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A Monte Carlo gradient estimators

A.1 Basic Monte Carlo gradient estimation

In this section we provide additional background explanations on the two main gradient estima-
tors: reparameterization gradients (RP) and likelihood ratio gradients (LR). Both are MC gradient
estimation methods, i.e., they provide estimators, g, s.t. E [g] = g—ﬁ]EmNp(m;ﬁ) [f(x)].

RP. In RP, one samples from a simple fixed distribution € ~ p(g), and one defines a transformation,
T, dependent on (3 s.t. T (&; 3) has the same distribution as a sample from the original distribution
@ ~ p(x; B). Then, the derivative can be pushed inside the expectation, and the gradient can be

estimated as
d d df d7(e; 8)
— — ; =E.. —_— .
For example, for a 1-dimensional Gaussian distribution A (x; i1, o), one possible reparameterization
is T(e; p,0) = p+ €0, where e ~ N(g;0,1), and then %— =1and % =e.

Egrp(a;p) [f(®)] = Eenp(e) { 3)

LR. While RP used the gradient of f to construct an estimator, LR, instead, uses its value. The LR
gradient estimator is characterized by the equation

d dl ;
TBertan ()] = Banpiorp | G52

where b is a baseline for variance reduction, often computed as the batch mean of the samples
B i

b= % > i f@®).

Both LR and RP estimators are interchangeable (as long as the gradients and value of f are available),

and which one is better depends on the specific situation. While RP tends to handle high dimensional

spaces better (Rezende et al., 2014), it often fails on long computation graphs (Parmas et al., 2018).

On the other hand, LR has robust behavior, and does not require access to V f, but does not scale well

with the dimensionality. The two estimators were recently unified by Parmas and Sugiyama (2021)
based on an intuititve probability flow theory related to the work of Jankowiak and Obermeyer (2018).

(f(=)=b), @)

A key metric to determine which gradient estimator is effective is the variance of the gradient
estimator, V [g]. The variance can be reduced by a factor 1/x by computing K samples of the same
estimator and averaging; therefore, we could consider a reduction in the gradient variance by a factor
K to be roughly equivalent to increasing the computation speed by a K factor.® For this reason,
much research on MC gradient estimators has focused on reducing the variance, primarily by using
control variates and baselines (Greensmith et al., 2004; Weaver and Tao, 2001); or conditioning and
importance sampling (Owen, 2013). Another line of research takes advantage of the graph structure of
the computations to obtain more accurate gradient estimates (Parmas et al., 2018; Parmas, 2018, 2020).
While the former methods are readily implemented using the surrogate loss formalism (Schulman
et al., 2015), the latter methods are not easily implemented, motivating the creation of Proppo.

In this section, we discussed how the basic estimators are implemented through a single sampling
operation. In the next section, we discuss graphs with multiple stochastic operations, and also
introduce the total propagation and Gaussian shaping gradient methods, which take advantage of this
graph structure.

A.2 Monte Carlo gradient estimation on Probabilistic Computation Graphs

In the deterministic case, the total derivative intuitively decomposes into a sum across the paths as
shown in Eq. (1); Parmas (2018) explained that a similar framework can be employed for stochastic
graphs, using their probabilistic computation graph (PCG) formalism. In a PCG, we note that while
the sampling operations themselves are stochastic, the relationship between the marginal distributions

SNote that in practice parallel computation may allow increasing the batch size without proportionally
increasing the computation time, if the computational resources are not already maxed out. Moreover, reducing
the gradient variance by a factor K may not guarantee proportionally faster optimization because increasing the
gradient accuracy has diminishing returns once the gradient is sufficiently accurate.

16



at nodes is deterministic. Therefore, by denoting (,, as the abstract parameters of the marginal
distribution at the node ¢, and replacing the usual derivative with functional derivatives between the
probability distributions, we can obtain a similar decomposition of the total gradient as in Eq. (1)

gy Iz,
LAY e ©

PathePaths[3—y] Edge[l— k]&Path

Parmas (2018) proposed a further decomposition by assigning a set of intermediate nodes N, and
considering the paths passing through the nodes n € A giving the equation

sor (L n)(LE LT )

neN PathcPaths[n—y] Edge[l—k]€Path PathePaths[3—n]\N  Edge[l— k]E€Path

(6)
where Paths[3 — n] \ A/ denotes the paths going from 3 to n, but not passing through nodes in \.
Parmas (2018) further showed that Egs. (5) and (6) can be combined to yield

d¢, dc, 0z,
RO | T =) B

neN Path€Paths[3—n]\N  Edge[l— k]EPath

and they explained that this equation generalizes the deterministic and stochastic policy gradient
theorems (Sutton et al., 2000; Silver et al., 2014). In particular, the dgy terms are estimated by total

derivative estimators, such as LR or value gradient methods (Fairbank, 2008), whereas the effect of

9
T
or RP. They also proposed more advanced estimators: total propagation that combines RP and LR
(Parmas et al., 2018) and Gaussian shaping gradients that use a different decomposition of the paths
to obtain a gradient estimator (Parmas, 2018).

the local partial derivatives

, is estimated by pathwise estimators, such as direct differentiation

Total propagation (TP). Inverse variance weighting is the optimal method to take a weighted
average of two uncorrelated statistical estimators, as is well known in statistics. The TP method
(Parmas et al., 2018) uses this weighting scheme to obtain a weighted average of LR and RP, based
on the observation that both estimators are interchangeable. In particular, it performs the computation
QTP = kgLR + (1 - k)ng, where £k = V [QRP]/(V [QLR] +V [QRPD N ie. it piCkS k o m and
(1-k)x m. The gradient variances for computing the weights are obtained from the empirical
variances of the gradient samples. Moreover, TP is not a simple combination of the two estimators
computed separately on the whole graph, instead, it combines the two estimates at each sampling
node, and propagates the combined gradient backwards, potentially leading to much increased
accuracy (the advantage is experimentally clear in Sec. 4.2). However, this kind of gradient variance
estimation during the backward computation poses problems for existing AD software, as it cannot
be implemented by differentiating a surrogate loss.

Gaussian shaping gradients (GS). The GS method (Parmas, 2018) is interesting because it allows
obtaining an LR type gradient estimator while using V f instead of f as is usual in LR gradients.
This allows better scalability with the dimensionality compared to a regular LR method, as we show
experimentally in Sec. C.3. The basic idea is to assume a Gaussian density with parameters p and
3} at a distal node n, then construct an LR-type gradient estimator for these parameters, estimating
the gradients g—’m‘ and %. Assuming a cost function ¢(,,) that depends on x,,, we can resample
points on the approximated Gaussian distribution, estimate the gradients %[C] and %[C] and apply the
chain rule to obtain the total gradient from « to c. The final algorithm resembles LR, except that the

usual f multiplier is replaced with a different scalar given by the dot product of some statistics of the
distribution at x,, with %[C] and %[c]. Similarly to TP, this method is also cumbersome to implement
by differentiating a surrogate loss, but can be intuitively expressed as a message passing program that

can be implemented in Proppo.
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B Automatic Propagation software: additional details and experiments

B.1 A generalized view of automatic propagation software

In the main contents, we introduced AP software from the viewpoint of Proppo, our prototype
implementation of an AP library. We did this to provide a concrete example to aid in clarity. More
generally, AP software may have many more features than introduced, or on the contrary, it may also
be more minimalistic than our example with Proppo. In this section we aim to clarify what type of
additional features we foresee to be useful for AP software, and also to clarify what are the minimum
requirements for something to qualify as an AP library.

First, we note that it may be useful for the forward computations to also be able to send messages.
Moreover, it can be beneficial for the forward methods to be able to pass information to the propa-
gation manager, so as to automate the choice of propagators for subsequent nodes. In fact, Proppo
already implements such automation in the choice of the configuration for the loss propagators
depending on what type of MC gradient estimator was previously used. This observation points
toward generalizations concerning the methods of the propagators as well as the managers.

Regarding the propagators, in our discussion we limited the computations to forward and backward
computations. However, there is no need for such a restriction, and in general we require propagators
to implement types of computations, where forward and backward are just two possible types.
The different types of computations can in general access and modify the memory in the node, and
may send messages to other nodes. We note that the distinction between types of computations is
superficial because the multiple types of computations may also be embedded into a single type of
computation, where an input can be passed to switch between the different embedded computations.

Regarding the propagation manager, this was merely our choice of implementation to keep track of
the propagation graph, automatically decide on the order of activating the propagators, and to deal
with passing the messages. Any other method to implement such functionality would also be allowed.

In summary the crucial aspects to automatic propagation software are:

1. Nodes that can store information.

2. Propagators that can be associated to the nodes. The propagators have user programmable
methods that can directly modify the information in the nodes that they are linked to, and can
indirectly influence other nodes by sending them messages containing general information.

3. The methods of the propagators may directly interact with processes and information external
to the nodes.

4. When a message is sent from a propagator operating at a node, if a target for the message
was not explicitly specified by the user, a default target is determined.

5. Itis possible to trigger the system so that the propagators at multiple nodes are automatically
activated in sequence.

Regarding points 4 and 5, we envision that typically the nodes will be arranged in an acyclic directed
graph structure, and the system can be triggered to traverse the graph backwards, activating the
backward method of the propagator at each node, and sending the messages to the parent nodes.
Even if the contents of a message are not intended to be used by a direct parent node, but they are
meant for a node earlier in the graph, as long as this message is continually routed backwards it
will eventually reach the target destination. Thus we envision that such a default setting will allow
implementing a wide range of algorithms. In fact, there already exist many prominent machine
learning algorithms that operate purely based on sending messages backwards locally, e.g. back
propagation or belief propagation (Pearl, 1982).

B.2 Examples of propagators and their details: customizability and composability

In this section we aim to illustrate the composability and customizability that can be achieved in AP
software. These properties are achieved by using the sequence propagators described in Sec. 3.3.
These propagators allow combining multiple propagators together into a sequence to compose new
propagators. The forward and backward methods of the propagators will be activated in sequence.
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One of our main design patterns to effectively use these sequence propagators is to create a base
propagator for each non-trivial functionality that we want to implement. Then we plug these base
propagators together into a chain to achieve all of the desired properties. Some of these base
propagators may be reused across many different composite propagators, allowing to create compact
code. For example the BackPropagator in Sec. 3.3 can be combined with many different MC
gradient estimation propagators to initialize the back propagation of the gradients.

Another feature of the sequence propagators is that they allow optional propagators in the sequence.
These optional propagators can be turned on or off using keyword arguments when instantiating the
propagator from the class. Essentially, this allows creating a factory for a composite propagator with
a rich configuration space. In the following, we give pseudocode and details of several MC gradient
estimation propagators, their constituent propagators, and explain how they interact.

BackPropagator

This propagator commences backpropagating the gradients at a computation node.

Forward:
pass

The forward method does not do anything, as this propagator is designed to be combined together
with other propagators that will perform the necessary forward computations.

Backward:
get from message: tensors, grad_tensors
call: torch.autograd.backward(tensors, grad_tensors)

The backward method retrieves the tensors and gradients, and backpropagates them using AD
software as explained in Sec. 2. One of the propagators that can be combined together with
BackPropagator is RPBase for reparameterization gradients explained next.

RPBase

This is the base propagator for reparameterization gradients. It injects reparameterized noise into an
input variable, and allows backpropagating through this stochasticity.

Forward:

input from program code: x

inject reparameterized noise into x
store into node: output, detached output

Backward:
get grads from detached output
message: (output, grads)

Note that the backward method does not backpropagate the gradients on the computation graph. It
merely forms the pair of the output node and its corresponding gradient. To have this gradient be
backpropagated as well, the following compound RPProp propagator can be used.

RPProp

This propagator applies the reparameterization transformations and also automatically commences
the backpropagation on the computation graph.

Sequence: [Optional(BackPropagator), RPBase]

Here we used the Optional () notation to mean that the BackPropagator can be either included
or omitted using a keyword, i.e., RPProp (backprop=False) would omit the BackPropagator.
If it is included, then having simply plugged these two propagators together causes the gradients
to be backpropagated on the computation graph as well—RPBase will form the (tensors,
grad_tensors) pair, and BackPropagator will commence the back propagation.
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LossBase

In many machine learning tasks, there are loss nodes that we want to propagate gradients from.
Moreover, for likelihood ratio gradient estimators, we may also want to send the value of the loss
itself backwards as well. This propagator implements the required base functionality.

Configuration: whether gradients are needed or not

Forward:
compute loss
store loss in the node

Backward:

get from message: incoming sum of losses

optional: <create tensors and grad_tensors for the loss
optional: sum new loss with incoming losses

message: [(tensors, grad_tensors), sum of losses]

LossProp

To add automatic gradient backpropagation, or baseline computations to the loss node, we create a
compound propagator with the following sequence.

Sequence: [Optional (BackPropagator), Optional(BaselineProp), LossBase]

BaselineProp

In LossProp, one part of the sequence was the baseline propagator. The baseline propagator subtracts
a baseline from the sum of the loss to reduce the likelihood ratio gradient variance.

Configuration: the type of baseline function to use, e.g., subtract the mean

Forward:
pass

Like the BackPropagator, the baseline propagator is also designed to be used together with other
propagators, and it does not need its own forward method.

Backward:

compute baseline

subtract baseline from losses

message: loss with baseline subtracted

LRBase

This propagator implements the base functionality for using likelihood ratio gradient estimators.

Forward:

input from program code: Xx
inject noise into x

compute log p(x)

store into node: log p(x)

Backward:

get from message: 1incoming loss with the baseline subtracted if available
get from node: log p(x)

message: (tensors=log p(x), grad_tensors=loss)

LRProp
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This propagator adds optional backpropagation and baseline functionality to the base propagator for
LR gradients.

Sequence: [Optional(BackPropagator), LRBase, Optional(BaselineProp)]

Notice that in LRProp the BaselineProp is at the right side of the sequence, whereas for LossProp
it is at the left side. The backward sequence commences from right to left. In the LRProp case,
we want to subtract the baseline before estimating the LR gradient, whereas in the LossProp case,
we want to subtract the baseline in the end, after having computed the loss. Which one is better is
problem dependent—if there is a single loss node, but many LR nodes, it may be better to subtract
the baseline at the loss node, and vice versa.

TPBase

This is the base propagator for the most complicated propagator we show in our examples here—it
implements the computations for the total propagation algorithm.

Configuration: what node to use for inverse variance weighting

Forward:

input from program code: x

inject reparameterized noise into x

compute log p(x)

store into node: log p(x), output, detached output

Backward:

get from message: 1incoming loss with the baseline subtracted if available
get from node: log p(x), output, detached output

get grads from detached output

compute LR and RP gradients until the inverse gradient variance node
perform inverse variance weighting and compute the mixing ratio, k
message: (tensors=[log p(x), x], grad_tensors=[k*loss, (1-k)*grads])

Note that here we are packing two sets of tensors and grad_tensors together into a list. The
torch.autograd.backward() function that is called in BackPropagator can handle lists of such
pairs, and simultaneously invoke the backpropagtion, so there is no issue.

TotalProp

Finally, this propagator adds the back propagation and baseline functionalities to the base propagator
for TP gradients.

Sequence: [Optional(BackPropagator), TPBase, Optional(BaselineProp)]

B.3 Computational time comparison

Setup. To give an indication of the overhead in computational time caused by using Proppo, we
perform experiments with a similar recurrent neural network as in Sec. 4.1, but while varying the
batch size (Fig. 5) or dimensionality (Fig. 6). When varying the batch size, the dimensionality was
fixed to 500; and when varying the dimensionality, the batch size was fixed to 1000. The horizon
was 10. We performed the forward and backward computations 100 times and estimated the average
computation time both on a CPU and on a GPU. The computation times were normalized with the
minimum computation time at the corresponding setting to better highlight the ratio difference. We
compared the computation times of RP, LR, TP and when implementing RP without using Proppo.
Moreover, for RP, we test two implementations: one which detaches the tensors at each propagation
node, and manually back propagates the gradients; and another that does not detach the tensors, and
allows PyTorch to handle the gradient back propagation.
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Discussion. In the results in Figs. 5 and 6 we see that for very small problem sizes, Proppo causes
a significant overhead, but as the problem size becomes larger, the overhead becomes negligible.
For large problem sizes, typically TP required 2 times more computational time. Compared to a
100 time reduction in gradient variance (Sec. 4.1), this additional computational time is negligible
(note that the naive way to reduce gradient variance by a factor K is to increase the batch size by
the same factor K roughly requiring K times more computational time). We also note that in a
typical full implementation of an ML algorithm, Proppo may be used in only some section of the
computations. In this case, the overhead caused by Proppo may be only a small fraction of the total
computational time associated with the algorithm. We observed this point in our concurrent work in
model-based reinforcement learning (Anonymous, 2022), where the total change in computational
time was typically less than 50% extra.

Another point to note is the difference between the used framework and implementation of an
algorithm. The performance will primarily depend on the implementation. Proppo allows creating
multiple implementations, fast or slow ones (e.g., compare the two implementations of RP). The
main point is not so much that the computation time might increase a bit if Proppo is used, but
rather that using Proppo enables implementing algorithms that would be cumbersome to implement
otherwise. The current implementations are also not fully tuned, and can be implemented to run
faster. In particular, the implementation of TP has issues with scalability if the number of parameters
used for the inverse variance weighting becomes large, but we have found sensible solutions to this
issue in our concurrent work (Anonymous, 2022).
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Figure 5: Computation times of algorithms in Proppo when varying the batch size (Sec. B.3).
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Figure 6: Computation times of algorithms in Proppo when varying the dimensionality (Sec. B.3).

B.4 Scaling with the number of nodes

Setup. We perform an experiment to test how Proppo scales with the number of propagation
nodes. In the experiment, we connect nodes into a chain with a dummy propagator that performs no
computations, but merely stores an empty node in the forward pass, and sends empty messages in
the backwards pass. This experiment allows testing the overhead associated with the “bookkeeping”
performed by Proppo. We ran 10 experiments, and averaged the elapsed time. We tested values
between 10 and 107 nodes, and the experiment was performed on an Intel i9 CPU. In Fig. 7, we show
the results separately for the forward and backwards pass, as well as the total elapsed time.

Discussion. The results in Fig. 7 show that the computation time increases linearly. In particular,
we see that the time spent per node is roughly 10~° seconds. This means that if the computations
performed by the propagator take longer than 10~% seconds, we would expect the additional overhead
for storing nodes and passing messages caused by Proppo to be negligible. This overhead will be
non-negligible for extremely simple calculations such as summing scalars together; however, the
aim of Proppo is to facilitate implementing complicated algorithms. For complicated algorithms,
we expect the computations at each node to take longer than 10~ seconds, so in practice, the
overhead caused by Proppo will be negligible. Moreover, we see that Proppo can scale to millions of
propagation nodes, while, in our experience applying Proppo to practical problems, we have so far
not needed more than a thousand nodes. Finally, we note that this experiment does not guarantee that
the implementation utilizing Proppo will have the same computation time as one without it. Typically,
when Proppo is used, it would tweak the operation of some underlying computational software. These
tweaks may interfere with the normal operation of the computational software, making it perform
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slightly slower. For example, when Proppo is used to override the standard back propagation in
PyTorch, it would manually pass gradients backwards at the propagation nodes, instead of letting
PyTorch automatically back propagate. This may slow down the computation due to the interference.
To obtain optimal performance, one should only use Proppo when it is needed, or when it increases
convenience due to greater modularity.
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Figure 7: Scaling of computation time with the number of propagation nodes (Sec. B.4).

C Chaotic net: Additional details, explanations and experiments

In Sec. C.1, we provide additional explanations about the chaotic net experiments (Sec. 4); in Sec. C.2,
we provide additional explanations of the single path experiment (Sec. 4.2); in Sec. C.3, we present
an additional experiment designed to show the utility and better scalability w.r.t. the dimensionality
of Gaussian shaping gradients.

C.1 Explanation of chaotic dynamics of the recurrent neural network

Wang (1991) explained that the inverse temperature parameter 3 controls the dynamics of the RNN
system introduced in Sec. 4.1. When /3 is small, the system is well-behaved, but as /3 is increased,
the system becomes chaotic through a period-doublings mechanism. They illustrated this via a
bifurcation diagram that we have replicated in Fig. 8a. In this figure, for each 5 we simulate the
system for 10000 steps, and plot the first dimension x; of the last 500 steps onto the figure as dots
(note that one obtains a similar diagram when considering x2, the second dimension of the system).
We see that when £ is small (around 1), all of the dots are at the same position; hence the system
converged to a fixed state. As 3 is increased, the system starts oscillating between two states. As 3 is
further increased, the states further split, with a phase transition happening around 5 = 2.5 leading to
chaotic oscillation.

This chaotic behavior causes the gradient to be ill-behaved as illustrated in Fig. 8b. In this figure,
we followed the experimental protocol of Parmas et al. (2018), and plotted the RP derivative of
the loss function w.r.t. 8 while keeping the random number seed fixed. We see that the derivative
is well-behaved in the non-chaotic region, but starts rapidly oscillating up and down with a large
magnitude as the system becomes chaotic at the phase transition around 8 = 2.5. Moreover, the
gradient variance also explodes. Parmas et al. (2018) explained this behavior by plotting the loss
landscape of their system w.r.t. the start position. We have replicated a similar result for the RNN
system in Fig. 8& (Iliecall from the preliminaries (Sec. 2, see also Eq. (7)) that the total derivative

sums the terms 3> a5 for each time step. As the loss landscape L has a fractal structure due to the

chaotic properties of the system, the gradient % is oscillating rapidly. Thus, if one tries to average
the gradients together over some region of this landscape by sampling the gradients in said region, the
variance of this estimate will explode, and it is impossible to compute a sensible gradient direction
using the RP method. The LR gradient, on the other hand, does not use %, it only uses L to estimate
the gradient. Thus, small amplitude fluctuations of L do not affect the LR gradient, and it is robust to
the issues with chaos.
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Similar chaotic properties occur in many ML tasks. We already introduced the work of Parmas et al.
(2018) in model-based reinforcement learning that was the basis for much of our discussion. Their
work appears to be the first to discuss the explosion of the gradient variance due to chaos when the
computations are stochastic, and they also suggested to incorporate LR methods to tackle the issue.
Similar chaotic properties have also been discussed in metalearning (?Metz et al., 2019), protein
folding software (?) and differentiable simulation (??). Moreover, the effect of chaos on estimating
the sensitivity of fluid simulations has also been studied in many works, e.g., the work by ?. We
believe that our minimalistic experiment captures interesting characteristics of such challenging ML
tasks.
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Figure 8: Illustration of the behavior of the chaotic sigmoid recurrent neural network (Sec. 4.1).
(a) Bifurcation diagram of the RNN. The activation noise was removed, o = 0, to replicate previous
results with a deterministic RNN (Wang, 1991). Note that the result does not change much when noise
is added, the dots are just spread out around the location on the current figure. (b) Gradient of the
objective plotted against 3, similarly to (Parmas et al., 2018). The horizon was H = 100. (c) Fractal
loss landscape. The parameters were 8 = 3.5, resolution of the grid: 500 x 500, horizon: H = 15. We
also added a fixed perturbation on W7; sampled from a Gaussian with standard deviation o,, = 0.1.
This was done for aesthetic reasons, and to show that the system stays chaotic even when perturbed.

C.2 Additional details of the single path chaotic net experiment

Figure 9: Single path chaotic RNN probabilistic computation graph diagram.

Figure 9 includes a schematic diagram of the RNN computations in the experiments in Sec. 4.2. The
computations start from an initial state x(, and are simulated forwards for H steps. A loss, L, is
computed at the last step. All of the nodes when ¢ > 1 are propagation nodes O. The x nodes are
propagation nodes due to the sampling of noise, and gradient estimation, while the loss node, L, is
implemented as a loss propagator. The 8 node O is the parameter node where the inverse variance
weights are computed for use in the TP algorithm.

C.3 Multi path experiment: showing the advantage of Gaussian shaping gradients

Experimental setup. In this section, the main aim is to show the better scalability of Gaussian
shaping gradients compared to regular LR gradients. To this end, we modify the simple RNN
in Sec. 4.1 by replicating multiple instances of this RNN, and computing them in parallel; thus,
increasing the dimensionality of the system. The setup is illustrated in Fig. 10. The additional parallel
dimensions act as nuisance variables on the final loss, increasing the variance of the LR gradient
estimator. Formally, the state is modified into & := [a:(l); cels zD )], and the evolution of each z(®
is computed separately according to Eq. (2). While the initial state is the same for each d, the added
activation noise ¢ is different, so the trajectories for each parallel path are different. The loss is
computed at the final step as L(Zy) = 1(@y —1)T(Zy — 1). Note that the parameters of the
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Figure 10: Multi path chaotic RNN probabilistic computation graph diagram.

networks W and (8 are not shared across the paths, and we estimate the gradient only through the first
path according to 3(1). If instead the 3 parameter were shared, the problems of LR demonstrated

in this section would not appear. Gaussian shaping modifies the gradient estimation method by

resampling the batch in the first path at the last step {a:g’m) B _| from a fitted Gaussian distribution

(this node is illustrated as © in Fig. 10). The other experimental details are the same as before in
Sec. 4.2. We estimate the gradient when 8 € {2.0,2.5,3.5}, and plot the gradient variance against
the number of parallel paths D (Fig. 11).

Results. The results are in Fig. 11. We see that the regular LR has a linearly increasing variance as
the dimensionality D is increased, whereas the variance of GS stays constant. The variance of RP
also stays constant with the dimensinality irrespective of whether GS is used or not; however, RP is
inaccurate in the chaotic regime with 8 € {2.5,3.5}. The variance of TP follows a similar pattern to
LR; however, for § = 2.0 the variance of the regular TP does not increase, because RP gradients are
accurate in that scenario. We also see that TP outperformed the other estimators in all cases.

Discussion. Previously, Parmas (2018) explained a potential advantage of GS in terms of the
bias that it adds—smoothing the loss with a Gaussian may promote unimodality simplifying some
optimization problems. However, they did not demonstrate a fundamental advantage in terms of
computational complexity. Here, on the other hand, we have demonstrated a fundamental advantage
of GS in terms of its scalability with the dimensionality D. This newly shown effect is particularly
important when the system is near-chaotic, and regular back propagation gradients are ill-behaved.

Our newly shown advantage of GS may pose it beneficial for optimizing complex model architectures.
When there are several modules independently influencing the behavior of downstream components of
the system, GS may disentangle the individual contributions, and enable efficient optimization. As GS
is not practical to implement using standard automatic differentiation software, our result highlights
that automatic propagation software such as Proppo may enable training previously untrainable
machine learning systems composed of complex networks of connected modules.
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Figure 11: Comparison of Gaussian shaping (GS) gradient estimators with their regular counterparts
in terms of scalability w.r.t. the dimensionality of the system D. The discussion of the experiment is
in Sec. C.3. The main result is that the variance of the regular LR increases linearly as D is increased,
whereas the GS variant has a constant variance.

D Proppo prototype code listings

This section contains prototype code for Proppo, as well as its application to create MC gradient
estimator propagators. The code describes one possible prototype of automatic propagation software,
but there may also be other implementations. The code here is not intended for use—it is provided
for archival purposes. Code for use is uploaded to https://github.com/proppo/proppo.

Propagation manager.

# propagation_manager.py

import torch

import proppo.back_methods as back_methods
import proppo.propagators as propagators
from proppo.containers import Node, Message

def _reversed_enumerate(l):

count

= len(l)

for value in reversed(l):
count -= 1
yield count, value

class PropagationManager:
""" Propagation Manager class.
This class enables custom forward and backward propagations for flexibly
designing new gradient estimation and learning algorithms for computational
graphs, e.g. neural networks.

def

init__(self,
default_propagator=propagators.BackPropagator (),
loss_propagator=None,
terminal_propagator=propagators.BackPropagator ()):

self .nodes = []

self .node_pointer = 0 # Pointer for the current position on the tape.
self.default_propagator = default_propagator

self.propagators = {}

if loss_propagator:

self.loss_propagator = loss_propagator

elif default_propagator:

H H H®

#

self.loss_propagator = self.default_propagator.loss_propagator ()
The terminal propagator exists to handle any remaining messages
once the backward pass has finished. For example, a common use
case is to use BackPropagator () to call backprop once all
outputs and gradients have been assembled for the backprop call,
if these can be performed in parallel.

self.terminal_propagator = terminal_propagator
if self.terminal_propagator != None:
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68
69

85
86
87
88

9(
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

def

def

def

self.forward (x=None, local

_propagator=terminal_propagator)

self .nodes[0][’clear’] = False
add_propagator (self, name, propagator):
self.propagators [name] = propagator
forward (

self,

x,

force_targets=None,
local_propagator=None,
get_node=False,
*xkwargs) :

Register input as a node,
function.

# Do modification to x,
if local_propagator !=

e.g.
None:

if isinstance(local_propagator,
self .propagators[local_propagator]

local_propagator =

node =
else:

node =

if not isinstance(node, Node):
node = Node.from_container

and returns output through local

local_propagator.forward(x,

self.default_propagator.forward(x,

forward

add noise

str):
*xkwargs)

*xkwargs)

(node)

# set local backward propagator for later use with the

# propagator.backward method

node.assign_propagator (local_propagator)

if force_targets != None:
node[’force_targets’]

in node:
node [’output ’]

if ’output’
output =
else:
output = None

if node[’register_node’]:

if self.node_pointer > (len(self.nodes) -

self .nodes.append (node
else:

self .nodes[self.node_p
self .node_pointer += 1

Return output as
node content.
The node pointer
something in the
future nodes.

is given if
node, e.g.

HH HE H R

if get_node:

return (output,
else:

return output

self .nodes

backward(self, loss=None,
""" Execute backward propagati

nun

# backward until the last node
if loss != None:
self.append_loss (loss)

if message != Nome: # TODO,
self._send_message (
message=message
) # message should be of

# Loop through all nodes

clear_nodes=False,

in reverse order,

= force_targets

1):
)

ointer] = node

well as pointers to the messages and

one wants to retrospectively change
if one wants to target messages to

[self.node_pointer])

message=None) :
on at the registered nodes one by one.

send message to node instead.

Message type and include the target

calling the

# custom backward method of that node

for i, node in
self .node_pointer = i
if node.propagator !=
messages =
else:
messages =
node ,

_reversed_enumerate (self .nodes):

None:
node.backward ()

self .default_propagator.backward (
node .messages)
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135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
17
172
173
174
175
176
177
178
179
180
18
182
183
184
185
186
187
188
189
190
19
192
193
194
195
196
197
198
199
200
201
202

203

def

def

def

def

def

def

Clear node and message tape content,

then send the message;

this allows to send a message to the propagators own slot
to keep a history between different
ard() calls). Node can optionally be not cleared,
ape is always cleared.
the propagator should send a message to itself).

#

#

# as well (i.e.

# manager.backw

# but message_t

# message tape,

if nodel[’clear’
self .nodes [

1:

il.clear ()

self.nodes[i].messages.clear ()

if messages !=
for target,

targets

# refresh node hist
if clear_nodes: #
if self.termina
self .nodes
else:
self .nodes

if self.terminal_pr
self .node_point

else:
self.node_point

None: # TODO:

ory

(To keep a history, in

loop through the message items
message_container in messages.messages ():

# choose the priority target,
= self._target_conflict_resolution(target, node)
target_nodes = self._find_nodes(targets)
self._send_messages(message_container, target_nodes)

transform the target, send the message

TODO: remove message tape

l_propagator:

= [self.nodes [0]]

= [

opagator:
er = 1

er = 0

return messages # The last remaining messages are returned if desired.

_send_message (self,

message, target_node):

if target_node != None:

target_node.rec
_send_messages (self

for target in t

self._send_message (messages,

else:
self._send_mess

eive (message)

, messages, targets):
if isinstance(targets, list):

argets:

age (messages, targets)

_target_conflict_resolution(self, target,
if ’force_targets’ in node:
targets = node[’force_targets’]

return targets
elif target != None
return target

elif ’targets’ in node:
return nodel[’targets’]

else:
targets = -1
return targets

_find_node (self, target):
if isinstance(target, int):
node_index = target + self.node_pointer
if (node_index < 0) or (node_index > (len(self.nodes) + 1)):

target = No
else:

ne # If out of bounds,

target = self.nodes[node_index]

return target

_find_nodes (self, t

argets):

if isinstance(targets, (list, tuple)):
targets = [self._find_node(t) for t in targets]

return targets
else:

targets = self._find_node(targets)

return targets

append_loss (self, loss_node,

if loss_propagator
loss_propagator
out = self.forward(

return out

is None:

= self.loss_propagator

x=loss_node,
targets=None,

target)

node) :

don’t send

loss_propagator=None, **kwargs):

local_propagator=loss_propagator,
get_message_box=False,

get_node=False,
**xkwargs)
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204

205 def size(self):

206 """ Returns the number of the registered nodes.
207

208 Returns:

209 int: the number of nodes.

210

211 e

212 return len(self.nodes)

Listing 1: Example prototype Python code for a Propagation Manager class

Smart containers and contents.

# containers.py
from typing import List

1
2
3
4 class Content ():
5

6 __slots__ = (’_content’, )

7

8 def __init__(self, content):

9 if isinstance(content, Content):
10 self._content = content.get ()
11 else:

12 self._content = content

13

14 def get(self):

15 return self._content

16

17 def set(self, value):

18 if isinstance(value, Content):

19 v = value.get ()

20 else:

21 v = value

22

23 self._content = v

24

25 def update(self, value):

26 if hasattr(self.get(), ’update’):
27 if isinstance(value, Content):
28 v = value.get ()

29 else:

30 v = value

31 self.get () .update(v)

32 else:

33 self.set(value)

34

35 def __repr__(self):

36 return ’Content(’ + str(self._content) + ’)?
37

38 def __str__(self):

39 return str(self._content)

40

41 def __add__(self, value):

42 if isinstance(value, Content):

43 return self.get() + value.get()
44 else:

45 return self.get() + value

46

47 def __mul__(self, value):

48 return self.get() * value.get ()
49

50 def __rmul__(self, value):

51 return self.get() * value.get()
52

53 def __matmul__(self, value):

54 return self.get() @ value.get()
55

56

57 class Summed(Content):

58

59 def update(self, value):

60 self.set(self + value)

61

62 def __repr__(self):

63 return ’Summed(’ + str(self._content) + ’)°
64

65
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85

95
96

class Locked(Content):

def set(self, value):
raise RuntimeError (
’Attempting to call ".set()" on a Locked type’
’ Content. Locked type Content objects are used’

> for contents that are never supposed to be updated.’)

return ’Locked(’ + str(self._content) + ’)°

def repr__(self):

class Listed(Content):

def __init__(self, *args):
list_content = []
for content in args:
if isinstance(content, Content):
list_content.append(content.get ())
else:
list_content.append(content)
super () . __init__(list_content)

def repr__(self):

return ’Listed(’ + str(self._content) + ’)°

def update(self, *args):
if len(args) == 1:
if not isinstance(args[0], Listed):
listed_content = Listed(args[0])
else:
listed_content = args[0]
else:
list_vals = []
for arg in args:
if isinstance(arg, Content):
if isinstance(arg, Listed):
list_vals += arg.get()
else:
list_vals.append(arg.get ())
else:
list_vals.append(arg)
listed_content = Listed(*xlist_vals)

self._content = self + listed_content

def set(self, *args):
listed_content = []
for value in args:
if isinstance(value, Content):

v = value.get ()
if not isinstance(value, Listed):
v = [v]
else:
v = [value]

listed_content += v

self . _content = listed_content

class Container():

__slots__ = (’_contents’, )

def __init__(self, cont_dict=None, **kwargs):
self._contents = {}
if cont_dict != None:

kwargs.update (cont_dict)
for k, v in kwargs.items():
if not isinstance(v, Content):

val = Content (v)
else:

val = v
self._contents[k] = val

def clear(self):
self._contents.clear ()

def get_contents (self):
return self._contents
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147 def set_content(self, key, value):

148 if not isinstance(value, Content):
149 v = Content(value)

150 else:

151 v = value

152

153 if key in self._contents:

154 self._contents[key].set (v)

155 else:

156 self._contents[key] = v

157

158 def get(self, key):

159 return self [key]

160

161 def item_iter(self):

162 for k in self.keys():

163 yield (k, self[k])

164

165 def items(self):

166 return self.item_iter ()

167

168 def keys(self):

169 return self._contents.keys ()

170

171 def _update_keys (self):

172 return self._contents.keys()

173

174 def value_iter (self):

175 for k in self.keys():

176 yield self [k]

177

178 def values(self):

179 return self.value_iter ()

180

181 def pop(self, key):

182 return self._contents.pop(key).get ()
183

184 def __str__(self):

185 return ’Contents: ’ + str(self._contents)
186

187 def __iter__(self):

188 return iter (self.keys())

189

190 def __getitem__(self, k):

191 return self._contents[k].get ()

192

193 def __setitem__(self, k, v):

194 self.set_content (k, v)

195

196 def __contains__(self, k):

197 return k in self._contents

198

199 def update(self, container):

200 # Works for both dict or container.
201 if isinstance(container, dict):
202 c = Container (cont_dict=container)
203 else:

204 c = container

205

206 for k in c._update_keys():

207 if k in self._update_keys():
208 self._contents [k].update(c._contents[k])
209 else:

210 self.set_content(k, c._contents[k])
211

212

213 class Node(Container):

214 __slots__ = (’_contents’, ’messages’, ’propagator’)
215

216 def __init__(self,

217 cont_dict=None,

218 box_class=Container,

219 propagator=None,

220 **xkwargs) :

221 super () . __init__(cont_dict=cont_dict, #**kwargs)
222 self .messages = box_class ()

223 self .propagator = propagator

224

225 Q@classmethod

226 def from_container(cls, container):

227 kwargs = {}
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260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
271
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308

def

def

def

def

if ’box_class’ in container:

kwargs [’box_class’] = container.pop(’box_class’)
if ’propagator’ in container:

kwargs [’propagator’] = container.pop(’propagator?’)
if isinstance(container, Container):

cont_dict = container.get_contents ()
elif isinstance(container, dict):

cont_dict = container
else:

raise TypeError(’container must be of Container or dict type.’)

return Node(cont_dict=cont_dict, **kwargs)

forward (self, x, **xkwargs):
return self.propagator.forward(x, **xkwargs)

backward (self):
return self.propagator.backward(self, self.messages)

receive (self, message):
# TODO: add more message box classes
if isinstance(message, Message):
for m in message.containers():
self .messages.update (m)
else:
self .messages.update (message)

assign_propagator (self, propagator):
self.propagator = propagator

__slots__ = (’_contents’, ’multi_message’)

def

def

def

def

def

def

def

def

def

__init__(self, cont_dict=None, target=-1, container=None,
if container == None:

super () . __init__(
cont_dict={target: Container (cont_dict=cont_dict,
else:
super () .__init__(cont_dict={target: containerl})
self .multi_message = False

_switch_multi(self):
if len(self.targets()) > 1:

self .multi_message = True
else:
self .multi_message = False

_get_main_message (self):
return self._contents[next(iter(self.targets()))].get()

get_message (self, target):
return self._contents[target].get ()

__str__(self):
return ’Message: ’ + str(self._contents)

targets (self):
return Container.keys(self)

iter_containers (self):
for t in self.targets():
yield self.get_message(t)

containers (self):
return self.iter_containers ()

iter_messages (self):
for t in self.targets():
yield (t, self.get_message (t))

messages (self):
return self.iter_messages ()

iter_keys (self):
for container in self.containers():
for k in container.keys():
yield k

keys (self):
if self.multi_message == False:
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309 return self._get_main_message().keys ()

310 else:

311 return self.iter_keys ()

312

313 def iter_items(self):

314 for container in self.containers():

315 for item in container.items():

316 yield item

317

318 def items(self):

319 if self.multi_message == False:

320 return super ().items ()

321 else:

322 return self.iter_items ()

323

324 def iter_values(self):

325 for container in self.containers():

326 for value in container.values():

327 yield value

328

329 def values(self):

330 if self.multi_message == False:

331 return super ().values ()

332 else:

333 return self.iter_values()

334

335 def pop(self, k):

336 if self.multi_message == True:

337 out = super () .pop (k)

338 self._switch_multi()

339 return out

340 else:

341 return self._get_main_message () .pop (k)

342

343 def pop_message(self, k):

344 out = super ().pop (k)

345 self._switch_multi ()

346 return out

347

348 def update(self, message):

349 if isinstance(message, Message):

350 super () .update (message)

351 self._switch_multi(

352 ) # check whether a message with a new target was added
353 elif isinstance(message, (Container, dict)):
354 if self.multi_message == False:

355 self._get_main_message () .update (message)
356 else:

357 raise TypeError(

358 ’Current Message contains multiple targets. Updating’
359 > with Container is disabled due to ambiguity’
360 > in the target. Turn container into Message’
361 ’ type with a specified target, then update’
362 > the current message.’)

363 else:

364 raise TypeError(’Message can only be updated with a Message’
365 > or Container type.’)

366

367 def __getitem__(self, k):

368 if self.multi_message == False:

369 return self._get_main_message () [k]

370 else:

371 return super().__getitem__ (k)

372

373 def __setitem__(self, k, v):

374 if self.multi_message == False:

375 self._get_main_message().set_content(k, v)
376 else:

377 super () . __setitem__(k, v)

378

379 def __contains__(self, k):

380 if self.multi_message == False:

381 return k in self._get_main_message ()

382 return super().__contains (k)

Listing 2: Example prototype Python code for smart contents and containers

Smart initializers.
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81

# initializers.py

from collections import OrderedDict
from functools import partial
import copy

class Init(Q):

def

def

__init__(self, cls, *args, defaults=None, kwdefaults=None, **kwargs):
self._cls = cls
if kwdefaults != None:
self .kwdefaults = {**kwdefaults, **kwargs}
elif kwargs != {}:
self.kwdefaults = kwargs
if defaults != None:
self.defaults = (*args, *defaults)
elif args != ():
self.defaults = args

__call__(self, xargs, **kwargs):
if hasattr(self, ’kwdefaults’):

input_kwargs = {**xself .kwdefaults, **kwargs}
else:
input_kwargs = kwargs

# Note that concatenating defaults and args is not allowed

# due to ambiguity of when to overwrite.

# TODO: fix the default arguments so that they are first

# converted into keyword arguments, and then merged with the
#

#

i

keyword arguments. If there is a conflict, e.g., the same
keyword exists in both sets, then raise an error.
f hasattr(self, ’defaults’) and len(args) == 0:
input_args = self.defaults
else:
input_args = args

return self._call(xinput_args, **input_kwargs)

_call(self, *args, **xkwargs):
return self._cls(*xargs, **xkwargs)

Q@classmethod

def

init (cls, *args, **xkwargs):
return Init(cls, *args, **xkwargs)

class Lock(Init):

def

def

__init__(self, *args, allow_unused=False, **kwargs):
super () . __init__ (*args, x*xkwargs)
self.allow_unused = allow_unused
__call__(self, *args, allow_unused=False, **kwargs):

if allow_unused or self.allow_unused:

return super().__call__Q)

elif len(args) == 0 and len(kwargs) == O0:
return super().__call__Q)

else:

raise RuntimeError(’allow_unused permission is False.’
> The Lock initalizer allows only’
’ initializing with the default parameters.’
’ Remove args and kwargs inputs from’
> initialization.’)

class Optional (Init):

Initializer that only initializes when the on flag is

True. Otherwise, an instance of the class is not created, it returns None.

def

_call(self, on, *args, **xkwargs):
if om:

return super ()._call(*args, x*xkwargs)
else:

return None

class Choice(Init):

def

def

__init__(self, cls, *args, **xkwargs):
if not isinstance(cls, (tuple, dict)):

raise TypeError(’cls input must be of type tuple or dict.?)
else:

super () . __init__(cls, *args, **xkwargs)

_call(self, choice, *args, **kwargs):
return self._cls[choice](*args, **kwargs)
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83 class Empty(Init):

84 def __init__(self):

85 pass

86

87 def __call__(self, *args, **xkwargs):

88 self._call()

89

90 def _call(self, *args, **xkwargs):

91 raise RuntimeError (’Trying to initialize a ChainInit containing’
92 > an empty Init. First reconfigure the’

93 ’ ChainInit to replace the Empty Init.’

94 > Empty Inits are used in template’

95 > ChainInits to indicate what slot has to be’
96 > changed.’)

97

98 class ChainInit ():

100 def __init__(self, regular_dict=False, **kwargs):
101

102 if regular_dict:

103 self._chaininit = {}

104 else:

105 self._chaininit = OrderedDict ()
106

107 for k, v in kwargs.items():

108 if isinstance(v, Init):

109 init = v

110 else:

111 init = Init(v)

112 self._chaininit[k] = init

113

114 def __call__(self, *xkwargs):

115 return self.init (¥*kwargs)

116

117 def items(self):

118 return self._chaininit.items ()
119

120 def values(self):

121 return self._chaininit.values()
122

123 def keys(self):

124 return self._chaininit.keys ()

125

126 def __iter__(self):

127 return self._chaininit.__iter__()
128

129 def __contains__(self, key):

130 return key in self._chaininit

131

132 def __getitem__(self, key):

133 return self._chaininit [key]

134

135 def __len__(self):

136 return len(self._chaininit)

137

138 @staticmethod

139 def _init_inputs(init, inputs=Nomne):
140

141 if inputs == None:

142 obj = init ()

143 elif isinstance (inputs, tuple):
144 arginputs = []

145 kwinputs = {}

146 for inp in inputs:

147 if isinstance(inp, dict):
148 kwinputs.update (inp)
149 else:

150 arginputs.append (inp)
151 obj = init (*arginputs, #*xkwinputs)
152 elif isinstance (inputs, dict):
153 obj = init (x*xinputs)

154 else:

155 obj = init (inputs)

156 return obj

157

158 def init(self, dictionary=False, **kwargs):
159

160 chainobjs = []

161 chainkeys = []
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163

164

165

166

167

168
169
170
171

172
173

174
175

176
177
178
179
180
181

182
183
184
185
186
187
188
189
190
191

192
193
194
195
196
197
198
199
200
201

202
203
204
205
206
207
208

16

18
19
20
21
22
23
24
25
26
27
28

def

# Check that all keys exist
for key in kwargs:
if key not in self._chaininit:

raise KeyError(key, ’not included in keys of the ChainlInit.’)

for k, init in self._chaininit.items():

inputs = kwargs.get(k, None) # kwarg if exists, otherwise None
obj = self._init_inputs(init, inputs)
if obj != None:

chainobjs.append(obj)
chainkeys.append (k)
if not dictionary:
return chainobjs
else:
return {k: obj for k, obj in zip(chainkeys, chainobjs)}

reconf (self, **kwargs):

# Create a new ChainlInit by reconfiguring the current

# ChainInit. For example, replace the Empty initializer

# of the current ChainInit to create a functioning ChainInit.
# You may also change the default parameters of the Inits.

chaindict = copy.copy(self._chaininit)
for k, v in kwargs.items():
if k not in chaindict:
raise KeyError(’Key does not exist in the ChainInit’
> that you are trying to reconfigure.’)
else:
if isinstance(v, Init):
chaindict[k] = v
else:
initializer = type(chaindict[k])
cls = chaindict[k]._cls
initializer = partial(initializer, cls)
chaindict[k] = self._init_inputs(initializer, v)

return ChainInit (¥*chaindict)

class ChainInitTemplate (ChainInit):

def

__call__(self, #*xkwargs):
initializers = super().__call__(dictionary=True, **kwargs)
return ChainInit (**initializers)

Listing 3: Example prototype python code for smart initializers in Proppo

Propagators.

# propagators.py

import proppo.forward_methods as fm

import proppo.back_methods as bm

import proppo.baseline_funcs as baselines

import proppo as pp

from proppo.utils import inverse_variance_weighting

from proppo.containers import Node, Message, Container

from proppo.initializers import (ChainInit, Optional, Init, Empty,

ChainInitTemplate)

import copy

class Propagator:

nun

def

def

This pairs together the forward and backward methods.

__init_subclass__(cls, **xkwargs):
cls.default_init_kwargs = kwargs

__init__(self, **xkwargs):
self.default_forward_kwargs = kwargs

forward(self, x, *xkwargs):

# Overwrite default arguments, then pass as input
input_kwargs = {**self.default_forward_kwargs,6 **kwargs}
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29 # Must create a new node, and pass this to forward, otherwise

30 # the propagators at different forward steps will overwrite, the
31 # contents of the previous propagation.

32 node = {}

33 node = self.forward_impl(x, node, **input_kwargs)

34

35 # Flag to store the node in manager.

36 if ’register_node’ not in node:

37 node[’register_node’] = True

38 # Flag to clear node in manager after backwarding the node.
39 if ’clear’ not in node:

40 node[’clear’] = True

41

42 if isinstance(node, dict):

43 node = Container (cont_dict=node)

44

45 return node

46

47 def forward_impl (self, x, node={}, *xkwargs):

48 return node

49

50 def backward(self, node, message):

51 message_in = message

52 message_out = self.backward_impl(node, message_in)

53

54 # for backwards compatibility, convert dictionaries

55 if not isinstance(message_out, Message):

56 if isinstance(message_out, dict):

57 if ’targets’ in message_out:

58 target = message_out.pop(’targets’)

59 message_out = Message(cont_dict=message_out, target=target)
60 else:

61 message_out = Message(cont_dict=message_out)
62 elif isinstance(message_out, Container):

63 message_out = Message(container=message_out)

64

65 return message_out

66

67 def backward_impl(self, node, message):

68 message_out = Message(cont_dict=message.get_contents())
69 return message_out

70

71 def loss_propagator (self):

72 """ Returns the default loss propagator that should

73 be applied when appending a loss after having called

74 manager .forward using the current propagator.

75

76 W

77 return LossProp()

78

79
80 class SequenceProp (Propagator):

81 """ Base class for sequence based propagators, used to construct them.
82

83 e

84

85 def __init_subclass__(cls,

86 propagators=ChainInit (),

87 xxkyargs) :

88 super () . __init_subclass__ (¥*xkwargs)

89 cls.propagators = propagators

90

91 def _split_prop_kwargs(self, kwargs):

92 prop_kwargs = {}

93 for k in self.propagators:

94 if k in kwargs:

95 prop_kwargs [k] = kwargs.pop (k)

96 return prop_kwargs, kwargs

97

98 def __init__(self,

99 propagators=[], # A list of already initialized propagators.

100 xxkyargs) :

102 default_init_kwargs = copy.copy(self.default_init_kwargs)
103

104 if propagators != []:

105 input_kwargs = {**default_init_kwargs, **kwargs}

106

107 super () . __init__ (**xinput_kwargs)

108 self .propagators = propagators

109 else:
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110 def_prop_kwargs, def_init_kwargs = self._split_prop_kwargs(
default_init_kwargs)
111 prop_kwargs, init_kwargs = self._split_prop_kwargs (kwargs)

112 input_kwargs = {**def_init_kwargs, **init_kwargs}

Hj super () . __init__ (**input_kwargs)

HZ input_prop_kwargs = {*xdef_prop_kwargs, **xprop_kwargs}
H; self.propagators = self.propagators (x*xinput_prop_kwargs)

121 class ComboProp(SequenceProp):

122 """ Combines propagators, and applies them in a sequence, updating
123 message and node in-place.

124

25 e

126

127 def forward_impl (self, x, node={}, *xkwargs):

128 for prop in self.propagators:

129 node_out = prop.forward_impl(x, node, **xkwargs)

130 node .update (node_out)

131 return node

132

133 def backward_impl(self, node, message):

134

135 final_message = Message(cont_dict=message.get_contents())
136 for prop in reversed(self.propagators):

137 message_in = final_message._get_main_message ()

138

139 message_out = prop.backward_impl(node, message_in)
140

141 # for backwards compatibility, convert dictionaries
142 if isinstance(message_out, dict):

143 if ’targets’ in message_out:

144 target = message_out.pop(’targets’)

145 message_out = Message(cont_dict=message_out, target=target)
146 else:

147 message_out = Message (cont_dict=message_out)
148

149 final_message.update (message_out)

150

151 return final_message

152

153

154 class BackPropagator (Propagator):

155 """ Base propagator that will backprop gradient messages, if they
156 are sent into this propagator.

157

158 e

159

160 def backward_impl(self, node, message):

161

162 message_out = bm.backward(node, message)

163 return message_out

164

165

166 class BaselineProp (Propagator):

167 """ Class for adding a baseline subtraction to the local losses.

168

169 e

170

171 def __init__(self, baseline_func=baselines.mean_baseline, **xkwargs):
172 super () . __init__ (**kwargs)

173 self .baseline_func = baseline_func # Default baseline function
174

175 # Note: if one wants to change the baseline function for just one
176 # forward call compared to the default baseline function in a chain
177 # of forward propagations, then they should define a new propagator
178 # object for that new forward call. I could also allow giving an
179 # additional argument in the forward call to specify a baseline
180 # for just that node; however, this would not

181 # give a key error if someone accidentally mistypes the key, and
182 # may lead to bugs, so I avoid it.

183

184 def backward_impl(self, node, message):

185 local_loss = message.pop(’local_loss’)

186 # Need to remove local_loss from previous message, and create

187 # a new message to avoid duplicating loss in the ComboProp

188 # backward_impl method.

189 if isinstance(self.baseline_func, (list, tuple)):
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baselined_loss = copy.copy(local_loss)
for func in reversed(self.baseline_func):

baselined_loss = func(baselined_loss, node)
else:
baselined_loss = self.baseline_func(local_loss, node)
message_out = {

’baselined_loss’: baselined_loss,
>local_loss’: local_loss
¥

return message_out

emp = ChainInitTemplate (backprop=0ptional(

onal.init (BackPropagator, True), False),
base=Init,
baseline=0ptional(

onal.init (BaselineProp, True), False)

class PauseBase (Propagator):

A propagator that pauses all incoming gradients, then sends the

combined gradient backwards.

def

def

forward_impl (self, x, node={}, **kwargs):
node = fm.detached_output(x, **kwargs)
return node

backward_impl (self, node, message):
message_out = bm.rp_gradient(node, message)
return message_out

class SkipProp(Propagator):

nun

A propagator that sends all incoming messages backward

a determined length, skipping the nodes inbetween.

def

def

def

__init__(self, skip=1, *xkwargs):
super () . __init__ (¥*kwargs)
self.skip = skip

forward_impl (self, x, node={}, **xkwargs):
node [’output’] = x
return node

backward_impl (self, node, message):
message[’targets’] = -self.skip
return message

class PauseProp(ComboProp, propagators=mcgrad_temp (backprop=True,

pass

base=PauseBase)):

class SumBase (Propagator):

nun

mess

Propagator that adds a local variable with a different variable in
ages. This is usually used to accumulate a sum of variables during the

backward pass, e.g. sum the rewards to obtain the return in reinforcement learning.

def

__init__(self, sum_name, local_variable, **kwargs):
self.sum_name = sum_name

self.local_variable = local_variable

super () .__init__ (**xkwargs)

backward_impl (self, node, message):
current_sum = message.pop(self.sum_name, O0)

message = {self.sum_name: message[self.local_variable] + current_sum}

return message

class ChainProp (SequenceProp):

nun

Chains together a set of propagators into a single propagator.
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271 The implementation is based on creating a new PropagationManager object

272 to correctly apply the propagators in sequence without any implementation
273 errors. The propagators to chain together should be given as a list
274 or tuple of Propagator instances during creation. The propagators
275 themselves can also be Chain propagators, which allows for defining
276 complex propagation strategies using nested propagation managers.
277

278 e

279

280 def forward_impl(self, x, node={}, chain_kwargs=[], **kwargs):

281 manager = pp.PropagationManager (default_propagator=None,

282 terminal_propagator=None)

283 if chain_kwargs:

284 for prop, kwarg in zip(self.propagators, chain_kwargs):

285 kwarg.update (kwargs)

286 x = manager.forward(x, local_propagator=prop, **kwarg)
287 else:

288 for prop in self.propagators:

289 x = manager.forward(x, local_propagator=prop, **kwargs)
290

291 node = {’output’: x, ’manager’: manager}

292 if manager.size() == 0:

293 node[’register_node’] = False

294 return node

295

296 def backward_impl(self, node, message):

297 message_out = node[’manager’].backward(message=message)

298 return message_out

299

300 def loss_propagator(self):

301 """ By default, usually the last one in the chain

302 contains the correct loss propagator.

303

304 nwn

305 return self.propagators[-1].loss_propagator ()

306

307

308 class RPBase(Propagator):

309 """ Base class for RP propagator.

310

311 e

312

313 def forward_impl (self, x, node={}, detach=True, **kwargs):

314 node = fm.rp_noise(x, detach=detach, **kwargs)

315 return node

316

317 def backward_impl(self, node, message):

318 message_out = bm.rp_gradient (node, message)

319 return message_out

320

321

322 class RPProp(ComboProp, propagators=mcgrad_temp(backprop=True,
323 base=RPBase)) :
324 """ RP propagator combining the functionality from ComboProp.
325

326 e

327 pass

328

329

330 class LossBase(Propagator):

331 """ Base class for loss nodes in the computational graph.
332

333 W

334

335 def __init__(self, loss_name=’local_loss’, **kwargs):

336 super () .__init__ (**xkwargs)

337 self.loss_name = loss_name

338

339 def forward_impl(self, x, node={}, lossgrad=True, lossfunc=None, **kwargs):
340 if lossfunc:

341 if isinstance(x, dict):

342 losses = lossfunc (¥*x)

343 else:

344 losses = lossfunc(x)

345 else:

346 losses = x

347

348 node = fm.loss_forward(losses, sum_loss=True, lossgrad=lossgrad)
349 return node

350

351 def backward_impl(self, node, message):
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352 message_out = bm.loss_backward(node, message, loss_name=self.loss_name)
return message_out

355

356 class LossProp(ComboProp,

357 propagators=ChainInit (

358 backprop=0ptional (BackPropagator, True),

359 baseline=0ptional (BaselineProp,

360 True,

361 baseline_func=baselines.mean_baseline),
362 base=LossBase)):

363 """ Propagator adding Baseline and ComboProp functionality to Loss nodes.
364

365 wan

366 pass

367

368

369 class LRBase(Propagator):

370 """ Base class for likelihood ratio gradient propagators.
371

372 e

373

374 def forward_impl (self, x, node, **kwargs):

375 node = fm.lr_noise(x, **kwargs)

376 return node

377

378 def backward_impl(self, node, message):

379 message_out = bm.lr_gradient(node, message)

380 return message_out

381

382

383 class LRProp(ComboProp, propagators=mcgrad_temp (backprop=True,
384 base=LRBase,

385 baseline=True)):
386 """ Class adding ComboProp functionality to LR gradient propagators.
387

388 e

389

390 def loss_propagator(self):

391 return LossProp(backprop=False, lossgrad=False)

392
393
394 class TPBase(Propagator):

395 """ Base class for total propagation gradient propagators.
396

397 e

398

399 def __init__(self,

400 var_weighting_func=inverse_variance_weighting,
401 **xkwargs) :

102 super () . __init__ (**kwargs)

403 self.var_weighting_func = var_weighting_func

404

405 def forward_impl(self, x, node, **kwargs):

406 node = fm.totalprop_noise(x, **kwargs)

407 return node

408

409 def backward_impl(self, node, message):

410 message_out = bm.totalprop_gradient (

411 node, message, var_weighting_ func=self.var_weighting_func)
412 return message_out

413

414

415 class TotalProp (ComboProp,

416 propagators=mcgrad_temp (backprop=True,

417 base=TPBase,

418 baseline=True)

419 ):

420 """ Class adding ComboProp functionality to total propagation
421 gradient propagation nodes.

422

03 W

424 pass

Listing 4: Example prototype python code for propagators for MC gradient estimation

Forward methods.

I # forward_methods.py
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3
4

66

69

import torch
import collections

def

def

def

def

def

detached_output (x, requires_grad=True, **xkwargs):
x_detached = x.detach()
if requires_grad:

x_detached.requires_grad_()

node = {’output’: x_detached, ’pre_output’: x, ’register_node’:

return node

loss_forward(x, lossgrad=False, sum_loss=True, **kwargs):
""" Method to register a loss node. It will either

just pass the loss in the local_loss slot, or will

also backprop the gradient.

if x.dim() == 1:
x = x.reshape([x.numel (), 1])
node = detached_output(x, requires_grad=False)
node[’lossgrad’] = lossgrad
node[’sum_loss’] = sum_loss

return node

rp_noise(x, dist_class, dist_params, detach=True, **kwargs):
""" Returns noisy node for reparametrization trick

if isinstance(dist_params, (tuple, list)):

dist = dist_class(*dist_params)
if isinstance(dist_params, dict):
dist = dist_class (**xdist_params)
if isinstance(dist_params, collections.Callable):
dist = dist_class (*¥*dist_params(x))
X_noisy = x + dist.rsample()
if detach:
node = detached_output(x_noisy)
else:
node = {’output’: x_noisy, ’register_node’: Falsel}

return node

Truel}

1lr_noise(x, dist_class, dist_params, requires_grad=False, **kwargs):

""" Returns noisy node for likelihood ratio

if isinstance(dist_params, (tuple, list)):

dist = dist_class(xdist_params)
if isinstance(dist_params, dict):
dist = dist_class (**dist_params)
if isinstance(dist_params, collections.Callable):
dist = dist_class (*¥*dist_params(x))
x_noisy = x + dist.rsample ()
log_prob = dist.log_prob(x_noisy.detach() - x)
node = detached_output(x_noisy, requires_grad=requires_grad)

node[’log_prob’] = log_prob
return node

totalprop_noise(x,
dist_class,
dist_params,
ivw_target,
k_interval=1,
**kwargs:)
""" Returns noisy node for total propagation

win
node = lr_noise(x,
dist_class=dist_class,
dist_params=dist_params,
requires_grad=True)
node[’ivw_target’] = ivw_target
node[’k_interval’] = k_interval
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66

69
7

71
72
73

return node

Listing 5: Example prototype python code for the forward methods of the propagators

Backward methods.

# back_methods.py

import torch

from proppo.utils import inverse_variance_weighting
from proppo.containers import Listed

def backward(node, message, grad_name=None):
""" This one is special for calling backward.
Removes outputs and grads from message, calls backward,
and passes the remaining message backwards.

W
if ’outputs’ in message:

outputs = message.pop(’outputs’)

grads = message.pop(’grads’)
else:

return message

torch.autograd.backward(tensors=outputs, grad_tensors=grads)
return {}

def loss_backward(node, message_in, loss_name):
local_loss = nodel[’output’]
if node[’sum_loss’]:
if loss_name in message_in:
local_loss += message_in[loss_name]

outputs = node[’pre_output’]
# Grads is set so that the gradient of the average loss is computed.

message = {loss_name: local_loss}

if node[’lossgrad’]:

ones_matrix = torch.tensor([1.0], device=outputs.device).expand(
outputs.size())

grads = {
’outputs’: Listed(outputs),
’grads’: Listed(ones_matrix / torch.numel (outputs))

}

message .update (grads)

return message

def rp_gradient(node, message_in):
""" Returns output tensor and its gradient for reparametrization trick.

detached_output = nodel[’output’]
output = node[’pre_output’]
message = {
’outputs’: Listed(output),
’grads’: Listed(detached_output.grad)
}

return message

def lr_gradient(node, message_in):
""" Returns output tensor and its gradient for likelihood ratio

if ’baselined_loss’ in message_in:

local_loss = message_in[’baselined_loss’]
else:

local_loss = message_in[’local_loss’]
lr_grad_outputs = local_loss / torch.numel(local_loss)

log_prob = node[’log_prob’]
lr_grad_outputs = lr_grad_outputs.expand(log_prob.shape)

message = {’outputs’: Listed(log_prob), ’grads’: Listed(lr_grad_outputs)}

44



74 return message
75
76

77 def totalprop_gradient (node,

78 message_in,

79 var_weighting_func=inverse_variance_weighting):
80 """ Returns output tensors and their gradients for total propagation.
81

82 The total propagation is a combination of the reparametrization trick and
83 the likelihood ratio.

84 Each gradient will be combined based on inverse variance weighting.
85

86 e

87 detached_output = nodel[’output’]

88 output = node[’pre_output’]

89 log_prob = nodel[’log_prob’]

90 ivw_target = node[’ivw_target’]

91 k_interval = node[’k_interval’]

92

93 if ’k_counter’ in message_in:

94 k_counter = message_in.pop(’k_counter’)

95 else:

96 k_counter = 0

97

98 if ’baselined_loss’ in message_in:

99 local_loss = message_in[’baselined_loss’]

100 else:

101 local_loss = message_in[’local_loss’]

102 # Make LR gradients compute mean gradient

103 local_loss = local_loss / torch.numel(local_loss)

104

105 lr_grad_outputs = local_loss.expand(log_prob.shape)

106

107 if k_counter % k_interval == 0:

108 rp_grads = torch.autograd.grad(outputs=output,

109 inputs=ivw_target,

110 grad_outputs=detached_output.grad,
111 retain_graph=True)
112

113 lr_grads = torch.autograd.grad(outputs=log_prob,

114 inputs=ivw_target,

115 grad_outputs=1r_grad_outputs,
116 retain_graph=True)

117

118 k_1lr, k_rp = var_weighting_func(lr_grads, rp_grads)

119 else:

120 k_1lr, k_rp = message_in[’k_lr_k_rp’]

12

122 outputs = Listed(log_prob, output)

123 grads = Listed(k_lr * lr_grad_outputs, k_rp * detached_output.grad)
124 message_grads = {’outputs’: outputs, ’grads’: grads, ’targets’: -1}
125

126 message_k = {

127 ’k_counter’: k_counter + 1,

128 ’k_lr_k_rp’: (k_1lr, k_rp),

129 ’targets’: O

130 }

131

132 if k_interval > 1:

133 messages = (message_grads, message_k)

134 else:

135 messages = message_grads

136 return messages

Listing 6: Example prototype python code for the backward methods of the propagators

Baseline functions.

# baseline_funcs.py

1

2 import torch

4

5 def mean_baseline(local_losses, node=None):

6 with torch.no_grad():

7 batch_size = local_losses.numel ()

8

9 # leave-one-out baselines

10 sum_loss = local_losses.sum()

11 # The division by (batch_size - 1) instead of (batch_size)
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def

# is algebraically equivalent to a leave-one-out baseline.
sum_loss = (sum_loss - local_losses) / (batch_size - 1)
losses = local_losses - sum_loss

return losses

no_baseline(local_losses, node=None):
return local_losses

Listing 7: Example prototype python code for the baseline methods used in LR-based MC gradient

estimators
Utilities.
# utils.py
import torch
def expand(data, batch_size):
""" Returns the tensor with batch dimension expanded.
Arguments:
data (torch.Tensor): input tensor
batch_size (int): batch size for expansion
Returns:
torch.Tensor: output tensor
return data.expand((batch_size, ) + data.shape)
def inverse_variance_weighting(xl, x2, scalar_estimate=True):
""" Returns weights of inverse variance weighting for each input.
if isinstance(xl, (list, tuple)) and isinstance(x2, (list, tuple)):
x1_vars = []
x2_vars = []
c_list = []
for vi, v2 in zip(x1l, x2):
assert vl.shape == v2.shape
batch_size = v1.shape[0]
dl = vl - vl.mean(dim=0, keepdims=True)
d2 = v2 - v2.mean(dim=0, keepdims=True)
cl = torch.max(torch.abs(d1))
c2 = torch.max(torch.abs(d2))
c = torch.max(cl, c2)
c_list.append(c)
if ¢ == 0:
x1_vars.append (torch.tensor (0.0, device=c.device))
x2_vars.append (torch.tensor (0.0, device=c.device))
else:
x1_vars.append (torch.sum((dl / c)*%2))
x2_vars.append (torch.sum((d2 / c)*x2))
xlvec = torch.tensor(xl_vars)
x2vec = torch.tensor (x2_vars)
cvec = torch.tensor(c_list)
cmax = torch.max(cvec)
if cmax == O:
x1_var = torch.tensor (1.0, device=cmax.device)
x2_var = torch.tensor (1.0, device=cmax.device)
else:
cvec = (cvec / cmax) *x*2
x1_var = torch.sum(xlvec * cvec)
x2_var = torch.sum(x2vec * cvec)
else:
assert x1.shape == x2.shape
batch_size = x1.shape[0]
dl = x1 - x1.mean(dim=0, keepdims=True)
d2 = x2 - x2.mean(dim=0, keepdims=True)
cl = torch.max(torch.abs(d1))

c2 = torch.max(torch.abs(d2))
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66 c = torch.max(cl, c2)

68 if ¢ == 0:

69 x1_var = torch.tensor (1.0, device=c.device)

70 x2_var = torch.tensor (1.0, device=c.device)

71 else:

72 x1_var = torch.sum((dl / c)*x2)

73 x2_var = torch.sum((d2 / c)*%*2)

74

75 k_x1 = x2_var / (xl_var + x2_var)

76 k_x1 = torch.clip(k_x1, 0, 1)

71

78 if torch.ismnan(k_x1):

79 print (’Warning: estimated k was nan. Automatically changed to 0.5.7)
80 k_x1[torch.isnan(k_x1)] = 0.5 # when 0/0 error occurs, take them equally.
81

82 return k_x1, 1.0 - k_x1

Listing 8: Example prototype python code for utility functions used in Proppo
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