
Safe Learning of PDDL Domains with Conditional Effects
- Supplementary Material

Primary Keywords: (2) Learning; (8) Knowledge Representation/Engineering

Domain Information
In Table 1 we present the information on the domains con-
taining conditional effects available at https://github.com/AI-
Planning/classical-domains. For each domain we describe the
properties observed in the domain, whether the used solvers,5

i.e. Fast Downward and Fast Forward were able to solve
the dataset problems with the original PDDL domain, and
whether we used the domain in our experiments. The proper-
ties shown in the domains are as follows:

• Disjunctive antecedents - i.e., whether a conditional effect10

can appear in more than one "when” clause.
• Existential antecedents / preconditions - whether the do-

main’s actions contain existential quantifiers in the pre-
conditions or the effects.

• Object equality in antecedents / preconditions - whether15

the antecedents contained statements in which two param-
eters must be equal.

• Type hierarchy - whether the domain has nested types.
• implications - whether the actions contain implications in

their preconditions.20

In our experiments, we only used domains where our as-
sumptions hold. In addition, SAM Learning of Conditional
Effects (Conditional-SAM) does not support object equality
checks in the antecedents thus, domains containing these
conditions were not used in the experiments. Finally, type25

hierarchy is also not supported by Conditional-SAM since it
can lead to ambiguities in predicate matching.

The domains in which all of the above holds are brief-
case, cave-diving, citycar, elevators (miconic), maintenance,
nurikabe and satellite. We did not use cave-diving in our30

experiments since both planners could not solve any of the
problems and thus we could not create a trajectories dataset.

Safety Proof
Theorem 0.1. The action model M ′ learned by
Conditional-SAM is safe w.r.t the action model that35

generated the input trajectories T .

Proof. Conditional-SAM learns a superset of the original ac-
tions model’s preconditions. Thus, for each action a and state
s such that a is applicable according to M ′, it is guaranteed
to be applicable according to M∗.40

Given an action a and a state s in which a is applicable ac-
cording to M ′, the resulting state s′ = aM ′(s), is equivalent
to s′∗ = a∗M (s), we prove this by contradiction. Assume that
s′ ̸= s′∗. There can be two possibilities: (1) ∃l ∈ s′ such that
l /∈ s′∗, or (2) ∃l /∈ s′ such that l ∈ s′∗. Since a is applicable 45

in s according to M ′, it is also applicable according to M∗.
Since Conditional-SAM only adds effects observed in the tra-
jectories, according to rule 3, there cannot be a literal l such
that (1) holds. If l ∈ s′∗ but l /∈ s′, then Conditional-SAM
did not observe l as a result of a and thus did not add it as an 50

effect. According to line 15 one of (l ∨NotAnte) hold in s. If
l ∈ s, then l ∈ s′ according to M ′ (since a does not remove
it), which contradicts (2). Similarly, if NotAnte ⊆ s, then the
antecedent of l according to M∗ is negated in s thus l /∈ s′∗

which also contradicts (2). Thus Conditional-SAM learns a 55

safe action model with respect to M∗.

Space Complexity Proof
Theorem 0.2. The space complexity of Conditional-SAM is
O
(
|A||L|n+1

(
e
n

)n)
.

For every action a ∈ A and every literal l ∈ L, 60

Conditional-SAM maintains the data structures pre(a),
PosAnte(l, a) and MustBeResult(a). The size of pre(a) is
at most |L|. The size of MustBeResult(a) is also at most
|L|. The size of PosAnte(l, a) is observed when it is ini-
tialized, containing every conjunction of literals of size 65

at most n, including the empty set (representing the an-
tecedent true). Thus, the size of PosAnte(l, a) is at most∑n

i=0

(|L|
i

)
≤

(
|L|·e
n

)n

. We note that the space complexity
of BuildActionModel is linear in the size of PosAnte. Conse-
quentially, the space complexity is 70

|A||L|+ |A||L|+ |A||L|
n∑

i=0

(
|L|
i

)
∈ O

(
|A||L|n+1

(e
n

)n)
(1)

Recall that n is a fixed constant — the maximal number of
literals in an antecedent.

Runtime Complexity Proof
Theorem 0.3. The runtime complexity of Conditional-SAM
is O

(
|A||L|n

(
e
n)

n
)
+ |T ||L|n+1

(
e
n)

n
))

. 75

Domain Used
in experiments

Planners can solve
with the real model

Disjunctive
antecedents

(Assumption 4)

Existential
preconditions / effects

Object equality
in antecedents /

precondition

Type
hierarchy Implications

Airport-adl X - X V X X V
Briefcase V V X X X X X
Caldera X - X X V V X

Cavediving X X X X X X X
Citycar V V X X X X X

Elevators V V X X X X X
maintenance V V X X X X X

Nurikabe V V X X X X X
Schedule X - X X V X X
Satellite V V X X X X X
Settlers X - X X V V X
Spider X - X X X V X

Table 1: Detailed information about the domains containing conditional effects available in the domains repository -
https://github.com/AI-Planning/classical-domains

.

The initialization process requires the same runtime com-
plexity as its space complexity, i.e., O(|A||L|n+1

(
e
n

)n
).

Then, Conditional-SAM iterates over all action triplets
and applies the inductive rules in Def. 2. This requires
O(|T ||L|n+1

(
e
n

)n
), since as discussed above, the size of80

PosAnte(l, a) is at most |L|n
(
e
n

)n
.

Finally, in the BuildActionModel function, the runtime
complexity is bounded by the most intensive computational
part, which is the part that creates the restrictive conditions.
The complexity of this part is linear in PosAnte(l, a). Thus85

the total runtime complexity of BuildActionModel is bounded
by O

(
|A||L|n

(
e
n)

n
))

Thus, the total runtime complexity of
the algorithm is O

(
|A||L|n

(
e
n)

n
)
+ |T ||L|n+1

(
e
n)

n
))

.

Analysis of Sample Complexity for
Approximate Completeness90

Proof. In view of Theorem 0.1, it suffices to show that for a
pair ⟨P,Π⟩ drawn from D, the preconditions of Π in M ′ are
satisfied for each step of the execution of Π in the real action
model M∗; indeed, the states obtained by M ′ and M∗ are
identical, so Π will then also solve P in M ′.95

Recall that Conditional-SAM passes the sets pre,
MustBeResult, and PosAnte for each action a and, in the
case of PosAnte, for each literal l to Algorithm 2. A literal l
only appears in pre(a) for an action a if ¬l has never been
observed in the pre-state when action a was taken. Sim-100

ilarly, a clause ¬c may appear as (a subclause of) some
clause of the precondition pre∗ of a in M ′ if c remains in
the antecedents set PosAnte(e, a) of some candidate effect
e ∈ MustBeResult(a) for which more than one such candi-
date remains, or for which e /∈ MustBeResult(a) and c is in105

PosAnte(e, a). Note that if ¬c is falsified in a state s (pro-
hibiting a in s in M ′), s ⊆ c. Hence, if the execution of
Π in M∗ would result in a being taken in s resulting in s′,
Conditional-SAM would remove c from PosAnte(e, a) for
all e /∈ s′, and c from PosAnte(e, a) if c ⊈ s and e ∈ s′ \ s.110

We now claim that the probability that Conditional-SAM
obtains a set of antecedents PosAnte(l, a) and set of precon-
ditions pre(a) that prohibits the execution of Π with prob-

ability greater than ϵ is at most δ: a is only prohibited by
pre∗ in s if (1) l ∈ s for some ¬l ∈ pre(a); if (2) s ⊆ c 115

for some c ∈ PosAnte(l, a) where l /∈ MustBeResult(a) and
¬l ∈ s; or, if (3) l ∈ MustBeResult(a), ¬l ∈ s, s ⊆ c
for some c ∈ PosAnte(l, a), and s ⊈ c′ for some (other)
c′ ∈ PosAnte(l, a). When the execution of Π includes tak-
ing such an action a in such a prohibited state s, in the first 120

case we see Conditional-SAM removes the falsified ¬l from
pre(a); for every effect e of a in s, any c ⊈ s are removed
from PosAnte(e, a) so cases (2) and (3) cannot occur; and for
every literal ẽ that is not an effect of a in s, since ẽ /∈ s′, all
(c, ẽ) for c ⊆ s are removed from PosAnte(ẽ, a), so neither 125

case (2) nor (3) can occur. Thus, we see that either at least
one literal is deleted from pre or at least one c is deleted from
some PosAnte(e, a) when such an (s, a, s′) occurs in the tra-
jectory, so that a is permitted by pre∗(a) in s subsequently.
Since literals are only deleted from pre and clauses are only 130

deleted from PosAnte, Conditional-SAM then cannot return
the eliminated collection of preconditions and antecedents
sets.

Quantitatively, for any collection of preconditions and
antecedents sets for which such a problem and plan 135

would be obtained from D with probability greater than ϵ,
Conditional-SAM can only return the corresponding collec-
tion with probability at most (1 − ϵ)m when it is given m
examples drawn independently from D. Observe that there
are 3|F | possible sets pre for each a ∈ A, and 2

∑n
k=0 2k(|F |

k) 140

possible sets PosAnte for each l and a. Thus, there are at most

3|F ||A|22|F ||A|
∑n

k=0 2k(|F |
k) ≤ eln(3)|F ||A|+2 ln(2)|F ||A|(2|F |e

n)
n

possible collections of pre and PosAnte. Since (1 − ϵ)m ≤
e−mϵ, taking a union bound over all possible collections of
pre and PosAnte that prohibit the execution of the associated
plan with probability at least ϵ, we find that for the given m, 145

the total probability of Conditional-SAM obtaining such a
collection of preconditions and antecedents sets is at most δ.
Thus, with probability 1− δ, the action model indeed permits
executing the plans associated with problems drawn from D
with probability at least 1− ϵ as needed. 150

Proof of Sample Complexity Lower Bound for
Safe and Approximately Complete Algorithms
For any p ≥ 3|A|, consider a domain in which there is a no-
op action with no effects, and for each other action ai ∈ A
there is a “goal” fluent fi that is the effect of exactly one155

action, and this is the only effect. The domain includes an
additional set of (p− |A|)/2 “flag” fluents, and (p− |A|)/2
“forbidden” fluents (so there are |A| + 2(p − |A|)/2 = p
fluents in total).

Now consider the following distribution D on problems160

and plans. The initial states have all goal fluents set to false,
all but one (uniformly random) forbidden fluent true, and
exactly n of the flag fluents (uniformly at random) true. With
probability 1 − 4ϵ, the goal is empty. Otherwise, the goal
includes a single goal fluent, chosen uniformly at random,165

that should be set to true. All other goal fluents, as well as the
one forbidden fluent, must be set to false. The corresponding
Π always consists of a plan with a single action; for the
empty goal, the agent takes the no-op action, and otherwise
the agent takes the action corresponding to the fi goal fluent170

to be set true in the goal.
For any problem with a non-empty goal that we did not

observe in the training set, the action model that is obtained
from the true action model by adding the forbidden fluent as
a conditional effect of the corresponding goal action with the175

flag fluents as the condition, is consistent with the training set.
Indeed, either the action appears with a different set of flags
so that one of the flag fluents in this condition is falsified
(and the corresponding effect does not occur), a different
forbidden fluent is false (so the relevant forbidden fluent is180

already true and the effect is not observed), or else the action
differs from the one we need to achieve this goal, and then
the effect is identical to the true action model. Therefore,
no safe action model can permit taking the action needed to
achieve the goal, and all other actions would reach a state in185

which some incorrect goal fluent is set to true and cannot be
subsequently set to false.

Since the no-op goal only comprises 1 − 4ϵ probability
in the goal distribution, we need to observe at least a 3/4
fraction of the possible goals for a safe action model to attain190

probability 1− ϵ. But, there are |A| goals, (p−|A|)/3 ≥ p/3

forbidden fluents, and
(
(p−|A|)/3

n

)
≥

(
p
3n

)n
sets of flags, and

in expectation, a sample of size m only contains 4ϵm exam-
ples of these pairs of goals and flag settings. We, therefore,
need Ω

(
1
ϵ (|F |/3)n|F ||A|

)
examples; likewise, to even ob-195

serve any of the nonempty goals with probability 1− δ, we
need Ω

(
1
ϵ log

1
δ

)
examples, giving the claimed bound.

