
Next, we provide additional details of our work. More concretely:483

• Appendix A Real-Robot experiments: provides more details on the real-robot experiments484

and on HUGE working from images.485

• Appendix B Real-Human experiments: shows all the details of the real human experiments486

presenting results for both the crowdsourcing experiment as well as experiments on more487

benchmarks with fewer annotators.488

• Appendix C Simulated Benchmarks: we provide further details on the simulated bench-489

marks used in this work.490

• Appendix D Baselines: we provide details about the baselines together with more detailed491

learning curves of the baselines on the simulated benchmarks.492

• Appendix E Further Analysis and Ablations: we provide more insights on where the493

benefits of HUGE come from, as well as provide some ablations on the method.494

• Appendix F Implementation Details: we provide further implementation details, hyperpa-495

rameters and resources used.496

The code is available at github.com/...497

A Real-Robot Experiments498

HUGE’s qualities make it suitable to learn policies directly in the real world. However, we adapted499

the method with respect to the simulated experiments in Fig 5. The main change consisted in changing500

the state space to image space instead of point space. Next, we show HUGE works from image space501

in two of the simulated environments, four rooms and block stacking.502

A.1 HUGE from images503

Adapting HUGE to work from image space was a trivial process, the goal selector and policy networks504

were modified introducing a first encoding network consisting of 3 convolutional layers (with stride 2505

and kernel size 5) to map the input image to a lower dimension space and then we passed it through506

an MLP to predict the score and action respectively.507

Learning stopping criteria: When using the point state space, we could easily detect whether508

the policy stopped, indicating it reached the target goal, or that it got stuck, to then start random509

exploration from there. This could be done by computing the Euclidean distance and setting a small510

enough threshold. This is more difficult when working from image state space. What we did was511

train an image classifier ϕ(s1, s2) that predicts whether the two images correspond to states close512

in space (i.e. the state corresponding to image s2 can be reached from the state corresponding to513

image s1 within tclose timesteps). We trained ϕ by using contrastive learning [11]. In particular, we514

sampled images from our replay buffer and assigned the corresponding label based on their distance515

in timesteps: l(si, sj) = 1 if |i− j| ≤ tclose and 0 if |i− j| ≥ tfar. Based on the premise that, in most516

cases, images obtained far away in time, will probably correspond to states that take longer than tclose517

timesteps to reach, if we were to act optimally.518

Block staking

0 0.2M 0.4M 0.6M 0.8M 1M
0

0.2

0.4

0.6

0.8

1

Number of steps

D
is

ta
nc

e
to

 g
oa

l

Four Rooms

Figure A.1: Success rate for the four rooms (left) and block stacking (right) using images as input
space for both the policy and goal selector.

14

A.2 Results in the real-world519

Drawing in the real world

Pick & place in the real world
Ta

sk
s

A
cc

om
p

lis
h

ed
H

u
m

an
 A

lig
n

m
en

t
Sc

or
e

0 steps 1000 steps 2000 steps 3000 steps 4000 steps
Training steps

0 steps 2500 steps 5000 steps 7500 steps 10000 steps
Training steps

Figure A.2: Accomplished goals at the end of 5 different evaluation episodes along training on the real world
to pick and place, and draw the letter U in the real world.

For the real robot experiment, we used a LoCoBot with a WX-200 arm.520

Pick and place in the real world: The state space consisted of RGB images of 64× 64 pixels, and521

the action space was continuous with dimension 2, representing an absolute position in the space522

(x, y) from which to predict a grasping point in even timesteps, or a dropping point in odd timesteps.523

For the experiment to be succeed in a reasonable amount of time, we pretrained the policy and the524

goal selector by using 5, sub-optimal demonstrations. The robot was trained for around 30h, during525

which, 130 labels were provided via the interface shown in B.4 by one annotator. Finally, we used a526

reset mechanism to pull the socks to the same corners, though, it had some stochasticity.527

Drawing in the real world: The state space consisted of RGB images of 64 × 64 pixels, and the528

action space was discrete, encoding a total of 5 actions: no movement and moving across the two529

axis on the plane in polar coordinates (i.e. increasing r, decreasing r and moving a fixed amount530

clockwise or counterclockwise), to move the end effector with the brush. An episode consisted of531

12 timesteps. For the experiment to be ran in a reasonable amount of time, we pretrained the policy532

and the goal selector by using 5, sub-optimal demonstrations. The robot was trained for around 6h,533

during which, 150 labels were provided via the interface shown in B.4 by one annotator. Finally,534

the reset was done by using the erase mechanism in this drawing boards and moving it with the arm535

by using a script. As a final note, in this environment we had to perform few exploration steps and536

slowly increase the frontier. This is because in this environment there is only one optimal solution537

(the actions taken must be exactly the optimal ones, due to the fact that all past actions within the538

episode will affect the current state of the board), in particular, any non-optimal action will leave a539

trace, making that trajectory not that useful for the policy to learn from it.540

Human Alignment evaluation for drawing in the real world: Designing a reward function for541

drawing is a hard and tedious labor. HUGE does not need a reward function and we can fully leverage542

human feedback to learn this behavior as shown in A.2. Without a reward function evaluation cannot543

be performed either. For this reason, we defined this "Human Alignment Score" that basically consists544

in querying humans and asking them for a score between 0 and 10 of how well the robot draw the545

target picture. In the case of the drawing experiments, we asked 2 annotators to label the performance546

of the robot drawing the letter U with a score from 0 to 10. This score was only used for evaluation547

and is the metric used to plot the drawing plot in A.2.548

15

B Real-Human experiments549

0 0.5M 1M 1.5M 2M 2.5M
0

0.5

1

1.5

2

2.5

3

Ours (human + 5 demos)
Ours (crowdsource + 5 demos)
Ours (synthetic + 5 demos)

Kitchen (Human Experiment)

Number of steps

S
uc

ce
ss

 R
at

io

0 20k 40k 60k 80k 100k 120k 140k
0

0.2

0.4

0.6

0.8

1

Ours (human)
Human Preferences (human)
Ours (synthetic)

Four Rooms (Human Experiment)

Number of steps

S
uc

ce
ss

 R
at

io

0 0.2M 0.4M 0.6M 0.8M 1M 1.2M 1.4M 1.6M 1.8M
0

0.2

0.4

0.6

0.8

1
Pusher (Human Experiment)

Number of steps

S
uc

ce
ss

 R
at

io

Figure B.3: Learning Progress with Human-in-the-Loop Feedback for the kitchen (left), four rooms navigation
(middle) and pusher walls (right) for which we collected 1600, 660 and 2780 labels respectively.

In this section, we give more details on how we ran the human experiment. We designed a simple550

interface shown in Figure B.4. We can see the two states to be compared in blue and red and the goal551

we aim to achieve in green. Then the annotator has to decide which one of the two states is closer552

to the given goal and provide feedback by clicking either on the blue or red button. In the case in553

which the annotator is undecided, they can click on the gray button that simply skips the current case.554

Finally, if the annotator does not provide any feedback after 30 seconds of being presented with the555

scenario, we skip the current batch of labeling and continue with training the policy. With this, we556

can take advantage of the properties of our method and continue training the policy even when no557

labels are given.558

In Figure B.3 we share again the results obtained with the human experiment on a larger scale. We ran559

both experiments using the same frequency of labeling and number of labels per batch. In particular,560

We labeled every 50 rollout trajectories and queried the annotators for 20 labels. These parameters561

were identified through empirical experiments.562

Figure B.4: Screenshot of the interface from our proposed crowdsourcing platform. It shows a
comparison of two image states of the kitchen environment, and the user needs to click one of the
three buttons below depending on their answer of which one is best: Left/I don’t know/right

B.1 Details about the crowdsourcing experiment563

Subject 109 subjects participated in this pilot crowdsourcing study. Subjects were recruited from564

the acquaintances of the collaborators. The average time to complete the study was about 2 minutes.565

The subjects participated voluntarily without financial remuneration. The participants age ranged566

from 18 to 65+ years old. Gender Male=58.7%, Female=39.4%, Non-binary=1.8%. The participants567

were from 21 nationalities and participated from 13 distinct countries. More detailed information is568

presented in tables B.1 and B.2. There is no reason to believe that subjects experienced any physical569

or mental risks in the course of these studies.570

16

Procedure This study was approved by the Institutional Review Board of [INSTITUTIONNAME]571

protocol E-4967.572

We provide the participants with the following detailed instructions:573

Thank you very much for participating in this study. It should not take you574

more than a couple of minutes to complete. First of all click on the link575

we sent you to get directed to the main page (B.4), you can either use your576

phone or your computer. Please, start by filling out the form for us to get an577

overview of the participants’ demographic. The task consists of controlling578

a robot to do different things in the kitchen: 1) open the slider on the right,579

2) open the microwave on the right 3) open the hinge cabinet on the left.580

[We show a video of a successful trajectory]. To help us, we will present581

you two images and you need to tell us which one of the two images is582

closer to achieving the task. Click on the left/right button depending on583

whether the left/right image is better. If at some point you don’t know which584

one is best please click the "I don’t know" button. [We present a couple of585

examples demonstrating this]. We will show 30 pairs of images and after586

that, you will receive a message saying you completed the task. You can587

stop at any moment before that if you want.588

Figure B.5: Heatmap on the country representation during our crowdsourcing experiment.

17

Metric Percentage

Current country of Residence
USA 41.3% (45)
Spain 30.3% (33)
India 8.3% (9)
Germany 6.4% (7)
Canada 2.8% (3)
France 2.8% (3)
Singapore 1.8% (2)
China 1.8% (2)
Andorra 0.9% (1)
Austria 0.9% (1)
Ireland 0.9% (1)
Switzerland 0.9% (1)
United Kingdom 0.9% (1)
Prefer not to say 0% (0)

Gender
Male 58.7% (64)
Female 39.4% (43)
Non-binary 1.8% (2)
Prefer not to answer 0% (0)

Age group
18-24 48.6% (53)
25-34 24.8% (27)
35-44 7.3% (8)
45-54 11.0% (12)
55-64 7.3% (8)
65+ 0.9% (1)
Prefer not to answer 0% (0)

Education
Graduate or professional degree 39.4% (43)
College degree 33.9% (37)
High school or some college 20.2% (22)
Other 12.8% (14))
Prefer not to say 2.8% (3)

Table B.1: Demographics on the participants of the crowdsourced data collection experiment

18

Metric Percentage

Nationality
Spain 26.6% (29)
USA 20.2% (22)
India 9.2% (10)
Germany 8.3% (9)
China 7.3% (8)
France 4.6% (5)
Mexico 3.7% (4)
Colombia 2.8% (3)
Switzerland 1.8% (2)
Hong Kong 1.8% (2)
Canada 1.8% (2)
Uruguay 0.9% (1)
Singapore 0.9% (1)
Russia 0.9% (1)
Ireland 0.9% (1)
Lebanon 0.9% (1)
South Korea 0.9% (1)
Sweden 0.9% (1)
Andorra 0.9% (1)
Puerto rico 0.9% (1)
Israel 0.9% (1)
Prefer not to say 0.9% (1)

Ethnicity
Hispanic, Latino or Spanish 38.5% (42)
Asian 28.4% (31)
White or Caucasian 24.5% (27)
Middle Eastern or North African 3.7% (4)
South-east Asian 2.8% (3)
Black or African American 0.9% (1)
Perfer not to say 0.9% (1)

Table B.2: Demographics on the participants of the crowdsourced data collection experiment

19

C Simulated Benchmarks589

Start Pusher Walls Reaches puck Moves puck around
first obstacle

Moves puck around
second obstacle Puck reaches goal

Start Kitchen Reaches slider Opens slider Opens microwave Opens cabinet

Start Configuration
 of Pieces

Red piece is place
and picks blue piece

Red and blue pieces
placed, picks green piece

Places green piece on
top of blue and red pieces

Places final piece and
reaches goal configuration

Start Block Stacking Picks red block Drops red on target
and picks green

Stacks green and
picks blue Three blocks stacked

Block
Stacking

Kitchen

Bandu

Pushers
with walls

Figure C.6: Results of our method on four of the hardest benchmarks. From left to right, the timestep
in the trajectory increases.

In this section, we give more details on the benchmarks used to compare our method with the590

baselines. All of these benchmarks are variations of benchmarks presented in previous work. In591

general, we have made them harder to showcase the benefits of our method. More concretely, for each592

method, we will give an overview of the difficulties it has and we will present the reward function we593

designed to provide synthetic labels in our experiments.594

1. Four rooms (small 2D Navigation): We consider goal-reaching problems in a 2-D nav-595

igation problem in a four rooms environment, shown in Fig C.7. The challenge in this596

environment is navigation through obstacles, which are unknown without exploration. The597

agent is initialized in the bottom right room and the goal is sampled from the top right room.598

The state observation of this environment is the absolute position of the agent in the world,599

i.e. a vector (x, y), and the action space is discrete with 9 possible actions, encoding 8600

directions of movement (parallel to the axis and diagonally), plus a non-move action. To601

solve this benchmark the agent needs to traverse the two intermediate rooms to get to the602

target room, traversing a total of four rooms. The reward function in this case is the shaped603

distance between the state and the goal. This benchmark is a modification of the benchmarks604

proposed by [21].605

2. Maze (large 2D Maze Navigation): We consider a second 2-D navigation problem in a606

maze environment. The additional challenge in this environment compared to the previous607

one relies upon having a longer horizon (see Figure F.4). The agent is initialized in the green608

dot and has to reach the red dot. The state space is the absolute position of the agent in the609

maze, i.e. a vector (x, y), and the action space is the same as in the Four rooms one, i.e.610

discrete with dimension 9. The reward function in this case is the shaped distance between611

the state and the goal.612

20

Kitchen

MazePusher two walls

Bandu Block stacking

Four Rooms

Figure C.7: Results of our method on four of the hardest benchmarks. From left to right, the timestep
in the trajectory increases.

3. Pusher two walls: This is a robotic manipulation problem, where a Sawyer robotic arm613

pushes an obstacle in an environment with multiple obstacles. The puck and arm start in the614

configuration seen in Fig C.7. The task is considered successful if the robotic manipulator615

brings the puck to the goal area, marked with a red dot. The state space of this environment616

consists of the position of the puck and the position of the arm. The action space is the617

control of the position of the robotic arm. It is also a 9-dimensional discrete action space618

where each one corresponds to a delta change in the position in 2D. This benchmark is a619

modification of the benchmarks proposed by [21]. The reward function designed for this620

environment is the following:621

r = max(distance_puck_finger, 0.05) + distance_puck_goal

4. Sequential Kitchen Manipulation: This benchmark is a harder robotic manipulation task622

where apart from being long horizon the agent needs to show three different skills to solve623

the task. We operate a 7 DoF Franka robot arm in a simulated kitchen, manipulating different624

cabinets, sliding doors, and other elements of the scene. The observation space consists of625

the position of the end effector and its rotation together with the joint states of the target626

objects. The action space consists in controlling the end effector position in 3D, we discretize627

it so the dimension is 27, and the control of the gripper and rotation of the arm. In our628

evaluation, we consider tasks where the goal is to sequentially manipulate three elements in629

the kitchen environment - the sliding cabinet, the microwave and the hinge cabinet to target630

configurations. The reward function we use is the following:631

r =


−distance(arm, hinge cabinet)− |hinge cabinet target joint - hinge cabinet current joint| , if slide cabinet and microwave opened
−distance(arm, microwave hinge)− |microwave target joint - microwave current joint| − bonus , if slide cabinet opened
−distance(arm, slide cabinet hinge)− |slide cabinet target joint - slide cabinet current joint| − 2bonus , otherwise

(5)
5. Block Stacking: This domain is another long horizon robotic manipulation task, we operate632

a 6 DoF UR5 robot arm with a suction gripper as an end effector in a simulated tabletop633

configuration, stacking blocks. The observation space consists of the position of the end634

effector and the position of each block in 2D, and a bit indicating whether the hand is holding635

a block. This is a continuous action space domain with dimension 2, where the agent will636

predict a grasp position if it does not hold an object and a drop position if it is holding an637

21

object. We consider the goal to be accomplished if the three blocs are stacked in the correct638

order (red, green, blue) on the correct fixed place on the table. The reward function is the639

following:640

r =


−distance(arm, blue block) - distance(blue block, target goal) , if red and green block at position
−distance(arm, green block) - distance(green block, target goal)− bonus , if red block at position
−distance(arm, red block) - distance(red block, target goal)− 2bonus , otherwise

(6)
6. Bandu: This domain is very similar to the block stacking. We operate a 6 DoF UR5 robot641

arm with a suction gripper as an end effector in a simulated tabletop configuration. The642

observation space consists of the position of the end effector and the position of each block643

in 2D, and a bit indicating whether the hand is holding a block. This is a continuous action644

space domain with dimension 2, where the agent will predict a grasp position if it does not645

hold an object and a drop position if it is holding an object. We consider the goal to be646

accomplished if the four blocs are stacked in the target configuration building the castle like647

structure seen in Figure C.7. The reward function is the following:648

r =


−distance(arm, yellow star) - distance(yellow star, target yellow star) , if all except star at position
−distance(arm, green block) - distance(blue green block, target green block)− bonus , if red and blue blocks at position
−distance(arm, blue triangle) - distance(blue triangle, target blue triangle)− 2bonus , if red cylinder at position
−distance(arm, red cylinder) - distance(red cylinder, target red cylinder)− 3bonus , otherwise

(7)

More details about how these benchmarks were run, such as the number of episodes we ran the649

benchmarks for, are presented in Section F650

22

D Baselines651

We compare HUGE to relevant baselines from prior work.652

1. GCSL: We compare with the iterative supervised learning algorithm for goal-reaching653

introduced in [21], consisting of hindsight relabeling without additional exploration.654

2. Learning from Human Preferences: We consider the technique introduced in [12], which655

learns a goal-agnostic reward model using binary cross-entropy. This learned reward is then656

combined with an on-policy RL algorithm [43] to learn the policy.657

3. DDL: Dynamical Distance Learning [24] proposes a method to learn a goal-conditioned658

reward function by regressing on the time distance between states achieved in the same659

trajectory. A human synchronously provides preferences on which state brings the agent660

closest to the goal, note that no goal selector is being learned. The policy is then trained to661

maximize the learned reward to get to this selected state.662

4. Go-Explore/LEXA: We compared with a version of goal-reaching with indiscriminate663

exploration. In particular, we perform frontier goal selection by identifying goals with the664

lowest densities. The policy returns to these states and perform random exploration from665

there. This is equivalent to performing indiscriminate exploration.666

5. Proximal Policy Optimization: We compare with an on-policy algorithm [43] with both a667

standard sparse and dense reward to directly optimize the goal-reaching objective.668

6. Behavior Cloning: Supervised learning on a batch of expert trajectories. In our experiments669

we use 5 expert trajectories.670

7. Behavior Cloning + Ours: We pretrain the policy using imitation learning and we warm671

start our goal selector by training it from the expert trajectories. Given two random states in672

the same expert trajectory we add them into the training data for the goal selector, setting673

the state further in time as closest to the goal.674

These baselines are chosen to compare HUGE with methods that perform pure exploration, hindsight675

relabeling, and human preferences without being goal conditioned to highlight the benefits of676

combining goal-driven self-supervision with human-in-the-loop exploration guidance.677

Figure D.8: Failure modes of exploration algorithms for goal-reaching. Inverse models (top) col-
lapses and does not discover the target room (second room at the top). Uniform frontier expansion
(middle) does reach the target room, but to get there it visits all possible rooms, since exploration is
indiscriminate. Directed frontier expansion (bottom, ours) reaches the target room much faster by
leveraging human signal on direction. Training epochs increase from left to right. Each subfigure is
an aerial view of a floor with 9 rooms, with multiple trajectories, each one in a different color.

23

0 100k 200k 300k 400k 500k
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

Four Rooms

Number of steps

D
is

ta
nc

e
to

 g
oa

l

0 0.5M 1M 1.5M 2M 2.5M 3M
0

0.2

0.4

0.6

0.8

1

Pusher with walls

Number of steps

D
is

ta
nc

e
to

 g
oa

l

0 10k 20k 30k 40k 50k 60k 70k 80k 90k
0

1

2

3

4

5

6

7

Block Stacking

Number of steps

D
is

ta
nc

e
to

 g
oa

l

0 50k 100k 150k 200k 250k
0

2

4

6

8

10

12

Bandu

Number of steps

D
is

ta
nc

e
to

 g
oa

l

0 0.5M 1M 1.5M 2M
0

10

20

30

40

50

60
Maze

Number of steps

D
is

ta
nc

e
to

 g
oa

l

BC (5 demos) GCSL Ours Human PreferencesPPO (dense)

BC + Ours (5 demos) Oracle DDL LEXA-likePPO (sparce)

0 50k 100k 150k 200k 250k
0

2

4

6

8

10

12

Bandu

Number of steps

D
is

ta
nc

e
to

 g
oa

l

Figure D.9: Distance to the goal for each method on different benchmarks. We note that the LEXA-
like exploration strategy was only implemented on the four rooms benchmark.

For the sake of concreteness, we will study two simple schemes from prior work on solving goal-678

reaching problems —self-supervision via goal conditioned supervised learning [21] (as described679

in Section 3) and reinforcement learning with density based exploration [34]. Exploration in GCSL680

relies on generalization of the policy across goals, while density based exploration rewards exploring681

the most novel states. We show these algorithms can fail in different ways for a simple maze682

environment shown in Fig D.8, where the agent starts in the middle room and must reach goals683

commanded in the top middle room.684

As shown in Fig D.8, GCSL exploration quickly collapses in the maze environment. This can be685

understood by noticing that self-supervised training on goals in the bottom right corner room or even686

the bottom left corner room does not extrapolate to the top right corner, where the commanded goals687

are. Instead of navigating the agent around the walls, the policy generalization suggests that the agent688

simply go into the wall as shown in Fig D.8.689

Exploration methods are meant to tackle this kind of degenerate exploration, by encouraging visitation690

of less frequently visited goals at the “frontier" of visited states. When applied to the goal-reaching691

problem, in Fig D.8, we see that while the exploration is not degenerate, exploration is indiscriminate692

in that it explores both sides of the maze even though commanded goals are only down one particular693

path. While this will eventually succeed, it incurs a significant cost of redundant exploration by going694

down redundant paths.695

This suggests that frontier expansion is needed like exploration methods, but should ideally be done696

in a directed way towards goals of interest. In Figure D.8 we see how this directed exploration could697

be useful and reduce sample complexity, by removing the need for indiscriminate frontier expansion.698

We show how a small amount of relatively cheap human feedback can be leveraged to guide this699

exploration.700

D.1 Detailed training curves701

For some of the runs the plot of the success could be misleading, in the sense that, despite not702

achieving the goal, the algorithms may still learn how to almost solve the task, or at least gained703

some knowledge about how to approach it. Figure D.9 shows for each of the runs, the distance to the704

goal, which corresponds to −r where r is the reward of the corresponding benchmark, as described705

in Section C.706

For example, by looking at Figure D.9, we can see that despite the fact that the Human Preferences707

wasn’t able to complete some of the tasks, such as Four Rooms, Pusher with walls or Maze, it still got708

some insight on how to approach it, getting much closer to the goal than the other methods that failed.709

24

Benchmark Oracle Ours GCSL Human
Preferences

DDL PPO
(sparse)

PPO
(dense)

LEXA style

4 rooms 0.02± 0.01 0.02± 0.00 1.15± 0.67 0.48± 0.39 0.45± 0.28 1.45± 0.13 0.05± 0.02 0.13± 0.18
Maze 0.4± 0.3 0.8± 0.3 29.6± 2.2 18.5± 5.6 8.54± 10.6 30.4± 0.7 0.0± 0.2 -
Pusher 0.06± 0.00 0.11± 0.04 0.85± 0.11 0.26± 0.03 0.69± 0.06 0.72± 0.06 0.27± 0.00 -
Kitchen 1.06± 0.32 0.67± 0.21 11.72±0.11 3.43± 4.37 11.28±0.02 7.63± 4.96 2.84± 2.72 -
Stacking 0.1± 0.2 0.0± 0.0 4.1± 2.3 6.5± 0.1 6.6± 0.1 6.7± 0.0 6.6± 0.0 -
Bandu 1.00± 0.53 0.36± 0.73 12.87±0.01 12.54±0.01 12.63±0.21 12.75±0.01 12.75±0.01 -

Benchmark BC (5 de-
mos)

BC + Ours
(5 demos)

4 rooms 0.45± 0.46 0.04± 0.00
Maze 2.25± 1.51 0.87± 1.02
Pusher 0.25± 0.09 0.08± 0.01
Kitchen 11.38 ±

0.00
0.87± 1.02

Stacking 1.91± 1.02 0.01± 0.00
Bandu 4.21± 5.47 1.87± 0.4

Figure D.10: Average distance and standard deviation across 4 seeds for the different baselines we implemented to
compare against HugRL. We see that HugRL consistently succeeds (in bold) to solve all benchmarks when most
other baselines do not. The oracle would be the upper bound that we could hope to achieve, since in this case labels
are provided all the time, and the goal selector is substituted by a precise distance function.

25

E Further Analysis and Ablations710

E.1 Analysis on learning from comparisons711

There is a tradeoff between the frequency of labelling and the speed for the policy to converge.712

In Figure E.11, (left) we observe that if we query more frequently, the policy needs more labels to713

succeed, however, we also observe (right) that when querying less frequently it takes more timesteps714

to succeed. Meaning that if we provide labels more frequently, the policy is going to converge faster715

to the optimal policy, but will come at the cost of needing more human annotations. On the other716

hand, if the human annotators provide labels less frequently, it will take longer for the policy to717

converge to the optimal policy. The query frequency will hence be an important parameter to look718

into depending on what we want to optimize for, number of human labels or timesteps to succeed.719

We believe that for simulation experiments, we might want to optimize for using less human labels720

since the policy rollouts can be done very fast. However, when working with learning on the real721

robot, we might prefer to have humans label more frequently and reduce the number of rollouts in the722

real world, which is usually the bottleneck.723

0 2k 4k 6k 8k 10k
0

0.2

0.4

0.6

0.8

1

1
15
100
500

Ablations on frequency of annotations

Number of labels

S
uc

ce
ss

 R
at

io

0 100k 200k 300k 400k 500k 600k
0

0.2

0.4

0.6

0.8

1

1
15
100
500

Ablations on frequency of annotations

Number of steps

S
uc

ce
ss

 R
at

io

Figure E.11: On the left/right we show the number of labels/timesteps needed to succeed when
varying the query frequency. 1, 15, 100, and 500 are the number of episodes between each period
of querying the human for annotations. We observe a clear tradeoff between needing fewer labels
to succeed against needing more timesteps. Meaning that if we query more frequently, we will
need fewer timesteps to succeed and vice versa. These experiments are done in the Four Rooms
benchmark.

Querying a few samples per batch is enough. In Figure E.12, (left) we observe that providing724

more labels every time we query the human leads to needing more labels to have successful policies,725

as expected. In right, however, we observe that the number of timesteps needed to have a successful726

policy is very similar when querying for 5,20 or 100 annotations, however, when only querying for727

1 the performance drops significantly. This means that 5 labels are already enough to learn how to728

expand the frontier, and querying more than 5 labels brings useless information.729

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

1
5
20
100

Ablations on the number of queries per batch

Number of labels

S
uc

ce
ss

 R
at

io

0 100k 200k 300k 400k 500k
0

0.2

0.4

0.6

0.8

1

1
5
20
100

Ablations on the number of queries per batch

Number of steps

S
uc

ce
ss

 R
at

io

Figure E.12: On the right we show the number of steps needed to succeed in the four rooms benchmark
depending on the number of comparisons queried per batch. On the left, we show the number of
labels needed to succeed, again depending on the query batch size. We observe that we can go as low
as 5 queries per batch, and the performance is similar to 20 and 100. Showing that too many queries
bring duplicated information to the goal selector training. Also, we see that providing 1 label is not
enough, degrading the performance significantly. These experiments are done in the Four Rooms
benchmark.

26

HUGE is robust to noisy labels. Increasing the noise in human labels leads to an increase in the730

number of timesteps needed to for the policy to learn to achieve the goal, as seen in Figure E.14.731

However, this does not decrease the accuracy of the resulting policy. Increased noise in the labels732

makes exploration become less directed and closer to the uniform frontier expansion methods.733

Having a closer look in Figure E.13 at the shape of the reward function when large noise is added734

to the feedback. We observe that the goal selector becomes less accurate compared to the one with735

perfect feedback in Fig E.18. However, HUGE still successfully reaches the goal. As we can see,736

there are 3 modes in the final step (4th subfigure in E.13). This means, the goals will be sampled737

most frequently from these 3 modes, which will result in a less efficient frontier expansion, since738

only one of the three modes is the target goal. However, since we are learning a goal-conditioned739

policy through self-supervised learning this remains unaffected by this noise and will learn to go to740

the three modes, one of which is our target location. This would not be the case for methods that use741

this goal selector as a reward function to run model-free RL, due to its convergence to local maxima742

without reaching the target goal.743

RLHF Ours

MODE 1

MODE 2

MODE 3

MODE 1

MODE 2

MODE 3

Figure E.13: Evolution of the learned goal selector when the distance for the synthetic human has a
noise of 1. We observe that the goal selector is not accurate, however, our method still successfully
reaches the goal, hence, it is robust to inaccurate goal selectors. This would not be the case for
methods that use this goal selector as a reward function to run model-free RL, due to the noise on it
and multiple local minimas and maximas.

HUGE is robust to underlying simple reward functions. In Figure E.15 we show the performance744

of our method in the Four Rooms environment when dealing with a simplified version of feedback.745

In particular, we only return feedback if the given queried states have a distance difference of at746

least d with respect to the goal. For context, in this environment 0.5 is approximately the distance747

between the center of two consecutive rooms, so using d ≥ 0.5 is roughly similar to using the room748

number as a reward function. Therefore, in this experiment, we can see that, even with very simple749

reward functions, we can still get some insight on how to solve the task, though at the expense of750

clearly slower convergence. In particular, we can see how coarser reward functions lead to worse751

performances. This also helps us understand what happens in scenarios in which it is hard for humans752

to compare states that are similarly good for the purpose of achieving the required goal.753

HUGE can learn when no labels are provided. This property of HUGE is because of the self-754

supervised learning used to train the policy but also a result of using a parametric goal selector as755

compared to directly selecting goals of interest as done in [24], which will not have this advantage.756

From Figure E.18 we observe that a parametric goal selector has the capacity to generalize while, by757

definition a non-parametric goal selection [24] will not. Thereafter, using a parametric reward model758

that has non-degenerate extrapolation can lead to significantly more frontier expansion. In Figure759

E.16 we show how our method succeeds in reaching the final goal room even if the goal selector has760

stopped training when the agent enters any of the previous rooms. However, this comes at a cost in761

much slower convergence.762

27

Ours
0

50k

100k

150k

200k

250k

Noise
0
0.05
0.1
0.3
1

Time to succes for different injected noise on labels

Method

Ti
m

es
te

p
of

 s
uc

ce
ss

Figure E.14: Show the effect of adding Gaussian noise in the labels provided by the human on the
Four Rooms benchmark. We observe that our method is robust to different amounts of added noise,
however, as noise increases, so will the timesteps needed to succeed. Noise is injected into the
distance function used by the synthetic human to provide labels, which means that with higher noise
the probability of the comparison being wrong will increase. For context, the distance between the
initial state and the goal is around 1.6.

Figure E.15: Comparison on the effect of simplified reward functions providing the synthetic human
annotations.

E.2 Goal selector Analysis763

Learning a goal selector is more feedback efficient than directly using the human feedback.764

In figure E.17 we show a comparison of the number of labels needed to succeed when using a765

parametric goal selector (Ours) against directly using the goal selected by the human (DDL). We766

show the comparison between different frequencies of human querying. 15, 100, 500 episodes are767

the number of episodes we wait before querying the human annotator for more labels. We observe768

that when learning a goal selector, we obtain a reduction in the number of labels needed of 40%769

when querying every 15 or 100 episodes and a reduction of 59% when querying every 500 episodes.770

Furthermore, if we don’t learn this parametric model, with low frequencies we might not learn a771

successful policy, as happens for the non-parametric version at 100, 500 episodes of frequency. When772

using the non-parametric goal selector (DDL) not all trials succeed, for querying every 100 episodes,773

2 seeds out of 4 fail and for 500 episodes between querying 3 out of the 4 fail, which is another774

reason why parametric goal selectors are better.775

In figure E.18, we show the goal selector will have non-trivial generalization, allowing us to continue776

expanding the frontier even when no human is present.777

28

Oracle no stopping final room third room second room first room
0

100k

200k

300k

400k

500k

600k

700k

Analysis Learning a Policy from an Incomplete Goal Selector

Stopping Moment

Ti
m

es
te

p
of

 s
uc

ce
ss

Figure E.16: Effect of freezing the goal selector at different points in the learning of the policy on
how long it takes to learn a successful policy on the Four Rooms benchmark. We see that an earlier
stop in the training leads to an increase in the timesteps needed to succeed. However, even if we stop
in the second room, our method is still very good at quickly finding a successful policy, which shows
how robust it is against incomplete goal selectors. This would not be the case for methods that run
RL on the learned reward functions (as DDL, and RL from Human Preferences). The policy still
succeeds thanks to the added random exploration, the self-supervised nature of GCSL, and a small
probability of sampling the final goal.

15 episodes 100 episodes 500 episodes
0

100

200

300

400

500

Method
DDL-like
Ours

Frequency

La
be

ls
 to

 s
uc

ce
ed

Increased feedback efficiency
by learning a goal selector

Figure E.17: Comparison of the number of labels needed to succeed when using a parametric goal
selector (Ours) against directly using the goal selected by the human (DDL).

Figure E.18: Progress of goal selector learning in the four rooms environment as learning progresses
it gets closer to the target (oracle on the right). The purple area represents the visited states by the
agent at that point. We observe that the goal selector provides extrapolation which will help the
training with fewer annotations.

Furthermore, in E.19 we explore how accurate the goal selector is, depending on the number of778

queries it has been trained with. In particular, we tested it in the Four Rooms environment by training779

29

the goal selector using pairs of states sampled uniformly. During evaluation, given two states which780

are less than d units apart, we compute the accuracy for which the model is able to pick the closest781

state to the goal. This allows us to see that the model is able to, given two states, determine which one782

is the closest to the goal, even when the given states are very close together and even when trained783

with just a handful of queries. For context, bear in mind that the distance from the initial state to the784

goal is 1.6 units.785

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

d < 2
d < 1
d < 0.5
d < 0.1
d < 0.05

Four Rooms

Number of queries

A
cc

ur
ac

y

Figure E.19: Accuracy of the goal selector depending on the number of queries
and dependent on the distance d between the states compared in the labels.

Qualitative analysis of the generalization of the goal selector. In this qualitative analysis, we786

show visualizations of the learned goal selector as different rooms are discovered during the learning787

process in the four-rooms domain Fig E.20. The goal selector model shows nontrivial extrapolation788

and can potentially provide guidance even beyond the set of states it is trained on.

Figure E.20: The goal selector learns and converges to a result close to the oracle (rightmost) as
epochs increase (left to right). We observe how this goal selector gets updated iteratively as the
frontier expands. Colder colors mean a lower reward for that state, whereas warmer colors mean a
higher reward for that state, in this case, this is equivalent to the distance to the goal.

789

E.3 Compatibility of HUGE with Learning from Trajectory Demonstrations790

As we mention in Section 4.4, HUGE is compatible with learning from trajectory demonstrations. In791

Figure E.21, we show how HUGE can improve the performance of simple imitation learning starting792

from different amounts of demonstrations. Given the number of demonstrations, imitation learning793

fails on less than 10 demonstrations, and with HUGE we can improve the policy to succeed in all794

cases.795

30

0 20k 40k 60k 80k 100k
0

0.2

0.4

0.6

0.8

1

1.2

1.4

BC 0
BC 2
BC 5
BC 10

Four Rooms

Number of steps

D
is

ta
nc

e
to

 g
oa

l

Figure E.21: The figure depicts the distance to the goal in the Four Rooms
environment when using a policy pre-trained via Behaviour Cloning with 0, 2,
5, and 10 demonstrations, respectively. We see that using BC on a small number
of demonstrations helps to boost the performance of our method. Also, notice
that BC wouldn’t achieve success (distance < 0.05) in any of the cases due to
compounding errors which leads to covariant shift. However, HugRL solves
these compounding errors within a small number of steps.

E.4 Analysis on implementation details796

How important is taking out redundant steps? One of the tricks to make this method work797

is to take out redundant steps. We define redundant steps as those that produce no change in the798

observation space, one example would be advancing towards a wall when already in contact with it.799

In Figure E.22 we see the resulting performance with and without taking out redundant steps. In800

particular, we can see that, even though our method can still reach the goal when having redundant801

steps, it converges much slower than when we remove them, highlighting the importance of taking802

them out.803

50k 100k 150k 200k 250k 300k 350k 400k
0

0.2

0.4

0.6

0.8

1

Ours
Oracle
Ours w/o redundant steps
Oracle w/o redundant steps

Number of steps

S
uc

ce
ss

 R
at

io

Figure E.22: Effect of the use of exploration after reaching the commanded goal on the performance

31

F Implementation Details804

For training the models and running the experiments, we had access to several workstations with one805

GeForce RTX 2080 Ti or one GeForce RTX 3090. It took on average 8 hours on these machines to806

run 4 seeds for each one of the baselines and our method. We account the total amount of compute807

hours would be around 1440 hours for the whole project, taking into account, experimentation and808

testing the algorithms.809

F.1 Networks with Fourier Features810

Seeing the complexity of our benchmarks, where we can have non-smooth reward landscapes for811

the goal selector. For example, in the four rooms environment, between one side and the other of812

the right rooms, the reward changes significantly and abruptly. Adding Fourier Features has been813

shown to work well for fitting these landscapes [48]. For this reason, we used them in some of our814

experiments, as detailed in Section F. More precisely, when used, we added an additional layer with815

Fourier features of size 40 times the input dimension.816

F.2 Training details817

The details of the parameters with which the results have been obtained will be disclosed in this818

section. In particular, Table F.4 depicts the parameters used for the different benchmarks, while Table819

F.3 contains the hyperparameter configuration used for the different algorithms.820

32

Parameter Value

Shared (to those that apply)
Optimize Adam
Discount factor (γ) 0.99
Reward model architecture MLP(256, 256)
Use Fourier in the reward model True
Buffer size reward model 1000
Steps per reward model update 1000

GCSL, Oracle and Ours
Learning rate 5 · 10−4

Batch size 100
Policy architecture MLP (400, 600, 600, 300)
Steps per policy update 5000
Use Fourier in the policy model True
Buffer size rollout 1000
Max gradient norm 5
Last trajectories to be labeled 1000

Human preferences Same parameters as
[43] plus/except

Learning rate 5 · 10−4

Batch size 100
Policy architecture MLP (256, 64)
Steps per policy update 5000
Use Fourier in the policy model False
Buffer size rollout 1000
Max gradient norm 5
Last trajectories to be labeled 1000

DDL
Learning rate 5 · 10−4

Batch size 256
Buffer Size 2 · 104
Policy architecture MLP (256, 256)
Steps per update 1000

PPO Same parameters as [43] plus
Buffer size 8192
Policy architecture MLP (400, 600, 600, 300)

Table F.3: Hyperparameters setting for the algorithms

Environment Four rooms Maze Pushing around Obstacles Kitchen Block Stacking Bandu

Steps per trajectory 50 250 100 100 10 12

Label from last k steps 10 50 10 20 10 12
Table F.4: Benchmark-related parameters

33

References331

[1] M. Andrychowicz, D. Crow, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,332

P. Abbeel, and W. Zaremba. Hindsight experience replay. In I. Guyon, U. von Luxburg,333

S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, editors, Advances334

in Neural Information Processing Systems 30: Annual Conference on Neural Information335

Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 5048–5058, 2017.336

[2] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,337

O. P. Abbeel, and W. Zaremba. Hindsight experience replay. In Advances in Neural Information338

Processing Systems, pages 5048–5058, 2017.339

[3] M. G. Azar, I. Osband, and R. Munos. Minimax regret bounds for reinforcement learning. In340

D. Precup and Y. W. Teh, editors, Proceedings of the 34th International Conference on Machine341

Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of342

Machine Learning Research, pages 263–272. PMLR, 2017.343

[4] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos. Unifying344

count-based exploration and intrinsic motivation. In Advances in Neural Information Processing345

Systems, pages 1471–1479, 2016.346

[5] E. Biyik. Learning preferences for interactive autonomy. CoRR, abs/2210.10899, 2022.347

[6] E. Biyik and D. Sadigh. Batch active preference-based learning of reward functions. In 2nd348

Annual Conference on Robot Learning, CoRL 2018, Zürich, Switzerland, 29-31 October 2018,349

Proceedings, volume 87 of Proceedings of Machine Learning Research, pages 519–528. PMLR,350

2018.351

[7] R. I. Brafman and M. Tennenholtz. R-MAX - A general polynomial time algorithm for near-352

optimal reinforcement learning. J. Mach. Learn. Res., 3:213–231, 2002.353

[8] Y. Burda, H. Edwards, A. Storkey, and O. Klimov. Exploration by random network distillation.354

arXiv preprint arXiv:1810.12894, 2018.355

[9] S. Cabi, S. G. Colmenarejo, A. Novikov, K. Konyushkova, S. E. Reed, R. Jeong, K. Zolna,356

Y. Aytar, D. Budden, M. Vecerík, O. Sushkov, D. Barker, J. Scholz, M. Denil, N. de Freitas, and357

Z. Wang. Scaling data-driven robotics with reward sketching and batch reinforcement learning.358

In M. Toussaint, A. Bicchi, and T. Hermans, editors, Robotics: Science and Systems XVI, Virtual359

Event / Corvalis, Oregon, USA, July 12-16, 2020, 2020.360

[10] T. Cederborg, I. Grover, C. L. I. Jr., and A. L. Thomaz. Policy shaping with human teachers. In361

Q. Yang and M. J. Wooldridge, editors, Proceedings of the Twenty-Fourth International Joint362

Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015,363

pages 3366–3372. AAAI Press, 2015.364

[11] T. Chen, S. Kornblith, M. Norouzi, and G. E. Hinton. A simple framework for contrastive365

learning of visual representations. CoRR, abs/2002.05709, 2020.366

[12] P. Christiano, J. Leike, T. B. Brown, M. Martic, S. Legg, and D. Amodei. Deep reinforcement367

learning from human preferences, 2017.368

[13] P. F. Christiano, J. Leike, T. B. Brown, M. Martic, S. Legg, and D. Amodei. Deep reinforcement369

learning from human preferences. In I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach,370

R. Fergus, S. V. N. Vishwanathan, and R. Garnett, editors, NeurIPS, 2017.371

[14] E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games, robotics372

and machine learning. In GitHub Repository, pages 5026–5033, 2016.373

[15] Y. Cui, P. Koppol, H. Admoni, S. Niekum, R. G. Simmons, A. Steinfeld, and T. Fitzgerald. Un-374

derstanding the relationship between interactions and outcomes in human-in-the-loop machine375

learning. In Z. Zhou, editor, Proceedings of the Thirtieth International Joint Conference on376

Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021, pages377

4382–4391. ijcai.org, 2021.378

10

[16] T. Davchev, O. O. Sushkov, J. Regli, S. Schaal, Y. Aytar, M. Wulfmeier, and J. Scholz. Wish379

you were here: Hindsight goal selection for long-horizon dexterous manipulation. In The Tenth380

International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29,381

2022. OpenReview.net, 2022.382

[17] R. Devidze, P. Kamalaruban, and A. Singla. Exploration-guided reward shaping for reinforce-383

ment learning under sparse rewards. Advances in Neural Information Processing Systems,384

35:5829–5842, 2022.385

[18] A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune. Go-explore: a new approach386

for hard-exploration problems. CoRR, abs/1901.10995, 2019.387

[19] B. Eysenbach, R. Salakhutdinov, and S. Levine. Search on the replay buffer: Bridging planning388

and reinforcement learning. In H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc,389

E. B. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32:390

Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December391

8-14, 2019, Vancouver, BC, Canada, pages 15220–15231, 2019.392

[20] S. Fujimoto, H. van Hoof, and D. Meger. Addressing function approximation error in actor-critic393

methods. CoRR, abs/1802.09477, 2018.394

[21] D. Ghosh, A. Gupta, J. Fu, A. Reddy, C. Devin, B. Eysenbach, and S. Levine. Learning to reach395

goals without reinforcement learning. CoRR, abs/1912.06088, 2019.396

[22] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman. Relay policy learning: Solving397

long-horizon tasks via imitation and reinforcement learning. In L. P. Kaelbling, D. Kragic, and398

K. Sugiura, editors, 3rd Annual Conference on Robot Learning, CoRL 2019, Osaka, Japan,399

October 30 - November 1, 2019, Proceedings, volume 100 of Proceedings of Machine Learning400

Research, pages 1025–1037. PMLR, 2019.401

[23] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy402

deep reinforcement learning with a stochastic actor. CoRR, abs/1801.01290, 2018.403

[24] K. Hartikainen, X. Geng, T. Haarnoja, and S. Levine. Dynamical distance learning for unsuper-404

vised and semi-supervised skill discovery. CoRR, abs/1907.08225, 2019.405

[25] A. Jain, D. Das, and A. Saxena. Planit: A crowdsourcing approach for learning to plan paths406

from large scale preference feedback. CoRR, abs/1406.2616, 2014.407

[26] L. P. Kaelbling. Learning to achieve goals. Citeseer.408

[27] W. B. Knox and P. Stone. TAMER: Training an Agent Manually via Evaluative Reinforcement.409

In IEEE 7th International Conference on Development and Learning, August 2008.410

[28] K. Lee, L. Smith, and P. Abbeel. Pebble: Feedback-efficient interactive reinforcement learning411

via relabeling experience and unsupervised pre-training. In International Conference on412

Machine Learning, 2021.413

[29] K. Lee, L. M. Smith, and P. Abbeel. PEBBLE: feedback-efficient interactive reinforcement414

learning via relabeling experience and unsupervised pre-training. In M. Meila and T. Zhang,415

editors, Proceedings of the 38th International Conference on Machine Learning, ICML 2021,416

18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research,417

pages 6152–6163. PMLR, 2021.418

[30] A. Levy, G. D. Konidaris, R. P. Jr., and K. Saenko. Learning multi-level hierarchies with419

hindsight. In 7th International Conference on Learning Representations, ICLR 2019, New420

Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.421

[31] M. Liu, M. Zhu, and W. Zhang. Goal-conditioned reinforcement learning: Problems and422

solutions. In L. D. Raedt, editor, Proceedings of the Thirty-First International Joint Conference423

on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, pages 5502–5511.424

ijcai.org, 2022.425

11

[32] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine, and P. Sermanet. Learning426

latent plans from play. In L. P. Kaelbling, D. Kragic, and K. Sugiura, editors, 3rd Annual427

Conference on Robot Learning, CoRL 2019, Osaka, Japan, October 30 - November 1, 2019,428

Proceedings, volume 100 of Proceedings of Machine Learning Research, pages 1113–1132.429

PMLR, 2019.430

[33] C. Lynch, A. Wahid, J. Tompson, T. Ding, J. Betker, R. Baruch, T. Armstrong, and P. Florence.431

Interactive language: Talking to robots in real time. CoRR, abs/2210.06407, 2022.432

[34] R. Mendonca, O. Rybkin, K. Daniilidis, D. Hafner, and D. Pathak. Discovering and achieving433

goals via world models. In M. Ranzato, A. Beygelzimer, Y. N. Dauphin, P. Liang, and J. W.434

Vaughan, editors, Advances in Neural Information Processing Systems 34: Annual Conference435

on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,436

pages 24379–24391, 2021.437

[35] A. Murali, T. Chen, K. V. Alwala, D. Gandhi, L. Pinto, S. Gupta, and A. Gupta. Py-438

robot: An open-source robotics framework for research and benchmarking. arXiv preprint439

arXiv:1906.08236, 2019.440

[36] O. Nachum, S. S. Gu, H. Lee, and S. Levine. Data-efficient hierarchical reinforcement learning.441

In Advances in Neural Information Processing Systems, pages 3303–3313, 2018.442

[37] A. Nair, D. Chen, P. Agrawal, P. Isola, P. Abbeel, J. Malik, and S. Levine. Combining443

self-supervised learning and imitation for vision-based rope manipulation. In 2017 IEEE444

International Conference on Robotics and Automation, ICRA 2017, Singapore, Singapore, May445

29 - June 3, 2017, pages 2146–2153. IEEE, 2017.446

[38] A. Nair, V. Pong, M. Dalal, S. Bahl, S. Lin, and S. Levine. Visual reinforcement learning with447

imagined goals. In S. Bengio, H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and448

R. Garnett, editors, Advances in Neural Information Processing Systems 31: Annual Conference449

on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,450

Canada, pages 9209–9220, 2018.451

[39] I. Osband, C. Blundell, A. Pritzel, and B. V. Roy. Deep exploration via bootstrapped DQN. In452

D. D. Lee, M. Sugiyama, U. von Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural453

Information Processing Systems 29: Annual Conference on Neural Information Processing454

Systems 2016, December 5-10, 2016, Barcelona, Spain, pages 4026–4034, 2016.455

[40] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,456

K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder,457

P. Christiano, J. Leike, and R. Lowe. Training language models to follow instructions with458

human feedback, 2022.459

[41] V. Pong, M. Dalal, S. Lin, A. Nair, S. Bahl, and S. Levine. Skew-fit: State-covering self-460

supervised reinforcement learning. In Proceedings of the 37th International Conference on461

Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of462

Machine Learning Research, pages 7783–7792. PMLR, 2020.463

[42] M. A. Riedmiller, R. Hafner, T. Lampe, M. Neunert, J. Degrave, T. V. de Wiele, V. Mnih,464

N. Heess, and J. T. Springenberg. Learning by playing - solving sparse reward tasks from465

scratch. CoRR, abs/1802.10567, 2018.466

[43] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization467

algorithms. CoRR, abs/1707.06347, 2017.468

[44] P. Sharma, B. Sundaralingam, V. Blukis, C. Paxton, T. Hermans, A. Torralba, J. Andreas, and469

D. Fox. Correcting robot plans with natural language feedback. CoRR, abs/2204.05186, 2022.470

[45] H. Tang, R. Houthooft, D. Foote, A. Stooke, X. Chen, Y. Duan, J. Schulman, F. D. Turck, and471

P. Abbeel. #exploration: A study of count-based exploration for deep reinforcement learning.472

In I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and473

R. Garnett, editors, Advances in Neural Information Processing Systems 30: Annual Conference474

on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,475

pages 2753–2762, 2017.476

12

[46] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012477

IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033, 2012.478

[47] G. Warnell, N. R. Waytowich, V. Lawhern, and P. Stone. Deep TAMER: interactive agent479

shaping in high-dimensional state spaces. In AAAI, 2018.480

[48] G. Yang, A. Ajay, and P. Agrawal. Overcoming the spectral bias of neural value approximation.481

In International Conference on Learning Representations, 2022.482

13

	Introduction
	Related Work
	Problem Setup and Preliminaries
	Why is exploration in goal-conditioned reinforcement learning challenging?

	HUGE: Guiding Exploration in Goal-Conditioned RL with Human Feedback
	Decoupling Exploration and Policy Learning for Goal Reaching Problems
	Learning Goal Selectors via Human Comparative Feedback for Guiding Exploration
	Policy Learning: Hindsight Relabeled Learning for Goal-Conditioned Policies
	Boostrapping Learning from Trajectory Demonstrations

	Experimental Evaluation
	Learning Goal-Conditioned Policies with Synthetic Human-in-the-Loop Feedback in Simulation
	Learning Goal-Conditioned Policies with large-scale crowdsourced data collection
	Learning Goal-Conditioned Policies in the real world
	Ablation Analysis

	Discussion
	Real-Robot Experiments
	HUGE from images
	Results in the real-world

	Real-Human experiments
	Details about the crowdsourcing experiment

	Simulated Benchmarks
	Baselines
	Detailed training curves

	Further Analysis and Ablations
	Analysis on learning from comparisons
	Goal selector Analysis
	Compatibility of HUGE with Learning from Trajectory Demonstrations
	Analysis on implementation details

	Implementation Details
	Networks with Fourier Features
	Training details

