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ABSTRACT

We introduce a new framework for 2D molecular graph generation using 3D
molecule generative models. Our Synthetic Coordinate Embedding (SYCO) frame-
work maps 2D molecular graphs to 3D Euclidean point clouds via synthetic co-
ordinates and learns the inverse map using an E(n)-Equivariant Graph Neural
Network (EGNN). The induced point cloud-structured latent space is well-suited
to apply existing 3D molecule generative models. This approach simplifies the
graph generation problem into a point cloud generation problem followed by node
and edge classification tasks, without relying on molecular fragments nor autore-
gressive decoding. Further, we propose a novel similarity-constrained optimization
scheme for 3D diffusion models based on inpainting and guidance. As a con-
crete implementation of our framework, we develop EDM-SYCO based on the
E(3) Equivariant Diffusion Model (EDM). EDM-SYCO achieves state-of-the-art
performance in distribution learning of molecular graphs, outperforming the best
non-autoregressive methods by more than 26% on ZINC250K and 16% on the
GuacaMol dataset while improving conditional generation by up to 3.9 times.1

1 INTRODUCTION

Machine learning-based drug discovery has recently shown great potential to accelerate the drug
development process while reducing costs associated with clinical trials (Jiménez-Luna et al., 2020;
Kim et al., 2020). Among the steps of this process, generating novel molecules or optimizing
properties such as drug-likeness or synthesizability are of crucial importance. Molecular graph
generation is an active area of research that aims to solve these tasks (Gómez-Bombarelli et al., 2018).

Molecular graph generation is challenging due to the discrete and sparse nature of graphs as well as
the presence of symmetric substructures such as rings. Many methods have been proposed to tackle
this problem, offering different tradeoffs (Jin et al., 2018; Shi et al., 2020). A common approach is to
train a Variational Autoencoder (VAE) to encode the graph into a continuous fixed-size latent space,
then decode it back – oftentimes autoregressively – node-by-node (Liu et al., 2018) or fragment-by-
fragment (Jin et al., 2018; 2020; Maziarz et al., 2021). While such methods achieve good generation
and optimization performance, they have inherent limitations. First, using a fixed-sized latent space
does not account for the variable size of molecular graphs, which can go from a few atoms for small
molecules to thousands for macromolecules. Second, autoregressive decoding requires choosing a
concrete generation order (Schneider et al., 2015), which prevents learning permutation-invariant
graph distributions. Fueled by recent developments in diffusion models (Ho et al., 2020; Austin et al.,
2021), new approaches to molecular graph generation have emerged that overcome these limitations
(Jo et al., 2022; Vignac et al., 2022; Jo et al., 2023). These methods define a discrete diffusion process
directly on the node and edge attributes and learn to reverse it to generate graphs all at once, i.e., not
autoregressively. However, they still lack behind autoregressive methods, struggling to accurately
estimate the joint distribution of nodes and edges.

∗Equal contribution.
1Our code is available at https://github.com/ketatam/SyCo.
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Figure 1: Overview of EDM-SYCO. (Training) First, the autoencoder is trained to map between
molecular graphs and latent Euclidean point clouds. Then, the diffusion model is trained on the fixed
latent space. (Sampling) Starting with a Gaussian sample, the diffusion model denoises it for T steps
to predict the clean point cloud, which is mapped to a molecular graph using the decoder.

In this work, we develop a method that combines the benefits of all-at-once generation with the
benefits of a continuous latent space while avoiding the information bottleneck of fixed-sized latent
spaces. Inspired by recent developments in the adjacent field of 3D molecule generation, we propose
to embed molecular graphs as latent 3D point clouds that implicitly encode the discrete graph structure
in synthetic Euclidean coordinates and use point cloud generative models to learn their distribution.
We call this framework Synthetic Coordinate Embedding (SYCO).

When combined with EDM (Hoogeboom et al., 2022), our framework gives rise to an atom-based,
all-at-once, and permutation-invariant generative model for molecular graphs, which we call EDM-
SYCO, depicted in Figure 1. On the ZINC250K dataset, EDM-SYCO outperforms existing all-at-once
diffusion-based models by more than 26% on distribution learning benchmarks and by up to 15.6 times
on conditional generation benchmarks, closing the gap to autoregressive models and highlighting the
benefit of our continuous latent space on generation and optimization. In addition, we propose a new
similarity-constrained optimization procedure for diffusion models on point clouds without retraining
or specialized architectures, visualized in Figure 3. Notably, our proposed algorithm enables the
addition of new atoms during the reverse diffusion process, addressing a well-known limitation of
prior 3D diffusion models, namely the fixed number of nodes.

2 RELATED WORK

Molecular Graph Generation Early work on molecule generation (Gómez-Bombarelli et al.,
2018; Segler et al., 2018) used language models to generate SMILES (Weininger, 1988), a text-based
representation of molecules. However, this type of representation cannot capture the inherent structure
of molecules well, which are more accurately depicted as graphs. For instance, small changes in
the graph structure may correspond to large differences in the SMILES string (Jin et al., 2018).
Therefore, recent methods have focused on graph-based approaches that can be broadly classified
into two categories. All-at-once generation methods generate nodes and edges in parallel, often in a
multi-step process such as diffusion models (Niu et al., 2020; Jo et al., 2022; Vignac et al., 2022).
Autoregressive methods specify a generation order and generate molecules either atom-by-atom (Li
et al., 2018; Shi et al., 2020) or fragment-by-fragment based on a pre-computed fragment vocabulary
(Jin et al., 2018; 2020; Maziarz et al., 2021; Kong et al., 2022; Geng et al., 2023). EDM-SYCO is an
all-at-once molecular graph generative model that operates on the atom level.

Molecule Generation in 3D Another line of work aims to generate molecules in 3D Euclidean
space and solve a point cloud generation problem (Gebauer et al., 2019; Garcia Satorras et al., 2021;
Ayadi et al., 2025). For instance, EDM (Hoogeboom et al., 2022) and GeoLDM (Xu et al., 2023)
are diffusion-based models for 3D molecule generation that jointly generate atomic features and
coordinates. While tangentially related, these methods solve a different problem from molecular
graph generation and require molecules with 3D information for training. Our proposed SYCO
framework is an attempt to connect these two lines of work by enabling the training of 3D generative
models on graph datasets through synthetic coordinates, formally introducing new graph generation
methods. While we are the first to explore synthetic coordinates for generative models, Gasteiger
et al. (2021) demonstrated that synthetic coordinates improve molecular property prediction tasks.

Latent Generative Models The idea of defining the generative model on a space different from
the original data space is reminiscent of latent generative models (Dai & Wipf, 2019; Vahdat et al.,
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2021). Recently, this approach has become increasingly popular with latent diffusion models. Stable
Diffusion models (Rombach et al., 2022) achieve impressive results on text-guided image generation,
and GeoLDM (Xu et al., 2023) extends this to molecular point cloud generative models. While
EDM-SYCO operates on a similar latent space to GeoLDM, their fundamental difference lies in the
original data space. Our model maps discrete molecular graphs to continuous point clouds and can be
seen as a cross-modality latent generative model. In contrast, GeoLDM embeds point clouds as new
point clouds with a reduced feature dimension.

3 SYNTHETIC COORDINATE EMBEDDING (SYCO) FRAMEWORK

Our goal is to model molecular graph distributions through distributions of Euclidean point clouds that
implicitly encode the graph structure into their coordinates. For this, we propose a novel autoencoder
architecture that maps between molecular graphs and 3D point cloud representations. By training it
using a reconstruction objective, we can reformulate the problem of generating discrete molecular
graphs to an equivalent problem of generating 3D point clouds defined on the induced latent space.

Note on equivariance When dealing with physical objects like molecules, it is important to
consider equivariance. Formally, a function f : A→ B is equivariant to the action of a group G iff
f(TA

g (z)) = TB
g (f(z)) for all g ∈ G, where TA

g and TB
g are the representations of the group element

g in A and B respectively (Serre et al., 1977). As a special case, it is invariant iff f(TA
g (z)) = f(z).

In the context of generative modeling, we aim to learn distributions invariant to the symmetries
of the data, namely graph permutations in our case. In practice, this has the benefit of not relying
on any generation order and enabling efficient likelihood estimation since an invariant likelihood
is identical for all permutations of the same graph. We leverage equivariant architectures such as
EGNNs to learn such distributions, removing the need for data augmentation during training, further
increasing efficiency. EGNNs (Satorras et al., 2021) are a special type of graph neural networks that
learn functions equivariant to rotations, translations, reflections, and permutations of their input point
cloud. More details on this architecture are given in Appendix D. Also note that due to the reflection
equivariance, our model is invariant to chirality.

Notation We introduce helpful notation for the two molecule representations used in this work.
Let N denote the number of atoms of a given molecule. On the one hand, the molecular graph
G = (h,A) ∈ G consists of atoms as nodes and chemical bonds as edges. Each atom has one of
a atom types and one of c formal charges, while each bond has one of b bond types. We represent
atoms as stacked one-hot encodings h ∈ {0, 1}N×(a+c) and chemical bonds as one-hot vectors in
an adjacency matrix A ∈ {0, 1}N×N×b. Note that the molecular graph is sometimes called a "2D
molecule" as it can be typically drawn as a planar graph. On the other hand, the molecular point
cloud P = (h,x) ∈ P is a 3D point cloud, where x ∈ RN×3 represents the coordinates of atoms’
nuclei in Euclidean space. The point cloud encodes the bond information implicitly in the atomic
coordinates. We now present our autoencoder model, whose overview is shown in Figure 2.
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Figure 2: Autoencoder architecture. The
encoder maps a molecular graph to a
point cloud, and the decoder learns the
inverse. Both are trained jointly to mini-
mize the reconstruction loss.

Encoding The encoder Eϕ : G → RN×(d+3) with
parameters ϕ maps a molecule’s graph representation
G = (h,A) to its point cloud representation P = (h,x),
then further compresses it into a node-structured latent
representation z = (z(h), z(x)), where z(h) ∈ RN×d and
z(x) ∈ RN×3 are continuous embeddings for h and x
with d < a+ c and z ∈ RN×(d+3) is their concatenation.

In the first encoding step, the coordinates x are computed
using the ETKDG algorithm (Riniker & Landrum, 2015),
which first computes a molecule’s distance bounds ma-
trix based on typical bond lengths between different atom
types, then produces atomic coordinates that satisfy these
bounds, which are further optimized using a molecular
force field. Crucially, this procedure allows to leverage
chemical domain knowledge as an inductive bias into the
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model and get chemically meaningful 3D conformers. These coordinates encode the bond information
of the molecular graph and ideally define an injective mapping from G to P. Note that this step is not
learned and, thus, not required to be differentiable. In practice, we generate conformers for the whole
training dataset in a preprocessing step and reuse them throughout training.

Then, we apply an EGNN that maps the intermediate representation P = (h,x) to the latent
representation z = (z(h), z(x)), defining the space of the generative model. The main benefit of this
is to incorporate the neighborhood information into each atom’s embeddings and coordinates and
mapping the discrete features h into a continuous and lower-dimensional embedding z(h).

Decoding The decoder Dξ : RN×(d+3) → G with parameters ξ aims to approximate the inverse
function E−1

ϕ and maps the latent point cloud z of a molecule back to its graph representation G. It
consists of an atom and a bond classifier. For each node i, the decoder applies a 2-layer Multi-Layer
Perceptron (MLP) on its latent embedding to predict the logits for the atom type and the formal
charge as ĥi = MLPnode(z

(h)
i ). For each pair of nodes i and j, the bond type is inferred by running

a different 2-layer MLP on their edge features to obtain the corresponding logits as follows:

Âij =
1

2

MLPedge


z(h)i

z
(h)
j

d2ij


+ MLPedge


z(h)j

z
(h)
i
d2ij



 ,

where dij = ∥z(x)i − z
(x)
j ∥2 and we use the simple averaging trick to ensure that Â is symmetric.

Autoencoder Training The encoder and decoder are jointly optimized in a variational autoen-
coder (VAE) framework. We define probabilistic encoding and decoding processes as qϕ(z|G) =
N (Eϕ(G), σ2

0I) and pξ(G|z) =
∏N

i=1 pξ(hi|z)
∏N

j=1 pξ(Aij |z), respectively, where σ0 ∈ R con-
trols the variance in the latent space. The VAE is trained by minimizing the loss function

LV AE = −Eq(G)qϕ(z|G) [pξ(G|z)] , (1)
which, in practice, is computed as the cross-entropy loss. The decoder performs three classification
tasks to reconstruct a molecular graph: atom types, formal charges, and bond types. The total loss is
the unweighted sum of the corresponding three cross-entropy terms.

Table 1: Accuracy of predicting
bond types from 3D coordinates on
ZINC250K. Existing methods use
rule-based algorithms, while we in-
troduce an EGNN-based algorithm.

METHOD ACCURACY

EGNN + MLP 99.93%
MLP 11.77%
RULE-BASED 11.78%

Before continuing with our approach, we present an ablation
study on our autoencoder architecture. The task consists of
predicting all the bond types of a molecule from its 3D coordi-
nates. We compare our EGNN-based approach with (i) an MLP
and (ii) a rule-based system akin to Hoogeboom et al. (2022).
More details on the experimental setup are in Appendix G.1.
Results on ZINC250K are shown in Table 1, and similar results
are observed for GuacaMol. Our autoencoder model achieves
an almost perfect reconstruction accuracy, highlighting the im-
portance of the EGNN in our architecture. This experiment
supports our assumptions (i) that the used mapping from G to
P is injective and (ii) that the decoder can accurately approximate its inverse.

4 EDM-SYCO

Our SYCO framework lifts the graph generation problem to a point cloud generation problem in 3D.
Concretely, we are interested in learning the distribution of latent point clouds z ∼ qϕ(z|G)q(G)
defined by the underlying molecular graph distribution and the trained encoder by approximating it
with a parametric distribution pθ. While this generation problem can, in principle, be approached by
any 3D molecular generative method, this work adapts EDM under the SYCO framework due to its
simplicity and empirical performance in 3D molecule generation tasks (Hoogeboom et al., 2022) .

4.1 EQUIVARIANT DIFFUSION ON LATENT POINT CLOUDS

A diffusion model generates samples by reversing a diffusion process, the process of adding noise to
data (Sohl-Dickstein et al., 2015; Ho et al., 2020). For ease of notation, we flatten the latent repre-
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sentation of the point clouds z, namely their latent coordinates and features, into a one-dimensional
vector denoted as z0 ∈ Rd′

with d′ = N(d+ 3). The diffusion or forward process is a fixed Markov
chain of Gaussian updates that transform z0 into latent variables z1, . . . ,zT of the same dimension
as z0, defined as

q(z1:T |z0) :=
T∏

t=1

q(zt|zt−1), with q(zt|zt−1) := N (zt;
√

1− βtzt−1, βtI), (2)

where βt is typically chosen such that q(zT ) converges to N (zT ;0, I). By defining
αt := 1− βt and ᾱt :=

∏t
i=1 αi, we can also map z0 directly to zt through

q(zt|z0) = N (zt;
√
ᾱtz0, (1− ᾱt)I). (3)

To reverse the above process, we start from a Gaussian noise sample zT and iteratively sample from
the posterior distributions q(zt−1|zt), which is also Gaussian if βt is small (Sohl-Dickstein et al.,
2015). However, estimating them requires using the entire dataset. Therefore, diffusion models learn
a reverse process pθ(z0:T ) := p(zT )

∏T
t=1 pθ(zt−1|zt), with p(zT ) = N (zT ;0, I) and

pθ(zt−1|zt) := N (zt−1;µθ(zt, t), σ
2
t I), (4)

where the mean µθ(zt, t) ∈ Rd′
is parametrized by a neural network.

We follow Ho et al. (2020) and, instead of directly predicting the mean, predict the Gaussian
noise added to the latent point cloud representation during the diffusion process. The mean then
becomes µθ(zt, t) =

1√
αt

(
zt − 1−αt√

1−ᾱt
ϵθ(zt, t)

)
, where ϵθ(zt, t) ∈ Rd′

is the output of the neural
network. Following Hoogeboom et al. (2022), we parametrize ϵθ via an EGNN (Satorras et al.,
2021). Additionally, the reverse process ensures equivariance to translations by defining the learned
distribution pθ(z0) on the zero center of gravity subspace.

This network can then be trained by optimizing the L2 loss between the sampled Gaussian noise at
each step and the network’s output,

LDM = Ez0,ϵ,t

[
∥ϵ− ϵθ(zt, t)∥22

]
. (5)

During sampling, we start from a Gaussian sample zT ∼ p(zT ) and iteratively denoise it by sampling
ϵt ∼ N (0, I) and transforming zt to zt−1:

zt−1 =
1
√
αt

(zt −
1− αt√
1− ᾱt

ϵθ(zt, t))︸ ︷︷ ︸
µθ(zt,t)

+

√
1− ᾱt−1√
1− ᾱt

√
βt︸ ︷︷ ︸

σt

ϵt. (6)

4.2 TRAINING AND SAMPLING FROM EDM-SYCO

After training the autoencoder as described in Section 3, EDM is trained in a second stage by
optimizing the loss function defined in Equation 5. We describe the full training procedure of both
parts in Algorithm 1. Consistent with previous work on latent diffusion models (Rombach et al.,
2022; Xu et al., 2023), we found this two-stage training procedure to perform better than jointly
training the autoencoder and the diffusion model.

For sampling, we need access to the trained EDM and the decoder but not the encoder. First, starting
with a sample zT ∼ N (0, I) representing a random 3D point cloud, we iteratively denoise it with
the diffusion model (Equation 6) to obtain the clean sample z0. Then, we apply the decoder to get
the corresponding molecular graph h,A = Dξ(z0). Algorithm 2 formally describes this procedure,
and Figure 1 further illustrates it. This sampling procedure defines a permutation-invariant molecular
graph distribution. The following proposition, which we prove in Appendix C.2, formalizes this:
Proposition 4.1. The marginal distribution of molecular graphs pθ,ξ(G) = Epθ(z0) [pξ(G|z0)]
defined by the EDM and the decoder, is an SN -invariant distribution, i.e. for any molecular graph
G = (h,A), pθ,ξ(h,A) = pθ,ξ(Ph, PAP ) for any permutation matrix P ∈ SN .

So far, we have assumed that the number of atoms N is fixed across all molecules. In practice,
to generate molecules with different sizes, we follow previous work (Hoogeboom et al., 2022)
and estimate the empirical distribution of the number of atoms in the training set p(N) and use
it to sample different numbers of atoms before running the sampling procedure described above.
In Appendix F.2, we describe the use of conditional distributions to sample N in a constrained
generation or optimization.
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5 CONTROLLABLE GENERATION AND SIMILARITY-CONSTRAINED
OPTIMIZATION

So far, we have introduced our approach to distribution learning on molecular graphs. However,
many tasks in drug discovery require generating molecules with specific conditions such as chemical
properties, similarity constraints, or the presence of certain desirable substructures. In this section, we
describe how we can adapt the sampling procedure of EDM-SYCO (or other models combined with
SYCO) – trained in an unconditional setting – to different conditioning modalities. While previous
work on 3D molecule generation tackled conditional generation (Hoogeboom et al., 2022; Bao et al.,
2022) and scaffolding (Schneuing et al., 2022), the similarity-constrained optimization task (Jin et al.,
2020) has not been addressed in the 3D molecule generation literature. We fill this gap by introducing
a novel sampling algorithm for diffusion models to perform similarity-constrained optimization.

Property-Conditional Generation via Diffusion Guidance In a conditional generation setting, we
want to generate a molecule with a specific property c by sampling from the conditional distribution
q(z|c). To achieve this, we adapt the classifier guidance algorithm (Dhariwal & Nichol, 2021),
initially proposed to guide image diffusion models using a classifier. Instead, we use a property
regressor to guide the generation towards molecules with specific continuous properties similar to
Bao et al. (2022). One can show that the denoising network’s output relates to the score function
of the data distribution via ∇zt

log q(zt) ≈ − 1√
1−ᾱt

ϵθ(zt, t) (Dhariwal & Nichol, 2021) and the
sampling procedure of diffusion models (Equation 6) is equivalent to running Langevin dynamics
using the score function ∇zt log q(zt) (Welling & Teh, 2011; Song & Ermon, 2019). This provides
a way to sample from the distribution q only through its score function. For the case of q(zt|c), its
score function can be written using Bayes’ rule and approximated as:

∇zt
log q(zt|c) = ∇zt

log q(zt) +∇zt
log q(c|zt)

≈ − 1√
1− ᾱt

(ϵθ(zt, t)−
√
1− ᾱt∇zt log pη(c|zt)),

where pη(c|zt) ∼ exp(−s(gη(zt) − c)2) is a Gaussian distribution approximating the probabil-
ity of molecule zt having property c, gη is a property regressor trained to predict the property c
given a noisy molecule zt, and s is a scale factor that controls the skewness of the distribution.
With this, we can rewrite the conditional score function as ∇zt

log q(zt|c) ≈ − 1√
1−ᾱt

(ϵθ(zt, t) +√
1− ᾱts∇zt

(gη(zt)− c)2). To sample from this distribution, we use the same sampling algorithm
defined by Equation 6 and replace ϵθ(zt, t) by

ϵθ(zt, t) +
√
1− ᾱts∇zt(gη(zt)− c)2. (7)

Intuitively, this can be seen as minimizing the loss (gη(zt)− c)2. Appendix E.2 provides additional
details and discussions about the equivariance of the regressor.

Unconstrained Property Optimization via Diffusion Guidance With the formulation introduced
above, we can sample molecules with high property values by simply using the denoising step

ϵθ(zt, t)−
√
1− ᾱts∇zt

gη(zt). (8)

Notice that we replaced the loss with the negative gradient of the regressor.

Scaffold-Constrained Generation via Inpainting For tasks such as structure-based drug design, it
is often desirable to generate molecules that contain a specific substructure, usually called a scaffold
(Schuffenhauer et al., 2007; Maziarz et al., 2021). This problem can be viewed as a completion task
and is reminiscent of inpainting, which aims to complete missing parts of an image (Song et al., 2020;
Lugmayr et al., 2022). Lugmayr et al., 2022 propose RePaint, a simple modification to the sampling
procedure of denoising diffusion models, enabling them to perform inpainting. This approach has
already been successfully applied to molecule generation in 3D (Schneuing et al., 2022).

The core idea of RePaint is to start the sampling procedure from a random sample zT and, at each
step, enforce the part that we want to be present in the final sample. To illustrate this for the case of
molecules, let z̃0 denote the point cloud of a molecule containing the desired scaffold. Let m be a
binary mask that indicates which nodes from z̃0 belong to the scaffold such that m⊙ z̃0 denotes the
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Figure 3: Overview of our constrained optimization procedure. Based on a noising/denoising
approach, we run the first steps of the reverse diffusion process using the inpainting algorithm to add
new atoms and the remaining steps using the guidance algorithm to increase the target property. The
depicted molecules have QED values of 0.79 (initial) and 0.91 (optimized), with a 53% similarity.

scaffold point cloud and (1 −m) ⊙ z̃0 the unknown part. We aim to sample a new point cloud z
containing this scaffold while extending it to get a harmonized point cloud. Formally, we require
that m⊙ z0 = m⊙ z̃0. To achieve this, we iteratively apply the following modified sampling step
starting from t = T :

zscaffold
t−1 ∼ N (

√
ᾱt−1z̃0, (1− ᾱt−1)I) (9)

zunknown
t−1 ∼ N (µθ(zt, t), σ

2
t I) (as in Equation 6) (10)

zt−1 = m⊙ zscaffold
t−1 + (1−m)⊙ zunknown

t−1 (11)

We refer to Appendix E.3 for more implementation details.

Similarity-Constrained Optimization In this task, we aim to improve the target properties of a
given molecule while satisfying a similarity constraint. We propose a novel approach to this task by
combining the regressor guidance algorithm and the inpainting algorithm discussed above. The key
idea is to add noise to the initial molecule and then denoise it with the regressor guidance algorithm
to improve the target property. Formally, starting from the initial point cloud z0 with N atoms, we
sample a noised zt following Equation 3 for t ∈ (0, T ). t is a hyperparameter that controls the
optimization quality. On the one hand, increasing t results in more reverse diffusion steps with the
guidance algorithm, thus increasing the chance of improving the target property. On the other hand, it
also results in losing information about the initial molecule due to noise. Intuitively, the best t yields
the highest property improvement while satisfying the similarity constraints.

However, since the diffusion model operates on N points, the denoised molecule also has N atoms.
This limits the optimization of a molecule’s property as it prevents adding new atoms. To overcome
this limitation, we sample a Gaussian point cloud zT with N ′ atoms, where N ′ > N , and run the
inpainting algorithm from T to t with zt as the scaffold, meaning that zt will replace m⊙ z̃0 in the
inpainting algorithm described above. This results in a new intermediate representation z′

t whose first
N points correspond to zt, and the rest are the newly added atoms, as desired. Finally, z′

t is denoised
from t to 0 using the guidance algorithm with maximization objective (Equation 8) to get the point
cloud z′

0 of the optimized molecule, which is then decoded to the graph using the decoder Dξ. An
overview of this procedure and an example test molecule are shown in Figure 3.

LIMITATIONS

EDM-SYCO can be seen as an extension to EDM, which carries the limitations of diffusion models
like high inference cost. To mitigate this issue in future work, we can incorporate more efficient
sampling strategies (Karras et al., 2022; 2023), or use more efficient models such as recent conditional
flow matching approaches (Tong et al., 2023; Song et al., 2023). In addition, our sampling approach
requires specifying the number of nodes a priori. While this works well empirically, we leave tackling
the fundamental issue of generating variable-sized graphs or point clouds to future work. Lastly, our
constrained optimization procedure cannot remove atoms during inference. Our experiments found
that the decoder tends to predict disconnected subgraphs, which we treat as removing atoms, but a
rigorous solution may improve performance.
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6 EXPERIMENTS

6.1 COMPARISON TO 3D MOLECULE GENERATIVE MODEL GEOLDM

EDM-SYCO leverages EDM to learn the distribution of 3D molecules in latent space, and combines
it with an autoencoder that maps between 2D and 3D molecules. The overall architecture is therefore
similar to GeoLDM in that both are EDM-based latent diffusion models for molecules. The main
differences lie, however, in the design of the autoencoder and in the training and sampling procedure.
In this section, we explain the need for such changes in order to adapt 3D molecule generative models
like GeoLDM to the different modality of 2D molecules and validate the effect of these changes
experimentally. In essence, there are two main challenges when it comes to applying GeoLDM or
any other 3D molecule generative models to 2D molecule generation:

(i) GeoLDM requires datasets with 3D atomic coordinates for training. To enable training on 2D
datasets like ZINC250K or GuacaMol, we leverage the conformer generation component introduced
in Section 3. Crucially, this allows to inject chemical domain knowledge as an inductive bias into the
model by leveraging typical bond lengths and molecular force fields when computing 3D conformers.

Table 2: Comparison between GeoLDM and
EDM-SYCO on ZINC250K. To enable the
training and evaluation of GeoLDM, we use
the same synthetic coordinates as EDM-
SYCO and use GeoLDM’s bond type predic-
tion algorithm.

GEOLDM EDM-SYCO

FCD (↑) 0.17 0.85
KL (↑) 0.79 0.96
NOVELTY (↑) 1.0 1.0
UNIQUENESS (↑) 1.0 1.0
VALIDITY (↑) 0.12 0.88

(ii) GeoLDM uses a simple rule-based algorithm to
predict 2D molecules from 3D molecules, which fails
even on medium-sized molecules. This algorithm
predicts bond types from inter-atomic distances using
a lookup table. In our experiments, this algorithm
can correctly predict all bond types of a molecule
only on 11.78% of the ZINC250K dataset (See Table
1). To overcome this limitation, we introduce our
EGNN-based bond type predictor, which can leverage
the richer neighborhood information of an atom and
does not rely on hard-coded rules. To highlight the
effect of this change on the quality of the generated
2D graphs, we compare GeoLDM and EDM-SyCo,
both trained on ZINC250K using the same synthetic
coordinates and report the results in Table 2.

From the above discussion, we can conclude that (i) applying 3D models off-the-shelf as 2D baselines
is either not directly possible (for datasets without 3D information) or yields limited performance due
to the inability of the used bond type prediction algorithm to produce large and valid molecules, and
(ii) combining EDM or GeoLDM with our proposed components would yield exactly our model since
EDM and GeoLDM both share the same diffusion framework, which we also use in EDM-SyCo.

6.2 COMPARISON TO 2D MOLECULE GENERATIVE MODELS

In the following set of experiments, we compare the performance of EDM-SYCO to several au-
toregressive and to all-at-once diffusion-based baselines on de novo and conditional generation
tasks as well as on a constrained optimization task. Specifically, comparing EDM-SYCO with the
diffusion-based baselines highlights the benefit of defining the diffusion process on the latent 3D
space compared to directly defining it on the 2D space.. More experiments are discussed in Appendix
G. We use two datasets of different sizes and complexities: ZINC250K (Irwin et al., 2012) containing
250K molecules with up to 40 atoms, and GuacaMol (Brown et al., 2019) containing≈1.5M drug-like
molecules with up to 88 atoms. We train EDM-SYCO as described in Sections 3 and 4 on these two
datasets. Training details and hyperparameters are given in Appendix F.

De novo Generation We leverage the GuacaMol benchmark (Brown et al., 2019), an evaluation
framework for de novo molecular graph generation. We consider two metrics that measure the
similarity between the generated molecules and the training set. The Fréchet ChemNet Distance
(FCD) compares the hidden representations of ChemNet, a neural network capturing chemical
and biological features of molecules (Preuer et al., 2018), and the KL divergence (KL) compares
the probability distributions of a variety of physiochemical descriptors. We also report novelty,
uniqueness, and validity scores, which measure the fraction of generated molecules that are not in the
training set, that are pairwise different, and that are chemically valid according to RDKit, respectively.
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Table 3: Evaluation metrics on the ZINC250K dataset. Results for methods with * are taken from
their original papers. Methods that do no report the KL metric are denoted with N.A.. We split the
methods into autoregressive and all-at-once methods. The best scores within each category are
in bold. EDM-SyCO outperforms all all-at-once baselines by more than 26% on the FCD metric.
Standard deviations are across 3 different training runs of the models.

METHOD FCD (↑) KL (↑) NOVELTY (↑) UNIQUENESS (↑) VALIDITY (↑)

A
U

T
O

R
E

G
R

E
S

S
IV

E JT-VAE (2018) 0.75 ± 0.01 0.93 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
GRAPHAF (2020) 0.05 ± 0.00 0.67 ± 0.01 0.91 ± 0.01 0.91 ± 0.01 1.00 ± 0.00
HIERVAE (2020) 0.50 ± 0.14 0.92 ± 0.00 0.96 ± 0.01 0.96 ± 0.01 1.00 ± 0.00
MOLER (2021) 0.83 ± 0.00 0.97 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 1.00 ± 0.00
PS-VAE (2022) 0.28 ± 0.01 0.84 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
GRAPHARM* (2023) 0.04 ± 0.00 N.A. 1.00 ± 0.00 0.99 ± 0.00 0.88 ± 0.00
MICAM (2023) 0.63 ± 0.02 0.94 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 1.00 ± 0.00
MAGNET (2023) 0.76 ± 0.00 0.95 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 1.00 ± 0.00

A
L

L
-A

T-
O

N
C

E GDSS* (2022) 0.10 ± 0.01 N.A. 1.00 ± 0.00 1.00 ± 0.00 0.97 ± 0.01
DIGRESS (2022) 0.65 ± 0.00 0.91 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.85 ± 0.01
GEOLDM (2023) 0.17 ± 0.00 0.79 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.12 ± 0.00
GRUM* (2023) 0.64 ± 0.01 N.A. 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00
SWINGNN* (2023) 0.67 ± 0.00 N.A. 0.96 ± 0.00 1.00 ± 0.00 0.91 ± 0.00
EDM-SYCO (OURS) 0.85 ± 0.01 0.96 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.88 ± 0.01

All scores, including FCD and KL, are normalized to lie between 0 and 1 and such that a higher score
corresponds to a better performance. More details on these metrics are in Appendix F.8. De novo
generation is a prerequisite for more complex tasks such as conditional generation and optimization.

Table 4: FCD and KL scores on GuacaMol. * means
corresponding numbers are from (Maziarz et al.,
2021). DiGress results are from Vignac et al. (2022).
For our model, we additionally report standard devia-
tion across 3 validations of the same model.

FCD (↑) KL (↑)

A
U

T
O

R
E

G
. CGVAE* (2018) 0.26 N.A.

HIERVAE* (2020) 0.62 N.A.
JT-VAE* (2018) 0.73 N.A.
MOLER* (2021) 0.81 N.A.

A
A

O DIGRESS (2022) 0.68 0.93
EDM-SYCO (OURS) 0.79 ± 0.002 0.93 ± 0.006

Tables 3 and 4 show the performance
of EDM-SYCO and the baselines on the
ZINC250K and GuacaMol datasets, respec-
tively. Notably, EDM-SYCO outperforms
all all-at-once diffusion based models on the
FCD metric by more than 26% on ZINC250K
and 16% on GuacaMol. This shows the ca-
pacity of our model to more accurately cap-
ture the joint distribution of nodes and edges
encoded in the latent features and coordi-
nates. EDM-SYCO sets the new state-of-the-
art FCD score on ZINC250K, outperforming
all autoregressive and fragment-based base-
lines, which incorporate more domain knowl-
edge. Note that due to computational constraints, we use the same hyperparameters from ZINC250K
to train our model on GuacaMol, while DiGress and MoLeR have been tuned for both datasets.
Regarding validity, all autoregressive baselines achieve 100% validity scores due to valency checks
after each intermediate step, which is usually not done for all-at-once methods. We show some
sample molecules generated by our model in Figures 4 and 5 for the two datasets. We include an
ablation study on the inductive bias of our architecture in Appendix G.10, compare to an EGNN-free
encoder setting in Appendix G.11, and provide a runtime anaylsis in Appendix G.12.

Table 5: Conditional generation results.

METHOD
LOGP MW

MAE (↓) VALID (↑) MAE (↓) VALID (↑)
DIGRESS 0.49 ± 0.05 65% 60.30 ± 6.10 73%
FREEGRESS 0.15 ± 0.02 85% 15.18 ± 2.71 75%
EDM-SYCO 0.14 ± 0.00 76% 3.86 ± 0.08 88%

Property-Conditioned Generation
To evaluate the conditional generation
performance of our approach, we fol-
low Ninniri et al. (2023) and condi-
tion the generation of 1000 molecules
on LogP and molecular weight (MW)
values sampled from ZINC250K. We
report the mean absolute error (MAE) between the target and estimated values for the generated
molecules (using RDKit) and the validity rate. More details on the experimental setup are in Ap-
pendix F.6. We run the regressor guidance algorithm, discussed in Section 5. As baselines, we
compare to DiGress, which uses a discrete guidance scheme, and FreeGress, which proposes a
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Table 6: Similarity-constrained optimization results from (Jin et al., 2020). We split all learning-based
baslines into translation and optimization approaches.

METHOD
LOGP (SIM ≥ 0.4) LOGP (SIM ≥ 0.6) QED (SIM ≥ 0.4) DRD2 (SIM ≥ 0.4)

IMPROV. DIV. IMPROV. DIV. SUCC. DIV. SUCC. DIV.

T
R

A
N

S
L

. SEQ2SEQ 3.37 ± 1.75 0.471 2.33 ± 1.17 0.331 58.5% 0.331 75.9% 0.176
JTNN 3.55 ± 1.67 0.480 2.33 ± 1.24 0.333 59.9% 0.373 77.8% 0.156
ATOMG2G 3.98 ± 1.54 0.563 2.41 ± 1.19 0.379 73.6% 0.421 75.8% 0.128
HIERG2G 3.98 ± 1.46 0.564 2.49 ± 1.09 0.381 76.9% 0.477 85.9% 0.192

O
P

T
IM

. JT-VAE 1.03 ± 1.39 - 0.28 ± 0.79 - 8.8% - 3.4% -
CG-VAE 0.61 ± 1.09 - 0.25 ± 0.74 - 4.8% - 2.3% -
GCPN 2.49 ± 1.30 - 0.79 ± 0.63 - 9.4% 0.216 4.4% 0.152
EDM-SYCO 3.11 ± 1.27 0.559 1.51 ± 1.10 0.388 46.4% 0.352 27.3% 0.303

regressor-free guidane mechanism Ninniri et al. (2023). Table 5 shows the results. While EDM-
SYCO achieves a comparable score to FreeGress on LogP, it outperforms it by a factor of 3.9 on
MW. Compared to DiGress, it improves on LogP and MW by factors 3.5 and 15.6, respectively. This
experiment highlights the benefit of our continuous latent space on conditional generation compared
to operating directly on the discrete graph space. It also shows that graph-level properties are repre-
sented sufficiently well in this space. We include additional related experiments in Appendix G.4 and
Appendix G.5.

Similarity-Constrained Optimization We follow Jin et al. (2020) and evaluate our optimization
procedure from Section 5 with EDM-SYCO on their constrained optimization tasks: LogP, QED,
and DRD2 on ZINC250K. These tasks consist of improving the properties of a set of 800 test
molecules under the constraint that the Tanimoto similarity with Morgan fingerprints (Rogers &
Hahn, 2010) between the optimized and initial molecule is above a given threshold. We report the
average improvement for the LogP tasks and success rates for the binary tasks of QED and DRD2
consisting of translating molecules from a low range into a higher range. Additionally, we report the
average diversity among the optimized molecules. More details are given in Appendix F.7.

We split the learning-based baselines from (Jin et al., 2020) into optimization and translation ap-
proaches. Translation approaches are specifically designed for such tasks and are trained on pairs
of molecules exhibiting the improvement and similarity constraints, giving them an advantage over
optimization methods. Since we leverage the same generative model and regressor from previous
experiments without further training on this task, optimization approaches are the main point of
comparison. Table 6 shows that EDM-SYCO outperforms all optimization baselines by an average
factor of 3.5 across all tasks while achieving comparable performance to the translation approaches.
These results further support the effectiveness of our SYCO framework and our novel constrained
optimization algorithm. Figures 6 and 7 illustrate some of EDM-SYCO’s optimized molecules.
Thanks to our atom-based approach, the optimized molecules frequently only change in a few atoms
from the starting molecule, which would be harder to achieve for fragment-based models.

7 CONCLUSION

Despite the common practice of using fragment-based autoregressive models for molecular graph
generation, we demonstrated with SYCO that a mapping between molecular graphs and latent
Euclidean point clouds enables atom-based all-at-once approaches to be competitive with special-
purpose molecular graph generators. Further, we introduced a similarity-constrained optimization
procedure for 3D diffusion models based on guidance and inpainting. Based on this framework,
we developed EDM-SYCO, which sets a new state-of-the-art FCD score on ZINC250K. In our
conditional generation and optimization experiments, we found our guidance-based approach to
accurately guide the generation process, outperforming all baselines. With these results, we conclude
that latent Euclidean generative models hold significant promise for advancing molecular graph
generation and accelerating drug discovery. We discuss our work’s broader impact in Appendix B.
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A VISUALIZATIONS FOR GENERATED AND OPTIMIZED MOLECULES BY
EDM-SYCO

We visualize some of the molecules generated by EDM-SYCO. For de novo generation, we show
molecules of the model trained on ZINC250K in Figure 4, and of the one trained on GuacaMol in
Figure 5. For the similarity-constrained optimization task, we show some molecules found by our
optimization approach in the LogP task in Figure 6, and in the QED task in Figure 7.

Figure 4: Sample molecules generated by EDM-SYCO trained on ZINC250K.
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Figure 5: Sample molecules generated by EDM-SYCO trained on GuacaMol.
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Figure 6: Molecules with the highest improvement in the LogP-constrained optimization task. Each
row corresponds to one test molecule and 4 successful optimization results. We show the LogP value
of the initial molecules, and for the optimized molecules, the achieved improvement (imp.) and the
Tanimoto similarity to the initial molecule (sim.).
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Figure 7: Molecules with highest improvement in the QED constrained optimization task. Each row
corresponds to one test molecule and 4 successful optimization results. We show the QED value of
the initial molecules, and for the optimized molecules, the achieved improvement (imp.) and the
Tanimoto similarity to the initial molecule (sim.).
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B BROADER IMPACT

This paper advances the field of computational drug discovery by proposing new efficient methods
for generative models. While there may be unintended consequences, such as the misuse of chemical
weapons, we firmly believe that their benefits significantly outweigh the minuscule chance of misuse.

C INVARIANCE AND EQUIVARIANCE

In this work, we are dealing with two types of symmetries arising from how we represent the data
and/or physical symmetries. Specifically, graphs are invariant to permuting their nodes, meaning that
a single graph of N nodes can be represented by N ! different representations corresponding to N !
different orderings of its nodes. We refer to this transformation as the elements of the symmetric
group SN . Similarly, a point cloud representing a molecule in 3D can be arbitrarily rotated, reflected,
and/or translated and still refer to the same molecule. This corresponds to an infinite number of
different representations for the same object. We refer to this transformation as the action of the
Euclidean group E(3).

C.1 SN - AND E(3)-INVARIANT TRAINING PROCESS

To efficiently learn from such data, we need to develop training methods invariant to these symmetries
without needing data augmentation techniques. Concretely, we must ensure that the gradient updates
used to train our model do not change if the molecular graph is permuted and/or the latent point
cloud representation is rotated/reflected/translated. We require two ingredients to achieve this: an
equivariant architecture and an invariant loss (Vignac et al., 2022). Based on the model architecture
and the loss function described in the main text, we can show that EDM-SYCO satisfies both
requirements and that its training process is, thus, invariant to the action of the permutation group SN

and the Euclidean group E(3).

As our ultimate goal is to generate molecular graphs, we provide more details on the permutation
invariance properties of the distribution of molecular graphs learned by EDM-SYCO in the next
section.

C.2 PROOF OF PROPOSITION 4.1 (SN -INVARIANT MARGINAL DISTRIBUTION)

In this section, we provide a formal proof for the statement from the main text that the molecular
graph distribution defined by EDM-SYCO is invariant to permutations. For convenience, we provide
the proposition again:

Proposition C.1. The marginal distribution of molecular graphs pθ,ξ(G) = Epθ(z0) [pξ(G|z0)]
defined by the EDM and the decoder, is an SN -invariant distribution, i.e. for any molecular graph
G = (h,A), pθ,ξ(h,A) = pθ,ξ(Ph, PAP ) for any permutation matrix P ∈ SN .

Note: This invariance property is required for efficient likelihood computation, as the likelihood of a
graph is the sum of the likelihoods of its N ! permutations, which is intractable to compute. However,
when ensuring that all these permutations are assigned equal likelihood, it suffices to compute the
likelihood of an arbitrary permutation.

Proof. The idea of the proof is when the initial distribution of the diffusion model pθ(zT ) is invariant
and the transition distributions pθ(zt−1|zt) are equivariant, then all marginal distributions at all
diffusion time steps pθ(zt) are invariant, including pθ(z0) (Xu et al., 2022; 2023; Hoogeboom et al.,
2022). With the same logic and with the equivariant decoder taking the place of the transition
distribution, the graph distribution pθ,ξ(G) will be invariant.

We prove this result by induction:

Base case: pθ(zT ) = N (zT ;0, I) is permutation-invariant, i.e. pθ(zT ) = pθ(PzT ) for all permuta-
tion matrices P ∈ {0, 1}N×N acting on zT ∈ RN×(d+3) by permuting its rows. This holds because
all rows are i.i.d., as pθ(zT ) has a diagonal covariance matrix.
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Induction step: Assume pθ(zt) is permutation-invariant. We show that if pθ(zt−1|zt) is permutation-
equivariant, i.e. pθ(zt−1|zt) = pθ(Pzt−1|Pzt) (which holds when using a permutation-equivariant
architecture ϵθ), then pθ(zt−1) will be permutation-invariant.

pθ(Pzt−1) =

∫
zt

pθ(Pzt−1|zt)pθ(zt) (Chain rule of probability)

=

∫
zt

pθ(Pzt−1|PP−1zt)pθ(PP−1zt) (PP−1 = I)

=

∫
zt

pθ(zt−1|P−1zt)pθ(P
−1zt) (Equivariance and invariance)

=

∫
u

pθ(zt−1|u)pθ(u) |detP |︸ ︷︷ ︸
=1

(Change of variables u = P−1zt and P is orhtogonal, sodetP = ±1)
= pθ(zt−1)

By induction, pθ(zT ), . . . , pθ(z0) are all permutation-invariant.

Finally, since the decoder pξ(G|z0) is permutation-equivariant (as it applies the same operation on
each node and each pair of nodes, thus not depending on the nodes ordering), with the same derivation,
we also conclude that the final induced distribution pθ,ξ(G) is permutation-invariant.

Note: A similar derivation can also be applied to show the invariance of pθ(z0) to rotations and
reflections of the coordinates, as the only requirement on P for the derivation to hold is to be
orthogonal, which is the case for rotation and reflection matrices R.

D E(n) EQUIVARIANT GRAPH NEURAL NETWORKS (EGNNS)

To perform equivariant updates in our latent space, we use the E(n) Equivariant Graph Neural
Network (EGNN) architecture (Satorras et al., 2021).

An EGNN operates on a point cloud of size N , where each point has features hi ∈ Rd and coordinates
xi ∈ R3 associated with it. Let h ∈ RN×d and x ∈ RN×3 be the stacked features and coordinates,
respectively, of all points. An EGNN is composed of Equivariant Graph Convolutional Layers
(EGCLs) hl+1,xl+1 = EGCL(hl,xl). A single EGCL layer is defined as

mij = ϕe(h
l
i, h

l
j , d

2
ij , aij) (12)

hl+1
i = ϕh(h

l
i,
∑
j ̸=i

ẽijmij) (13)

xl+1
i = xl

i +
∑
j ̸=i

xl
i − xl

j

dij + 1
ϕx(h

l
i, h

l
j , d

2
ij , aij), (14)

where l denotes the layer index, dij = ∥xl
i − xl

j∥2 is the Euclidean distance between points i

and j, and aij are optional edge attributes which we set to ∥x0
i − x0

j∥22. ẽij serves as an attention
mechanism that infers a soft estimation of the edges ẽij = ϕinf (mij). Note that to update each
point’s features and coordinates, the EGCL layers consider all the other nodes, effectively treating
the point cloud as a fully connected graph. All learnable components (ϕe, ϕh, ϕx, and ϕinf ) are fully
connected neural networks. An EGNN architecture is then composed of L EGCL layers, denoted
as hL,xL = EGNN(h0,x0) with h0 = h and x0 = x. The main hyperparameters of the EGNN
architectures are the number of layers L and a feature dimension nf used to control the width of the
fully connected neural networks.

E ADDITIONAL METHOD DETAILS

In this section, we provide additional details for our method introduced in Sections 3, 4, and 5.
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E.1 TRAINING AND SAMPLING

We start by describing in more detail the training and sampling algorithms for EDM-SYCO in
Algorithms 1 and 2.

Algorithm 1 Training Algorithm

Input: a dataset of molecular graphs G = (h,A)
Initial: Encoder network Eϕ, Decoder network Dξ, denoising network ϵθ
First Stage: Autoencoder Training
repeat
µz ←− Eϕ(h,A) {Encoder}
ϵz ∼ N (0, I) and subtract center of mass from ϵ

(x)
z

z ←− µz + σ0ϵz
ĥ, Â←− Dξ(z)

LV AE(ϕ, ξ)←− cross-entropy
([

ĥ

Â

]
,

[
h
A

])
Take an optimizer step on LAE(ϕ, ξ)

until ϕ and ξ have converged
Second Stage: Diffusion Model Training
Fix Autoencoder parameters ϕ and ξ
repeat
z0 ∼ qϕ(z|h,A)

ϵz ∼ N (0, I) and subtract center of mass from ϵ
(x)
z

t ∼ U(0, 1, . . . , T )
zt ←−

√
ᾱtz0 +

√
1− ᾱtϵz

LDM (θ)←− ∥ϵz − ϵθ(zt, t)∥2
Take an optimizer step on LDM (θ)

until θ has converged
return Eϕ, Dξ, ϵθ

Algorithm 2 Sampling Algorithm

Input: Decoder network Dξ, denoising network ϵθ

zT ∼ N (0, I) and subtract center of mass from z
(x)
T

for t = T downto 1 do
ϵz ∼ N (0, I) and subtract center of mass from ϵ

(x)
z

zt−1 ←− 1√
αt

(
zt − 1−αt√

1−ᾱt
ϵθ(zt, t)

)
+ σtϵz

end for
h,A←− Dξ(z0)
return 2D molecule G = (h,A)

E.2 CONDITIONAL GENERATION

Here, we detail the regressor guidance algorithm we developed in Section 5. We showed in the main
text that we can sample from the conditional distribution q(zt|c) by replacing the predicted noise
of the denoising neural network by Equation 7. By putting this back into the sampling equation,
Equation 6, we get the following modified denoising step

zt−1 = µθ(zt, t)−
1− αt√

αt
s∇zt

(gη(zt)− c)2 + σtϵt. (15)

A more general formulation for the new guidance term is given by −s(t)∇zt
l(zt, c), where s(t) is a

time-dependent scaling function and l can be any invariant loss function. In the specific case that we
derived, s(t) = 1−αt√

αt
s and l(zt, c) = (gη(zt)− c)2. l can be replaced by any other loss function that

we want to optimize, or in the case of property maximization, it can be the prediction of the regressor
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directly (Equation 8). In our experiments, we found a simple linear schedule s(t) = at to perform
well, where a ∈ R is a hyperparameter that we tune for each task.

To ensure the equivariance of the distribution even with guidance, the new term s(t)∇zt l(zt, c) needs
to be E(3)-equivariant. This is done by subtracting its center of mass at each sampling step and by
choosing an invariant loss function l, as the differential operator of an invariant function yields an
equivariant function (Chmiela et al., 2017; Schütt et al., 2017).

E.3 SCAFFOLD-CONSTRAINED GENERATION

Here, we provide additional details for the inpainting algorithm described in Section 5, where we
described an approach that allows to generate a point cloud that contains a chosen scaffold.

Lugmayr et al. (2022) observed that the version of their algorithm described in the main text leads to
inconsistent completions and proposes to run each sampling step multiple times to allow the model
to harmonize its generations. Concretely, each denoising step is repeated r times to improve the
generations’ quality and allow the model to harmonize the unknown part to the scaffold. This is
achieved by applying the forward diffusion model (Equation 2) after each denoising step. Lugmayr
et al. (2022) also propose to go more than one forward step with the diffusion model to allow the
model to better harmonize its generations. This choice is fixed by the jump length j. Note that this
procedure increases the computation cost of running the model r times, which might be a limiting
factor. For this reason, we combine this approach with the approach described in Appendix G.9 that
allows to reduce the number of reverse diffusion steps to run.

The procedure described in the main text gives a way to condition the diffusion model, which operates
on the latent point cloud space. However, we are ultimately interested in generating a molecular
graph containing a scaffold defined by a subset of atoms and the bonds between them. We map the
molecular scaffold to its point cloud representation using our encoder to get m⊙ z0. This enables
running the inpainting algorithm described above. Then, we decode the sampled 3D point cloud to
a molecular graph. Since our decoder model operates on each node and edge separately, the final
molecular graph is guaranteed to contain the original scaffold as long as the scaffold in isolation can
be correctly reconstructed with our autoencoder.

F IMPLEMENTATION DETAILS

F.1 LICENSES FOR USED CODE, MODELS, AND DATASETS

We start by listing the assets we used in our work and their respective licenses. We use the following
tools, codebases, and datasets:

• RDKit (Landrum et al., 2006) (BSD 3-Clause License)

• PyTorch (Paszke et al., 2019) (BSD 3-Clause License)

• EDM (Hoogeboom et al., 2022) (MIT license)

• GeoLDM (Xu et al., 2023) (MIT license)

• ZINC250K dataset (Irwin et al., 2012) (Custom license)

• GuacaMol dataset (Brown et al., 2019) (MIT license)

F.2 ARCHITECTURE DETAILS

We train two sets of models with the same architectures on the two used datasets, ZINC250K and
GuacaMol. The EDM, together with the autoencoder, has 9.2M total parameters, while the regressor
has 4.2M parameters.

Encoder. The first part of the encoder E , introduced in Section 3, is the conformer generation method,
while the second part is an EGNN with 1 layer and 128 hidden features (See Appendix D). We
found that having at least 1 EGNN layer is crucial to achieve high reconstruction accuracy for the
autoencoder, and as this allows us to reach more than 99% accuracy, we did not use more layers. This
EGNN takes as input a point cloud with the one-hot encodings of the atom types and formal charges
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as features h and the synthetic coordinates computed by the conformer generation part as coordinates
x. The output is a processed point cloud with continuous node embeddings of dimension d = 2 and
updated coordinates.

Decoder. The decoder D, also introduced in Section 3, consists of 2 fully connected networks
MLPnode and MLPedge, both having 256 hidden dimensions.

EDM. The denoising network of EDM is parametrized with an EGNN with 9 layers and 256 hidden
features. The EDM has T = 1000 diffusion steps.

Regressor. The regressor used for the conditional generation and optimization experiments (see
Section 6.2) is also an EGNN with 4 layers and 256 hidden features, followed by a sum pooling
operation over the node features and then a fully connected network with 2 layers and a hidden
dimension of 256 that maps the pooled graph embedding to the target values of the properties.

F.3 TRAINING DETAILS

We use the original train/validation/test splits of the used datasets (Irwin et al., 2012; Brown et al.,
2019). The autoencoder is trained in the first stage to minimize the cross-entropy loss between the
ground truth and predicted graphs for a maximum of 100 epochs, with early stopping if the validation
accuracy does not improve for 10 epochs. To deal with the class imbalance problem caused by the
sparsity of the graph adjacency matrices and the dominance of some atom types and formal charge
values, we scale each term of the cross-entropy loss with a class-specific value based on the statistics
of the training set (King & Zeng, 2001). In the second training stage, the EDM model is trained for
1000 epochs on ZINC250 and approximately 300 epochs on GuacaMol.

The regressor is trained with the L1 loss to predict the molecular properties on the noisy latent
point cloud representations of the molecules by applying the same noise schedule of the EDM. The
regressor is trained for 500 epochs, with early stopping if the MAE on the validation set does not
improve after 50 epochs.

All models are trained with a batch size of 64 and using the recent Prodigy optimizer (Mishchenko
& Defazio, 2023) with dcoef = 0.1, which we found to be a very important hyperparameter for the
stability of training.

We train all models on ZINC250K on a single Nvidia A100 GPU, and on GuacaMol, we use
multi-GPU training on 4 Nvidia A100 GPUs.

F.4 DATASET DETAILS

We use two datasets in our experiments: ZINC250K (Irwin et al., 2012) and GuacaMol (Brown et al.,
2019). For both datasets, we represent a molecule as a graph. The nodes are atoms with the one-hot
encoding of their atom type and their formal charge as features. In addition to modeling all heavy
atoms, we also model explicit H atoms, which we found to increase the validity of the generated
molecules as it reduces some kekulization errors produced by rdkit 2. The edges are chemical bonds
with the one-hot encoding of the bond type as features. We model the following bond types: no-bond,
single, double, triple, and aromatic. We model the absence of a bond as a separate bond type to
allow the autoencoder to reconstruct the full bond information. These graphs present very unbalanced
scales for the atom types, formal charges, and bond types. We use class-specific weights to train the
autoencoder, as outlined in Section 3.

ZINC250K has a total of 250K molecules and 220,011 training molecules. It has 10 atom types
(including H) and 3 formal charge values (-1, 0, 1), and the largest molecule has 40 atoms.

GuacaMol has a total of ≈1.5M molecules, of which we use 1,273,104 for training. It has 13 atom
types (including H) and 5 formal charge values (-1, 0, 1, 2, 3), and the largest molecule has 88 atoms.

We compute the synthetic coordinates needed for our model in a preprocessing step for both datasets
and use the computed coordinates throughout the training.

2https://github.com/rdkit/rdkit/wiki/FrequentlyAskedQuestionscant-kekulize-mol
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F.5 SAMPLING THE NUMBER OF ATOMS

In this work, the diffusion generative model operates on a fixed-size point cloud N . During sampling,
the first step is to sample this number N . To sample molecules of similar sizes to those in the training
set, we approximate the distribution of the number of nodes using a categorical distribution.

To this end, we count the number of occurrences of each molecule size in the training set and use
the categorical distribution parameterized by the normalized counts to sample the number of atoms
of generated molecules. This simple procedure works well for the task of unconditional generation.
However, in the property-conditioned generation, we must consider that some properties are highly
correlated to molecule size, such as molecular weight (MW). Therefore, for this task, we start by
dividing the range of property values from the training set into 100 equal-sized bins. We define
a different categorical distribution for each bin that counts the sizes of molecules falling in that
bin. Given the conditioning value, we first specify the bin it falls into and use the corresponding
categorical distribution to sample the number of nodes. Finally, for molecule optimization, we curate
a dataset of molecule pairs that exhibit the desired property improvement and similarity constraints
and create different conditional categorical distributions, one for each size of the initial molecule.

Note that these different procedures are needed due to the inherent limitation of diffusion models on
graphs that require the number of nodes to be known and fixed in advance. Fundamentally, solving
this issue would be a valuable contribution to the field, and we leave it for future work.

F.6 PROPERTY-CONDITIONAL GENERATION EXPERIMENT

Following Ninniri et al. (2023), for each task, we sample 100 molecules from the test set and condition
on their property values to generate 10 valid molecules each and report the mean absolute error
between the target and the estimated values for the generated molecules measured by RDKit. We
experimented with different values of the guidance scale s and with using the l1 and l2 losses to
compute the guidance loss but found the l2 loss with scale values s = 2.5 and s = 1.0 for LogP and
MW, respectively, to work best.

F.7 CONSTRAINED MOLECULE OPTIMIZATION

Here, we provide more details on the constrained optimization tasks described in Section 6. Given a
molecule G, these tasks aim to find a different molecule G′ with higher property values satisfying the
similarity constraint sim(G,G′) ≥ 0.4 (or 0.6), where sim computes the Tanimoto similarity with
Morgan fingerprints (Rogers & Hahn, 2010). For the LogP task, the new molecule G′ needs to have a
higher LogP value and we report the average improvement over 800 molecules from the test set with
the lowest LogP values. For the QED task, the goal is to optimize another 800 molecules from the test
with QED values in the low range [0.7, 0.8] into the high range [0.9, 1.0], and we report the success
rate over these molecules. For DRD2, the goal is to translate inactive compounds (p ≤ 0.05) into
active ones (p ≥ 0.5), and we similarly report the success rate over these molecules. In addition, for
all tasks, we report the diversity as the average pairwise distance between the successfully optimized
molecules for each initial test molecule. The distance is defined as dist(G,G′) = 1− sim(G,G′).
Choosing t. As described in Section 5, the intermediate time step t controls the trade-off between
the similarity to the initial molecule and the capacity to improve its target properties. In principle,
for each test molecule, there is an optimal t yielding the highest improvement under the similarity
constraints. However, finding the optimal t for each single molecule is computationally expensive.
Therefore, we use a subset of 20 molecules and run our optimization algorithm for different values
of t on these molecules to find the value of t that yields the highest average improvement under the
considered similarity constraints. We use this value for all test molecules. Our experiments found
that a value of t in the range [500, 700] usually works best with the total T = 1000. Figure 8 shows
the effect of the time step t on the similarity and property value for one molecule from the test set.
Table 7 lists the exact value of t used for each task.
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Figure 8: Effect of using different time steps t on the similarity and improvement values in the
similarity-constrained optimization task of PLogP. We visualize 4 different molecules from the test
set.

Table 7: Values of the time step t used in all optimization tasks.

TIME STEP t

PLOGP (SIM ≥ 0.4) 600
PLOGP (SIM ≥ 0.6) 500
QED 650
DRD2 650

F.8 EVALUATION DETAILS

We provide additional details about the computation of the FCD and KL metrics (Brown et al., 2019)
and additional insights into the novelty and uniqueness metrics. Additionally, we provide a detailed
anaylsis of the validity rate of our model.

• KL: The following descriptors are computed for the generated and reference molecules:
BertzCT, MolLogP, MolWt, TPSA, NumHAcceptors, NumHDonors, NumRotatableBonds,
NumAliphaticRings, NumAromaticRings, and similarity to nearest neighbor with ECFP4
fingerprints. The KL divergence DKL,i is computed for each descriptor between the two
sets of molecules and aggregated to a final normalized score via 1

k

∑k
i=1 exp(−DKL,i).

• FCD: The FCD is computed based on the hidden representations of molecules in ChemNet,
trained for predicting biological activities, similarly to the FID usually applied to image
generative models. Concretely, the means and covariances of the last hidden activations of
ChemNet are computed for the reference and generated molecules and the Frechet distance
between them is computed. This distance is then normalized via exp(−0.2 · FCD) to lie
between 0 and 1.
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• Novelty & Uniqueness: Interestingly, most of the methods used in this work achieve a
novelty and uniqueness scores close to 100% on the two datasets ZINC250K and GuacaMol.
These high scores are mainly due to the larger molecular sizes in our datasets compared to
smaller datasets such as QM9. The number of possible molecules grows exponentially with
the molecule size, making it increasingly unlikely to sample exact replica of the training
molecules or sample the exact molecule twice (note than even if a single atom or bond type
is different, the molecules are considered different).

• Validity: We analyze the invalid molecules generated by our model and find the following
common errors raised by RDKit: Kekulization errors ( 55%) 3, Valency errors ( 33%) 4, A
non-ring atom is marked aromatic ( 12%).
All these errors are due to inconsistent bond type predictions for a given molecule. Because
the autoencoder achieves a near-perfect reconstruction accuracy on the training and test
sets, this inconsistency is likely due to a mismatch between the training distribution and the
generated 3D molecules distribution. This could be improved by using more powerful 3D
generative models, or one could try to jointly train the autoencoder and the latent diffusion
model to adapt the decoder to the distribution of generated molecules.

G ADDITIONAL EXPERIMENTS

In this section, we provide additional experiments to showcase the performance of our model and
analyze some of its properties.

G.1 BOND TYPE PREDICTION FROM SYNTHETIC COORDINATES

A crucial part of successfully applying our method is to be able to accurately reconstruct the
molecular graph from the Euclidean point cloud. This section provides an ablation study to compare
our approach to other methods.

Formally, we are given a point cloud with features h ∈ {0, 1}N×(a+c) containing the atom type and
formal charge of each atom and coordinates x ∈ RN×3 computed using the conformer generation
algorithm ETKDG (Riniker & Landrum, 2015). The goal is to reconstruct the bond types stored in
the adjacency matrix A ∈ {0, 1}N×N×b. We test the following approaches:

• Rule-based: This approach is widely used by generative models for molecules in 3D
(Hoogeboom et al., 2022; Xu et al., 2023) and consists of using typical bond type lengths
to infer the bond types between two atoms based on their features and the inter-atomic
distances between them.5 It uses a set of if-else statements and predicts a specific bond
type if the length falls within a specific range that takes the features of the two atoms into
account.

• MLP: We develop this baseline to generalize the lookup table approach and replace the set
of if-else statements by an MLP. Formally, we construct edge features between atoms i and
j as [hi, hj , dij ], where dij is the Euclidean distance between the two atoms. This is also the
same information that the lookup table method above uses to infer the bond types. Instead,
we train an MLP to predict the bond type from this edge feature in a classification setting.
Note that this MLP is defined on the edge level, so a molecule with N atoms provides N2

training examples for the MLP to learn from. Also note that we do not need to have an extra
MLP for the atom type as they are directly available in this case since we do not run an
EGNN in the first step.

• EGNN + MLP: The major limitation of the above approaches is that to predict the bond
type between two atoms they only consider the distance between them and their respective
features, without considering other atoms. However, not all molecules exhibit typical bond
lengths between their atoms (Hoogeboom et al., 2022). To overcome this limitation, we
combine the MLP approach with an EGNN that first computes updated coordinates and

3https://github.com/rdkit/rdkit/wiki/FrequentlyAskedQuestionscant-kekulize-mol
4https://github.com/rdkit/rdkit/wiki/FrequentlyAskedQuestionsexplicit-valence-for-atom–is-greater-than-

permitted
5https://www.wiredchemist.com/chemistry/data/bond_energies_lengths.html
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atom features considering the whole graph before running the local MLP to predict the bond
type. Here, we add an extra MLP to predict the node labels (type and formal charge). This
is the same architecture presented in the main text.

We evaluate these three approaches on ZINC250K using the synthetic coordinates computed as
outlined in Section 3. We report the molecule reconstruction accuracy on the validation set, where
a molecule is considered correctly reconstructed if all of its atom features (atom types and formal
charges) and bond types are correctly reconstructed. Table 1 shows that the EGNN approach achieves
an almost perfect reconstruction accuracy. This shows that (i) the synthetic coordinates contain all
the needed information to reconstruct the bond types, which might not be directly clear if we are
limited to the other methods, and (ii) incorporating the global graph information into the prediction
task is crucial to accurately reconstruct the bonds. We adopt the EGNN approach into our model.

G.2 CONFORMER GENERATION COMPARISON

To analyze the effect of different conformer generation algorithms on the performance of our model,
we perform an ablation study using 2 different algorithms/packages from RDKit to compute the
synthetic coordinates: the ETKDG algorithm and the Pharm3D package. We perform two training
runs using the same setup except for the conformer generation method. For these two runs, we use
smaller models (we halve the number of layers) than those reported in the main text and train for 500
epochs, so they are not directly comparable. Results are shown in Table 8.

Table 8: Model performance on ZINC using different conformer generation methods from RDKit.

ETKDG PHARM3D

VAE RECONSTRUCTION ACCURACY 99.92% 99.90%
KL 0.94 0.93
FCD 0.75 0.70

G.3 COMPLETE BENCHMARK RESULTS

We provide complete benchmark results for the GuacaMol benchmark (Brown et al., 2019) and
the MOSES benchmark (Polykovskiy et al., 2020) in Tables 9 and 10, respectively. In addition to
the baselines reported in the main text, we add two SMILES-based baselines and we add different
flavours of MoLeR with different vocabulary sizes, denoted as MoLeR-V , where V denotes the
vocabulary size.

Table 9: GuacaMol benchmark metrics on the ZINC250K dataset. We report mean and standard
deviations across 3 random training runs for all methods and metrics.

METRIC FCD (↑) KL (↑) NOVELTY (↑) UNIQUENESS (↑) VALIDITY (↑)
CHARVAE 0.17 ± 0.08 0.78 ± 0.04 0.99 ± 0.00 0.99 ± 0.00 0.09 ± 0.01
SMILES-LSTM 0.93 ± 0.00 1.00 ± 0.00 0.98 ± 0.00 1.00 ± 0.00 0.96 ± 0.01

GRAPHAF 0.05 ± 0.00 0.67 ± 0.01 0.91 ± 0.01 0.91 ± 0.01 1.00 ± 0.00
HIERVAE 0.50 ± 0.14 0.92 ± 0.00 0.96 ± 0.01 0.96 ± 0.01 1.00 ± 0.00
MICAM 0.63 ± 0.02 0.94 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 1.00 ± 0.00
JTVAE 0.75 ± 0.01 0.93 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
PSVAE 0.28 ± 0.01 0.84 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
MAGNET 0.76 ± 0.00 0.95 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 1.00 ± 0.00
MOLER-5 0.40 ± 0.01 0.93 ± 0.01 0.99 ± 0.00 0.97 ± 0.00 1.00 ± 0.00
MOLER-350 0.80 ± 0.01 0.98 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
MOLER-2000 0.83 ± 0.00 0.97 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 1.00 ± 0.00

DIGRESS 0.65 ± 0.00 0.91 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.85 ± 0.01
EDM-SYCO 0.85 ± 0.01 0.96 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.88 ± 0.01

27



Published as a conference paper at ICLR 2025

Table 10: MOSES benchmark metrics on the ZINC250K dataset. We report mean and standard
deviations across 3 random training runs for all methods and metrics.

METRIC FILTERS (↓) INTDIV (↑) INTDIV2 (↑) QED (↓) SA (↓) LOGP (↓) WEIGHT (↓)
CHARVAE 0.43 ± 0.02 0.88 ± 0.01 0.87 ± 0.01 0.06 ± 0.03 0.48 ± 0.13 0.87 ± 0.14 34.23 ± 07.05
SMILES-LSTM 0.59 ± 0.01 0.87 ± 0.00 0.86 ± 0.00 0.00 ± 0.00 0.04 ± 0.02 0.12 ± 0.01 02.62 ± 00.16

GRAPHAF 0.47 ± 0.03 0.93 ± 0.00 0.91 ± 0.00 0.22 ± 0.01 0.88 ± 0.10 0.41 ± 0.02 96.93 ± 04.99
HIERVAE 0.58 ± 0.05 0.87 ± 0.01 0.86 ± 0.01 0.03 ± 0.00 0.19 ± 0.17 0.35 ± 0.21 18.97 ± 10.43
MICAM 0.54 ± 0.02 0.87 ± 0.00 0.87 ± 0.00 0.08 ± 0.00 0.51 ± 0.03 0.20 ± 0.05 51.19 ± 06.58
JTVAE 0.57 ± 0.00 0.86 ± 0.00 0.86 ± 0.00 0.01 ± 0.00 0.35 ± 0.01 0.29 ± 0.01 02.93 ± 00.07
PSVAE 0.85 ± 0.01 0.89 ± 0.00 0.88 ± 0.00 0.05 ± 0.00 1.16 ± 0.06 0.34 ± 0.01 38.26 ± 02.74
MAGNET 0.70 ± 0.00 0.87 ± 0.00 0.87 ± 0.00 0.01 ± 0.00 0.13 ± 0.00 0.23 ± 0.01 14.52 ± 00.40
MOLER-5 0.57 ± 0.01 0.86 ± 0.00 0.85 ± 0.00 0.01 ± 0.00 0.11 ± 0.04 0.17 ± 0.10 10.67 ± 04.13
MOLER-350 0.56 ± 0.00 0.87 ± 0.00 0.86 ± 0.00 0.01 ± 0.01 0.06 ± 0.01 0.13 ± 0.02 05.96 ± 01.16
MOLER-2000 0.55 ± 0.01 0.86 ± 0.00 0.86 ± 0.00 0.02 ± 0.00 0.08 ± 0.02 0.11 ± 0.00 07.62 ± 01.80

DIGRESS 0.77 ± 0.01 0.86 ± 0.00 0.86 ± 0.00 0.05 ± 0.00 0.09 ± 0.01 0.61 ± 0.02 32.51 ± 00.20
EDM-SYCO 0.59 ± 0.00 0.87 ± 0.00 0.87 ± 0.00 0.003 ± 0.00 0.19 ± 0.01 0.06 ± 0.02 04.49 ± 00.22

G.4 CONDITIONAL VS UNCONDITIONAL GENERATION

In addition to the conditional generation experiment from the main text, we perform an extra
experiment to evaluate our approach and compare it to the unconditional model, which does not
consider the conditioning value. We consider four properties: (1) the penalized LogP score (PLogP),
a compound’s solubility and synthetic accessibility; (2) QED, a compound’s drug-likeness; (3) DRD2,
an estimate of the biological activity against dopamine type 2 receptors; (4) TPSA, a drug’s ability to
permeate cells.

We generate 10,000 valid molecules for each property and report the mean absolute error between the
targets and the estimated values for the generated molecules measured by RDKit. The results are
shown in Table 11. Our guidance mechanism achieves an average improvement factor of more than
5.5 times compared to the unconditional model across all properties.

Table 11: Mean absolute error between the targets and the property values of 10,000 generated
molecules using regressor guidance, and the improvement factor compared to unconditional genera-
tion. We report standard deviation across 3 runs with different random seeds.

PLOGP QED DRD2 TPSA

UNCONDITIONAL 2.2440 ± 0.0018 0.1530 ± 0.0002 0.0148 ± 0.0000 25.9017 ± 0.0206

GUIDANCE 0.3557 ± 0.0042 0.0350 ± 0.0004 0.0051 ± 0.0001 03.0382 ± 0.0164

IMP. FACTOR (↑) 6.3087 4.3714 2.9020 08.5253

G.5 CONDITIONAL GENERATION WITH CONDITIONAL DIFFUSION MODELS AND
REGRESSOR-FREE GUIDANCE

In this section, we benchmark additional approaches for conditional generation presented in Sec-
tion 6.2. In the main text, we reported results with the regressor guidance algorithm on top of an
unconditional diffusion model inspired by the classifier guidance algorithm (Dhariwal & Nichol,
2021). Here, we additionally test a conditional diffusion model, which is a simple extension to the
unconditional model, obtained by adding the target property to the node features and training a new
model (Hoogeboom et al., 2022), referred to as Conditional Diffusion in Table 12. Inspired by the
classifier-free guidance algorithm (Ho & Salimans, 2022), we train another variant of the conditional
model by dropping the target property 15% of the time during training. This allows us to sample
from the same model in a conditional or unconditional way, and by combining the two modes, we can
guide the generation process towards the target properties, similar to the regressor-guidance case. We
refer to this case as Regressor-Free Guidance in Table 12. We additionally test guiding the conditional
model with an external regressor model (Regressor Guidance Conditional). All results for these
models are shown in Table 12. Note that we experimented with smaller models than the one reported
in the previous experiment due to the computational costs associated with training and running these
models. Therefore, these numbers are not directly comparable to the numbers from the previous
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experiment. However, note that the best model presented here, the Regressor Guidance Conditional,
has an MAE of 0.36, which is very close to the number from the previous experiment (0.3581), even
though the model here is smaller. We expect that guiding the conditional model performs better if
compared properly. However, it has the drawback of training a new diffusion model for each target
property, compared to using the same diffusion model and one regressor that predicts all properties of
interest.

Table 12: MAE between condition value c and the property value computed on the generated
molecules. The considered property in PLogP. s̄ =

√
1− ᾱts.

METHOD SCORE FUNCTION MAE

UNCONDITIONAL - 2.24
CONDITIONAL DIFFUSION ϵθ(zt, t, c) 0.60
REGRESSOR-FREE GUIDANCE (s+ 1)ϵθ(zt, t, c) + sϵθ(zt, t) 0.48
REGRESSOR GUIDANCE CONDITIONAL ϵθ(zt, t, c) + s̄∇zt(gη(zt, t)− c)2 0.36

G.6 UNCONSTRAINED MOLECULE OPTIMIZATION

This task aims to generate molecules from scratch with as high property values as possible without
any other constraints. We use this task to demonstrate the performance of the proposed guidance
mechanism for property maximization, described in Equation 8. Similarly to the conditional gen-
eration task, we start from Gaussian noise and run the modified sampling algorithm to generate
molecules with high properties. Table 13 shows the top-3 scores of our model’s generated molecules
and for all baselines from (Kong et al., 2022). Note that we achieved the best scores compared to
all these baselines, even though we only generated 1,000 molecules compared to 10,000 molecules
generated by these baselines. This illustrates the high performance of our method and motivates its
use for the harder task of constrained optimization.

Table 13: Top-3 property values for molecules generated in the unconstrained optimization task.
Results for all baselines are taken from (Kong et al., 2022). All baselines generate 10,000 molecules,
while we only generate 1,000 for this task.

METHOD
PLOGP QED

1ST 2ND 3RD 1ST 2ND 3RD

JT-VAE 5.30 4.93 4.49 0.925 0.911 0.910
GCPN 7.98 7.85 7.80 0.948 0.947 0.946
MRNN 8.63 6.08 4.73 0.844 0.796 0.736

GRAPHAF 12.23 11.29 11.05 0.948 0.948 0.947
GRAPHDF 13.70 13.18 13.17 0.948 0.948 0.948

GA 12.25 12.22 12.20 0.946 0.944 0.932
MARS 7.24 6.44 6.43 0.944 0.943 0.942
FREED 6.74 6.65 6.42 0.920 0.919 0.908
H-VAE 11.41 9.67 9.31 0.947 0.946 0.946
F-VAE 13.50 12.62 12.40 0.948 0.948 0.947

PS-VAE 13.95 13.83 13.65 0.948 0.948 0.948
EDM-SYCO 14.73 14.31 14.21 0.948 0.948 0.948

G.7 FRAGMENT OCCURENCES

In this section, we test our method’s ability to generate molecules containing fragments of different
occurrence frequencies in the training set and compare it with several baselines. Table 14 shows the
results of this experiment. Even though our model is not motif-based, it can match the distribution of
fragments very well.
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Table 14: Frequency of occurrence of different fragments computed on the generated molecules from
different methods. Methods are split into SMILES-based, graph-based motif-level, and graph-based
atom-level. The method that achieves the closest percentage to that in the training set is highlighted.
SYCO can successfully reproduce the percentages of different fragments in its generated molecules
without relying on motifs.

FRAGMENT

TRAINING 76.47% 14.15% 9.37% 1.19% 1.09% 0.97% 0.39% 0.27%

CHARVAE 52.98% 4.06% 1.09% 0.13% 0.40% 2.31% 1.21% 0.00%
SM-LSTM 75.73% 14.02% 9.73% 1.01% 1.09% 1.10% 0.34% 0.24%

PS-VAE 71.31% 13.08% 5.58% 2.84% 1.07% 2.61% 0.27% 0.12%
HIERVAE 75.78% 12.80% 7.92% 0.71% 0.45% 0.56% 0.03% 0.00%
MICAM 79.47% 11.37% 5.74% 0.79% 0.94% 2.16% 0.37% 0.06%
JT-VAE 80.15% 13.84% 9.70% 1.99% 1.07% 1.48% 0.60% 0.41%
MAGNET 69.01% 11.54% 7.58% 0.99% 1.15% 0.87% 0.23% 0.19%
MOLER 78.47% 15.12% 7.85% 1.26% 0.64% 1.24% 0.25% 0.21%

GCPN 53.37% 2.03% 0.33% 0.44% 3.53% 0.38% 0.89% 0.13%
GRAPHAF 34.16% 1.27% 2.29% 0.11% 0.29% 0.25% 0.03% 0.00%
DIGRESS 83.96% 11.63% 8.03% 1.18% 0.52% 1.49% 0.38% 0.10%
EDM-SYCO 75.57% 12.84% 9.17% 1.02% 0.56% 1.89% 0.33% 0.16%

G.8 MODEL RUNTIME

To understand the computational cost associated with our model, we report the average runtime for
training and inference in Table 15. On the ZINC250K dataset, our model is trained for 1000 epochs,
which takes approximately 10 days (considering intermediate evaluations every 10 epochs), with an
average of 740 seconds for training per epoch. During sampling, our model greatly benefits from
running batch-wise and takes, on average, 86 seconds to generate a batch of 100 molecules, which
corresponds to an amortized runtime of 0.86 seconds per single molecule. Generating molecules
conditioned on target values further increases the runtime because it requires running one forward
and one backward pass of the regressor model at each diffusion step, increasing the average runtime
to 1.8 seconds per molecule. All numbers were computed using a single Nvidia A100 GPU.

Table 15: Average runtime of EDM-SYCO. Numbers are on the ZINC250K dataset, the training set
contains 220K molecules, and the sampling times are obtained using a batch size of 100.

RUNTIME

TRAINING (EPOCH) 740 SECOND / EPOCH
TRAINING (TOTAL) ∼ 10 DAYS
UNCONDITIONAL SAMPLING 0.86 SECOND / MOLECULE
CONDITIONAL SAMPLING (GUIDANCE) 1.8 SECOND / MOLECULE

G.9 SAMPLING SPEED VERSUS GENERATION QUALITY TRADE-OFF

Our diffusion model is trained with T = 1000 diffusion steps, which can be a limiting factor in some
practical applications due to the resulting slow sampling process. One simple way to accelerate this
process is to run a strided sampling schedule Nichol & Dhariwal (2021). The key idea is that to
reduce the sampling steps from T to S, we run the denoising network (Equation 6) every ⌈T/S⌉
steps and update the noise schedule accordingly Nichol & Dhariwal (2021). In this experiment, we
evaluate the quality of the molecules generated by running the model, initially trained with T = 1000
steps, using only 500, 250, 200, and 100 steps evenly spaced between 1 and T (without any additional
training). Figure 9 shows that the model performs well even with only 200 steps, which offers 5x
speedup (if we neglect the cost of running the decoder, which is less than 1 step of reverse diffusion).
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Figure 9: Effect of varying the number of reverse diffusion steps on the performance, using the same
model trained for 1000 steps.

G.10 ANALYSIS OF 3D INDUCTIVE BIAS

We analyze the inductive bias of our architecture in two steps and perform an ablation study to
highlight it:

• Chemical bias of RDKit-generated coordinates: we train a new variant of EDM-SyCo on
3D coordinates produced by the Fruchterman-Reingold force-directed algorithm6, which
generates 3D positions solely based on the graph structure without any chemical inductive
bias. We refer to it as EDM-SyCo-graph-layout.

• Representation bias of the 3D latent embedding: we highlight baselines that operate
directly on the graphs, through discrete diffusion (DiGress) or continuous diffusion by
adding Gaussian noise to the adjacency matrix (GDSS).

Results are presented in Table 16. We see that our base model performs better than EDM-SyCo-
graph-layout across all metrics, which in turn outperforms GDSS and Digress on FCD and KL.

Table 16: Performance comparison of different model classes. Higher values indicate better perfor-
mance for all metrics.

Model Class FCD (↑) KL (↑) Novelty (↑) Uniqueness (↑) Validity (↑)
3D diffusion on RDKit-generated coordinates (EDM-SyCo-RDKit) 0.85 0.96 1.00 1.00 0.88
3D diffusion on graph-based coordinates (EDM-SyCo-graph-layout) 0.73 0.94 1.00 1.00 0.54
Continuous diffusion on graph (GDSS) 0.10 N.A. 1.00 1.00 0.97
Discrete diffusion (DiGress) 0.65 0.91 0.99 0.99 0.85

G.11 MOVING THE EGNN FROM THE ENCODER TO THE DECODER

To understand the effect of training the diffusion model on the latent space defined by the encoder’s
EGNN versus on the raw synthetic coordinates, we train a new diffusion model directly on the
ETKDG-generated coordinates and move the EGNN to the decoder. We note that also in this setup,
training the diffusion model is necessary because, for the used datasets, there is no public ground-
truth coordinates and thus no pretrained 3D diffusion models. Although both model variants achieve
similar unconditional generation performance, one benefit of having an MLP-only decoder is in a

6https://networkx.org/documentation/stable/reference/generated/networkx.drawing.layout.spring_layout.html
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scaffold-constrained generation setting: Given a scaffold that can be reconstructed by the autoencoder,
we perform inpainting in the latent 3D space and generate a completion for this scaffold. The issue
with having the EGNN in the decoder is that the bond prediction between the atoms in the scaffold
will depend on the newly added atoms, and the final decoded graph is no longer guaranteed to contain
the original 2D scaffold, in contrast to having an MLP-only decoder. We validate this argument by
generating 1000 valid completions for a 6-Carbon-ring (smiles string: C1CCCCC1, present in 7% of
the training molecules) and computing how often the decoded molecules actually contain the scaffold
(Scaffolding success rate). Results are shown in Table 17.

Table 17: Performance comparison of different models on FCD, KL divergence, and Scaffolding
Success Rate. Higher values indicate better performance.

Model FCD KL Scaffolding Success Rate (%)
Diffusion model on ETKDG output + EGNN-MLP-decoder 0.84 0.95 94.2
Diffusion model on EGNN output + MLP-only-decoder 0.85 0.96 100.0

G.12 MODEL SCALING WITH MOLECULE SIZE

To check the scalibility of our model with respect to the molecule size compared to previous diffusion
models, we compare the average runtime required to generate a single molecule using DiGress and
our model. DiGress is a discrete diffusion model that operates on 2D graphs. For both models, we
generate a batch of 100 molecules of size N, for an increasing N, and report the average runtime to
generate one molecule. Results are shown in Table 18.

Table 18: Comparison of generation times (in seconds) for DiGress and EDM-SyCo across different
molecule sizes.

# Atoms 10 20 30 40 50 60
DiGress (time in seconds) 4.05 12.42 27.04 46.87 70.73 114.14
EDM-SyCo (time in seconds) 0.15 0.49 1.02 1.75 2.69 3.66

G.13 MOLECULE SIZE EXTRAPOLATION

To evaluate generalization, we generate molecules larger than every other molecule from the training
set and report the validity rate in Table 19. The better performance on GuacaMol compared to
ZINC250K can be explained by the higher diversity of training molecule sizes in GuacaMol. We
outline some ideas that can improve the generalization capability:

• instead of modeling point clouds as fully-connected graphs for the diffusion model’s EGNN,
use distance cutoffs to make the number of neighbors of an atom roughly independent of the
total number of atoms, as e.g. done in [3].

• modify the forward diffusion process to avoid that all atoms cluster around the CoM, e.g. by
increasing the variance of the transition kernels.

Table 19: Generalization performance of models on molecules larger than the training set, with results
reported as validity rates (%).

Molecule Size nmax + 5 nmax + 10 nmax + 20

ZINC250K (nmean = 23.6, nstd = 4.4, nmax = 40) 45.3 24.5 21.1
GuacaMol (nmean = 28.0, nstd = 7.9, nmax = 88) 70.1 55.4 15.9
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