the saddle point
always exist (von Neumann minimax theorem, see [52] chapter 20). Thus, the conditions of Theorem
8 are verified.

(ii) Applying mean value theorem.

Observe that

v(0) = max
x∈Σ−ω

min
y∈Y (0)

∑
k

∑
j

xkyjd(πk,λj(ω,π)k)

= max
x∈Σ−ω

min
h∈HFπ(ω,r)

〈x, h〉 = max
z∈Σ

min
h∈HFπ (ω,r)

〈z − ω, h〉. (64)

Likewise, we have
v(1) = max

z∈Σ
min

h∈HFµ (ω,r)
〈z − ω, h〉. (65)

Theorem 8 implies that v(t) is differentiable and the mean value theorem yields that there exists
t0 ∈ (0, 1) such that v(1)− v(0) = maxx∈X(t0) miny∈Y (t0) ut(x,y, t0). Therefore,

|v(1)− v(0)| =
∣∣∣∣ max
x∈X(t0)

min
y∈Y (t0)

ut(x,y, t0)

∣∣∣∣
≤ max

k,j

∥∥∥∇π̃(t0)d(π̃(t0)k,λj(ω, π̃(t0))k)
∥∥∥

1
‖π − µ‖∞

≤ (E)(
ε

2E
) ≤ ε

2
, (66)

where the first inequality is Hölder inequality and the second inequality stems from Assumption
3. By substituting equations (64)-(65) into the left-hand side of the inequality (66), we deduce the
inequality (62) claimed in the theorem.

As for the inequality (63), the argument will hold by replacing X(t) = {z}.

N.3 Completing the non-asymptotic analysis

Based on Theorem 9 and Lemma 14 in this section, we can state the new concentration result that
will replace Lemma 2 (Appendix I.3).
Lemma 15. Under Assumptions 1 and 3, for any µ ∈ Λ, ε ∈ (0, κE), under FWS,

∞∑
T=1

Pµ [(E1,ε(T ) ∩ E2,ε(T ))
c
] ≤

K∑
k=1

34eK

d(µk − ε
2E , µk)

19
4

+
34eK

d(µk + ε
2E , µk)

19
4

.

Proof. Replacing ξ(ε) by ε
2E in the proof of Lemma 2 (see Appendix J.1), we obtain the lemma (as

in the proof of Lemma 2).
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Proof of Theorem 2
Plugging the inequality derived in Lemma 15 and (42) in (41), we conclude that

E [τ ] ≤
K∑
k=1

(
34eK

d(µk − ε
2E , µk)

19
4

+
34eK

d(µk + ε
2E , µk)

19
4

)
+

(
32D + 3L

ε

)11

+ (4K + 1)11 + max

{
c1(Λ),

(
2

ε̃

)11
}

+
1 + ε̃

Fµ(ω?(µ))− 6ε

[
log

(
(1 + ε̃)c2(Λ)e

δ(Fµ(ω?(µ))− 6ε)

)
+ log log

(
(1 + ε̃)c2(Λ)

δ(Fµ(ω?(µ))− 6ε)

)]
.

This is the upper bound claimed in Theorem 2. �
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