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ABSTRACT

While large language models (LLMs) have revolutionized natural language pro-
cessing with their task-agnostic capabilities, visual generation tasks such as im-
age translation, style transfer, and character customization still rely heavily on
supervised, task-specific datasets. In this work, we introduce Group Diffusion
Transformers (GDTs), a novel framework that unifies diverse visual generation
tasks by redefining them as a group generation problem. In this approach, a set
of related images is generated simultaneously, optionally conditioned on a subset
of the group. GDTs build upon diffusion transformers with minimal architectural
modifications by concatenating self-attention tokens across images. This allows
the model to implicitly capture cross-image relationships (e.g., identities, styles,
layouts, surroundings, textures, and color schemes) through caption-based corre-
lations. Our design enables scalable, unsupervised, and task-agnostic pretraining
using extensive collections of image groups sourced from multimodal internet ar-
ticles, image galleries, and video frames. We evaluate GDTs on a comprehensive
benchmark featuring over 200 instructions across 30 distinct visual generation
tasks, including picture book creation, font design, style transfer, sketching, col-
orization, drawing sequence generation, and character customization. Our models
achieve competitive zero-shot performance without any additional fine-tuning or
gradient updates. Furthermore, ablation studies confirm the effectiveness of key
components such as data scaling, group size, and model design. These results
demonstrate the potential of GDTs as scalable, general-purpose visual generation
systems. We will release the code and models to support further research.

1 INTRODUCTION

The advent of large language models (LLMs) has brought a paradigm shift in natural language
processing (NLP) Radford et al. (2019); Raffel et al. (2020); Brown (2020); Ouyang et al. (2022);
Zhang et al. (2022); Touvron et al. (2023a;b); Dubey et al. (2024), enabling a wide range of tasks
to be approached in a task-agnostic manner. These models, trained on vast corpora, can generate
coherent and contextually relevant content across various domains without the need for task-specific
fine-tuning, setting a new standard for what is achievable in NLP. However, this level of task gener-
alization has yet to be fully realized in the field of visual generation. Unlike NLP, visual generation
tasks – such as pose transfer Shen et al. (2023); Lu et al. (2024), image translation Ho et al. (2024);
Rodatz et al. (2024), customization Jones et al. (2024); Wei et al. (2023), stylization Huang et al.
(2024); Yang et al. (2023), and font creation Wang et al. (2023a); Yang et al. (2024) – remain largely
siloed, relying heavily on supervised learning paradigms. These tasks often demand extensive task-
specific datasets and additional modules, such as LoRAs Jones et al. (2024); Smith et al. (2023); Luo
et al. (2023), adapters Ye et al. (2023a); Mou et al. (2024), visual encoders Giannone et al. (2022);
Kumar et al. (2024); Xu et al. (2024), and ControlNets Zhang et al. (2023); Zhao et al. (2024), to
achieve satisfactory performance.

This reliance on specialized data and architectures presents significant challenges for scalability and
generalization. First, it limits scalability by failing to leverage the vast amount of weakly super-
vised data available on the Internet; creating and curating task-specific datasets is human-laboring.
Second, it restricts models’ adaptability to unseen tasks. Third, cross-task adaptation is lacking,
particularly in compositional control, where multiple tasks are implicitly managed. For example,
consider creating a picture book Jin & Song (2023); Wang et al. (2023b), characters, environments,
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Font Family DesignFont Family Design Picture Book Generation

Drawing/Growing Procedure Generation

Art Style-preserving Image-set Generation

IP and Its Surroundings

3D Multiview Image Generation

Cartoon Meme Generation

Product Images Generation

Portrait Album Generation

Figure 1: Group Diffusion Transformers perform a vast array of visual generation tasks in
a unified framework termed group generation. Note that NO task-specific dataset and NO
additional gradient update is applied. The model is automatically generalized to these tasks after
unsupervised training on image groups. For simplicity, textual descriptions of images are omitted
here, which can be found in Appendix.

and attire must be dynamically adjusted, requiring decisions on which elements to keep consistent
and which to vary. Finally, we hypothesize that training on single-task, shallow-domain datasets
leads to the lack of generalization in real-world applications. To truly unlock the potential of vi-
sual generation, it is crucial to develop models capable of performing a wide range of tasks in a
task-agnostic manner. This demands a shift in how we conceptualize and approach these tasks.

Our key insight is that most, if not all, visual generation tasks can be reformulated within a uni-
fied framework that we term the group generation problem. In this framework, the objective is
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Task 1: Colorize the given sketch.

Task 9: Replace the strawberry-topped cake with a 
strawberry tart, while keeping the rest unchanged.

Task 6: Complete the final artwork based on the 
rough sketch.

Task 2: Render the base model of the supercar to create a 
photorealistic final render.

Task 3: Change the girl’s dressing and pose.

Task 5: Generate a new photo of this 
girl with a different pose.

Task 11: Imagine the front view image of the 
figurine based on the back view provided.

Task 15: Expand the partial detail image into a 
complete full-sized image.

Task 10: Convert the provided pen and ink 
drawing into a copperplate etching.

Task 8: Transform the provided single can into a row of 
three cans lined up side by side.

Task 18: Draw some paintings of the same artistic form.

Task 7: Change her upper body outfit to a new 
ensemble.

Task 13: Erase the prominent text from 
the painting.

Task 14: Create another sticker in the same style as the 
provided one.

Task 19: Create an image of this drink in 
the same logo.

Task 20: Transform the sunset 
cityscape into nighttime.

Task 16: Generate a vector illustration of a 
mushroom-shaped pig in the same style.

Task 12: Generate another photo of this girl based 
on the photo booth, with her dressings unchanged.

Task 17: Make the cartoon character eating with 
mouth widely open.

Task 4: Draw another avatar of this girl in 
the same artistic style.

Figure 2: When conditioned on a subset of the group data, Group Diffusion Transformers
could perform conditional group generation in the inpainting fashion. Note that the model
is automatically generalized to these tasks after unsupervised training on image groups. Textual
descriptions of images are omitted here (can be found in Appendix), and we summarize them into
brief task descriptions.

to generate a set of correlated data, or a group, optionally conditioned on a subset of this group.
For instance, tasks such as generating picture books Jin & Song (2023); Wang et al. (2023b), font
images Wang et al. (2023a); Yang et al. (2024), or emoticons Mittal et al. (2020) involve produc-
ing multiple images with distinct yet related descriptions simultaneously. The inherent correlations
are implicitly captured through the relationships among these descriptions. Conversely, tasks like
sketching Voynov et al. (2023); Wang et al. (2023c), colorization Zabari et al. (2023); Carrillo et al.
(2023); Liang et al. (2024), character-specific image generation Zdenek & Nakayama (2023); Kou
et al. (2023), and multiview image generation from a single image Liu et al. (2023b); Shi et al.
(2023) can be framed as conditional group generation problems, where a subset of the group data
is provided as a reference. Figure 1 and 2 provide examples of group generation and conditional
group generation. By reframing these tasks as group generation problems, we leverage the power
of unsupervised learning to address a broad spectrum of tasks without the need for task-specific
supervision, simplifying the learning process and broadening applicability.

One of the most compelling advantages of the group generation framework is its natural alignment
with the vast amount of data available on the Internet. Multimodal articles, image galleries, and
multi-shot videos are just a few examples of readily accessible sources of group data. Each of these
sources inherently captures the relationships between different data elements, offering a form of free
supervision that is both scalable and diverse. The availability of such abundant group data not only
reduces the need for labor-intensive data annotation but also enables the training of models on a
wide array of tasks simultaneously, further enhancing generalizability.

To address the group generation problem, we introduce a minimalistic modification to diffusion
transformers Peebles & Xie (2023); Esser et al. (2024a); Chen et al. (2023a), termed Group Dif-
fusion Transformers (GDTs). The core idea is to concatenate self-attention tokens across a group
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of inputs, allowing the model to learn the correlations and variations within the group. This mod-
ification is straightforward, requiring minimal changes to the underlying architecture of diffusion
transformers (DiTs), yet it significantly enhances the model’s ability to capture relationships among
multiple generated data. To address reference-based generation problems, such as style transfer
Huang et al. (2024); Yang et al. (2023) and image translation Ho et al. (2024); Rodatz et al. (2024),
we incorporate techniques like SDEdit Meng et al. (2021) and inpainting Xie et al. (2023); Xu et al.
(2024). These methods enable the model to generate the remaining elements of a group when con-
ditioned on a subset of inputs. Figure 3 provides a detailed architectural overview of GDTs. The
straightforward design of GDTs makes it easy to implement and shows promise for efficient scaling.

To evaluate the capabilities of our model, we first introduce a user interface that can automatically
convert user instructions into textual descriptions of the target image group to support group gener-
ation. Then, we construct a comprehensive benchmark that covers a wide range of visual generation
tasks, both with and without reference images. All tasks are performed in a zero-shot setting, with-
out any parameter or architectural modifications. Despite the absence of task-specific supervision
during training, our model demonstrates promising performance across most tasks. Finally, we con-
duct ablation studies to examine the impact of key components in our framework, such as data scale,
group size, model design and quality tuning, on overall performance.

2 APPROACH

The core of our approach is to reformulate visual generation tasks into a group generation problem
and solve it using minimally modified diffusion transformers. We begin by detailing how these tasks
are reformulated, followed by a comprehensive introduction to our model, its architecture, the data
employed, the training procedure, and the inference stage.

2.1 PROBLEM FORMULATION

We propose that a vast array of visual generation tasks can be unified under a single framework we
term the group generation problem. In this framework, the objective is to generate a group of n
elements x = {x1,x2, · · · ,xn}, where each element is conditioned on its respective context (e.g.,
image descriptions) c = {c1, c2, · · · , cn}. The relationships among these elements are implicitly
defined by the interdependencies within their contextual conditions. Optionally, a subset of 0 ≤ m <
n elements of x can be provided as reference data, with the task being to generate the remaining
(n−m) elements. This formulation naturally encapsulates a variety of tasks:

• Text-to-Image: A special case where the group size n = 1 and the reference subset size
m = 0. The task is to generate a single image from a textual description.

• Font Generation: Here, the group size n > 1 corresponds to the number of characters to
generate, with m = 0.

• Picture Book Generation: Similar to font generation, the group size n > 1 corresponds to
the number of picture book pages, with m = 0. The descriptions capture the connections
and variations across the pages.

• Identity Preservation: Here, the group size n > 1 corresponds to the number of photos
with the same identities to generate, with m = 0. Identity-specific information is reflected
in the descriptions, such as names or other identifiers.

• Local Editing: In this task, the group size is n = 2 with a reference subset size m = 1.
One reference image is provided, and the model generates the edited image based on the
differences captured in their descriptions.

• Image Translation: Similarly, the group size is n = 2 with a reference subset size m = 1.
A reference image from one domain is converted to another domain according to their
descriptions.

• Subject Customization: The task involves generating (n − m) ≥ 1 images, where 1 ≤
m < n character images are used as references.

• Style Adaptation: In this task, (n−m) ≥ 1 corresponds to the number of stylized images
to be generated, with m = 1 being the reference image guiding the target style.
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Figure 3: The overview of Group Diffusion Transformer, which takes minimal adaptations for
the encoder-decoder and encoder-only visual generation architectures. We make a straight-
forward modification on self-attention blocks by concatenating image tokens across group inputs,
allowing to learn inter-image correlations.

These examples illustrate just a few of the many tasks that can be naturally expressed within the
group generation framework. Across these tasks, the task hints are naturally embedded within the
group element descriptions, much like how a human might communicate with a designer. This
unified framework simplifies the approach to diverse visual generation tasks and paves the way for
scalable, generalized solutions.

2.2 MODEL AND ARCHITECTURES

To tackle the group generation problem, it is crucial to establish connections between multiple group
elements during the generation process, allowing the model to perceive and utilize the correlations
among these elements. Our approach involves a straightforward modification: concatenating tokens
across group inputs within the self-attention blocks of diffusion transformers. This enables tokens
from different data elements to interact with one another throughout the model’s layers.

For different text-conditioned visual generation architectures, we make minimal adaptations to ac-
commodate our approach:

• Encoder-Decoder: In architectures like PixArt Chen et al. (2023a), each transformer block
includes a self-attention operation for the image, cross-attention for interaction between im-
age and text, and a feed-forward network. We choose to concatenate all the image tokens
in self-attention blocks, which allows every token attends to all the image tokens within the
group. After self-attention operation, concatenated image tokens are split back correspond-
ingly. Then, in cross-attention blocks, each image token attends only to the text embeddings
associated with its respective description. This setup is illustrated in Figure 3 (b).

• Encoder-Only: Examples like Stable Diffusion 3 Esser et al. (2024a) and FLUX Labs
(2024) feature transformer blocks with self-attention blocks and feed-forward networks.
We modify the self-attention operation into a masked version, which is depicted in Fig-
ure 3 (c). Specifically, image tokens xi as well as text tokens ci are first concatenated
with each other all over the group. Then, we calculate the masked self-attention, where
the mask is designed for allowing every image token attends to all tokens across the
group while allowing context tokens only attend to image tokens as well as themselves.
Concretely, let M(aj ,bk) indicate the attention mask for tokens in aj and bk, where
a,b ∈ {c,x}, 0 ≤ j, k ≤ n. Then, M(aj ,bk) is decided by

M(aj ,bk) =

{
1 if (j = k) or (a ∈ x and b ∈ x)

0 else
. (1)
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2.3 TRAINING DATASET

We focus on image-related tasks in this work, which requires a high-quality, large-scale, and diverse
image group dataset. While existing multimodal datasets like MINT-1T Awadalla et al. (2024)
are large, they fall short of our pretraining needs due to low image quality and biased group type
distribution relative to real-world visual generation applications. Thus, we construct our own dataset
by sourcing image groups from multimodal Internet articles.
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Figure 4: Distribution of group size in
our training dataset.

Our dataset creation process involve several key steps: (1)
We collect a substantial amount of multimodal data, ex-
tracting images while preserving their original order to
maintain group integrity. (2) A small subset of these im-
age groups is manually annotated as either positive (suit-
able for retention) or negative (to be discarded). (3) Using
these annotations, we train a binary classifier to score and
filter the collected image groups. (4) We perform dedu-
plication across and within groups to eliminate redundant
groups and images. After preprocessing, we compile a
dataset of approximately 500,000 image groups, with the
distribution of group size illustrated in Figure 4.

The next crucial step is to generate descriptions that accurately capture the correlations among the
images within each group. To achieve this, we utilize our internal multimodal large language models
(MLLMs), iteratively testing and refining prompts to ensure the generated descriptions are stable and
applicable across different group types. In Figure 5, we show the prompt we used, as well as the
resulting group image descriptions.

While pretraining on our large-scale dataset provides a solid foundation for learning correlations
with Group Diffusion Transformers (GDTs), it is common practice in visual generation tasks to
conduct a supervised fine-tuning stage to enhance generation details and aesthetics. To this end,
we curate a smaller, high-quality subset of approximately 10,000 image groups. These groups were
selected for their strong correlations, high image quality, aesthetic appeal, and diversity. Fine-tuning
our pretrained models on this curated dataset significantly improves both the image quality and
content consistency in group generation, where the comparison can be found in Section 4.2.5.

These images are related. Your task is:

1. You need to first identify as many related elements as possible and explain them in detail.

2. Generate a 100-word visual description for each image's visual content in as much detail as possible, and keep the 

sentence structure of each image's description as consistent as possible (while not ignoring the unique visual content and 

style of each image).

3. Note: When describing the visual elements of an image, if there are elements similar to the previous image, you still 

need to describe it completely and do not point out this similarity or identity in the description, remember not to mention 

the previous visual content!

4.Please output the results in JSON code block forma, such as: [omitted here]

{ "related_elements": "All images feature a Golden Retriever named Dora, wearing a tag that reads \"Miss Dora\". Dora is 

depicted in various forms, including real photographs, felted wool art pieces, and plush toys. Additionally, a carrot element recurs 

throughout the images, sometimes as a decoration on Dora's head, and other times as an independent plush toy.", 

"image_captions": { 

 "image_1": "A Golden Retriever is lying on a sofa, wearing a white tag on its head that reads \"Miss Dora.\" Its mouth is 

open, tongue out, and it appears to be happy.", 

 "image_2": "A felted wool artwork is displayed on a table. The artwork features the head of a Golden Retriever wearing a 

carrot-shaped decoration on its head that reads \"Miss Dora.\" The artwork is framed in a brown picture frame. Next to the frame is 

a laptop computer displaying a photograph of the same Golden Retriever.", 

 "image_3": "A carrot-shaped plush toy with a cute expression, an orange body, and green leaves is being held up by a hand. 

It is suspended in a room with black and white checkered tile flooring. Furniture and decorations are visible in the background.", 

 "image_4": "A felted wool artwork is displayed on a white tablecloth. The artwork features the head of a Golden Retriever 

wearing a carrot-shaped decoration on its head that reads \"Miss Dora.\" The artwork is framed in a brown picture frame. Next to 

the frame is a pot of succulents.", 

 "image_5": "A felted wool artwork is hung on a white wall. The artwork features the head of a Golden Retriever wearing a 

carrot-shaped decoration on its head that reads \"Miss Dora.\" Below the artwork is a wooden table with framed artwork, a vase, a 

calendar, and other items." } }

Figure 5: Example of our training dataset, where the group images are captioned through
prompting our internal MLLMs.

2.4 TRAINING PROCESS

We initialize the Group Diffusion Transformers (GDTs) with weights from pre-trained text-to-
image models, such as PixArt-α Chen et al. (2023a) and Stable Diffusion 3 Peebles & Xie (2023).
Since GDTs introduce no additional parameter to the existing diffusion transformers, the pretrained
weights are fully compatible. During both pretraining and supervised fine-tuning, we uniformly
sample group sizes ranging from 1 to 4, dynamically adjusting the batch size to maintain consis-
tent GPU memory usage. This approach ensures balanced performance across different group sizes.
The model undergoes pretraining for approximately 100,000 steps, followed by fine-tuning on a cu-
rated dataset for around 5,000 steps. All training is conducted on A100 GPUs. We adopt the same
hyperparameter settings as the official models in PixArt-α and Stable Diffusion 3.
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"Help me generate a set of emojis featuring 

a playful ten-year-old girl in four different 
poses."

"Create a set of casual life photos of a dog 

and a formal portrait of the same dog 
wearing a suit."

"Please help me create an image of an 

adorable puppy, and then digitally place 
this puppy's picture onto a backpack 

design."

"Create a line drawing of an athlete in 

motion, followed by a corresponding 
realistic-style colored illustration of the 

same scene."

[Instruction]

This illustration uses warm and soft colors to showcase an innocent 

and romantic style. The center of the picture is a girl around ten years 

old, with fluffy black short hair, round eyes, and a slightly drooping 

mouth, making a frustrated expression. She is wearing a pink striped 

short-sleeved shirt and blue denim shorts, with her hands cupped 

under her chin, making a thoughtful expression.

This illustration uses colors full of childlike fun to showcase a lively 

and cute style. The center of the picture is a girl around ten years old, 

with fluffy black short hair, round eyes, and a mischievous smile on 

her lips. She is wearing a pink striped short-sleeved shirt and blue 

denim shorts, making a funny face with a mischievous expression.

This illustration uses bright and lively colors to showcase a lively and 

cute style. The center of the picture is a girl around ten years old, with 

fluffy black short hair, round eyes, and a slightly upward smile, 

revealing a playful smile. She is wearing a pink striped short-sleeved 

shirt and blue denim shorts, with her hands on her hips, her left foot 

slightly raised, showing a lively and cute posture.

This illustration uses vibrant colors and exaggerated lines to present a 

lively and playful style. The center of the picture is a girl around ten 

years old, with fluffy black short hair, round eyes, her mouth slightly 

open, making a surprised expression. She is wearing a pink striped 

short-sleeved shirt and blue denim shorts, with her hands raised above 

her head, making a surprised expression.

[Group Prompts] [Generated Images][IMGs] (optional)
MLLMs GDTs

+

Figure 7: We build a user interface that automatically converts the user instruction into group
prompts using MLLMs, which is useful in the inference stage of GDTs.

2.5 USER INTERFACE

Considering it is tedious to write a group of prompts in the inference stage, we build a user in-
terface to provide a convenient interaction with the GDTs. As illustrated in Figure 7, we follow
the pipeline of [Instruction] → [Group Prompts] → [Generated Images] for group
generation, and [IMGs] + [Instruction] → [Group Prompts] → [Generated Images]
for conditional group generation. Specifically, we leverage MLLMs to convert the user instruction
into group prompts, where the MLLM could analyze the number of group prompts and the corre-
sponding tasks. For example, if the instruction is “Draw a line sketch of a female character and the
corresponding colored photo”, the MLLM can deduce that this instruction should be transformed
into two prompts, categorizing the task as sketch coloring.

3 BENCHMARK

 Benchmark

Style manipulation

Line drawing

Coloring gray photos

Season/time/weather/decade 

Real/Cartoon

Couple profile picture

Post-photographic

Style set

ID preservation

Attributes change

Identification photo

Sticker

Portrait Collection

Local editing
Subject editing

Background replacement

Spatial perception

Room layout

Three-views

Game scene

Step by step

Story telling

Painting process

Growing process ...

Object description
Try-on

Three views

Stylized group generation

Abstract

Cyberpunk

Anime

Comics

Print style

Oil painting

Realistic

Sketch

Pixel style

Cthulhu

Font
Wordart

Text on object

Action
Action with different IDs

Different actions for the same ID

Figure 6: Overview of our benchmark, covering about 30
distinct types of generation tasks.

Given the diverse nature of vi-
sual generation tasks, evaluating the
performance of our Group Diffu-
sion Transformers (GDTs) presents
unique challenges. Therefore, we de-
sign a benchmark that spans a wide
array of tasks as shown in Figure 6.
Specifically, our benchmark consists
of over 200 instructions, each corre-
sponding to one of 30 distinct types
of visual generation tasks. This diver-
sity enables a thorough assessment
of the generalization capabilities of
GDTs across various scenarios.

This evaluation suit encompasses
tasks such as identity preserva-
tion, local editing, subject cus-
tomization, font generation, and styl-
ized group generation. Among
these coarse-grained categories, fur-

ther fine-grained tasks are expanded. For example, step-by-step generation contains subtasks like
story telling Zhou et al. (2024), painting process Song et al. (2024), and growth process. Besides,
all the textual descriptions in this benchmark are created through our user interface.
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“Generate images of the 

same woman at the ages of 
20 and 50, wearing identical 

clothing with only the facial 

features showing age-
related changes.”

“Imagine a cyberpunk-

themed artwork featuring a 
young woman. Now, visualize 

creating this piece in four 

distinct steps: begin with 
intricately outlining the 

detailed foreground, followed 
by adding the elaborate 

background with precise 

linework. Proceed to 
selectively color a few areas, 

and finally, complete the 
piece by coloring it entirely, 

ensuring a clear progression 

of time in each phase.”

“Transform this 

image of a horse into a 
zebra, while keeping 

the background 

entirely unchanged 
and preserving the 

exact posture and 
details of the animal. 

The only alteration to 

be made is adjusting 
the pattern to reflect 

the stripes 
characteristic of a 

zebra.”

[IMGs][Instruction] [Generated Images]

“Create a colored 

version of the given 
line art, with the 

requirement that the 

entire image features 
full-bodied colors 

rather than simply 
colored lines, adopting 

a vibrant and colorful 

two-dimensional 
anime style.”

(a) Group generation (b) Conditional group generation

[Instruction] [Generated Images]

+

+

Figure 8: Generated results of GDTs on our benchmark, including group generation and con-
ditional group generation.

4 RESULTS

4.1 USER STUDY

Table 1: User study on our benchmark. Human
evaluation on three questions in a five-point scale.

Models Q1 Q2 Q3

group generation
PixArt-α 3.44 3.89 3.78
Stable Diffusion 3 3.20 3.35 3.29

conditional group generation
PixArt-α 3.15 3.56 3.68
Stable Diffusion 3 3.02 3.27 3.34

We first qualitatively evaluate the generated
results of GDTs on our proposed benchmark
as shown in Figure 8. GDTs could perform
both group generation and conditional group
generation according to the user instruc-
tions. Note that the task scope of this bench-
mark is effectively limited by our imagi-
nation, but thanks to our unsupervised and
task-agnostic pretraining, GDTs can theoret-
ically be generalized to arbitrary visual gen-
eration tasks.

In our user study, we mainly adopt human ratings to assess the performance of GDTs on the bench-
mark. Three questions are included to measure the prompt following ability, content consistency
within the image group, and the overall instruction following ability, namely: Q1: Prompt follow-
ing on each image within the group: Q2: Content consistency among generated group images,
regardless of prompts, Q3: Instruction following on the generated group images. Evaluators are
asked to rate on three questions in the scale from 1 to 5, where 5 signifies perfection and 1 denotes
the lowest quality. The final evaluation score is derived from the average ratings across all tasks,
which serves as a robust indicator of the overall performance and its potential for real-world appli-
cations. The human-rated results are illustrated in Table 1, where GDTs achieve overall satisfaction
(higher than 3) on all of the three questions.

4.2 ABLATION ANALYSIS

4.2.1 METRICS

While our benchmark with over 200 instructions could well evaluate model’s capabilities on a five-
point scale, we would like to compare these ablated models in a more nuanced and quantitative
manner in our ablation experiments. Therefore, we mainly present the objective metrics like FID
and CLIP score. To be specific, we measure image fidelity by calculating FID on the validation
set using 50k images. We assess content consistency and prompt adherence within each group by
averaging CLIP similarities across every image-image and image-text pairs, respectively. In terms of
reference-based generation, we adopt the same metrics but exclude pairs that involve the reference
images themselves, as well as pairs between reference images and their corresponding texts.
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Table 2: Performance evaluation on key components of GDTs. We investigate the impacts of data
scale, group size, model design, and quality tuning on encoder-decoder and encoder-only models.

Settings
PixArt-α (Encoder-Decoder) Stable Diffusion 3 (Encoder-Only)

FID-50k
Content

Consistency
Prompt

Adherence FID-50k
Content

Consistency
Prompt

Adherence

Data Scaling
5k groups 8.40 0.747 0.291 8.95 0.740 0.298
50k groups 12.06 0.767 0.293 10.92 0.760 0.302
500k groups 15.91 0.778 0.300 11.30 0.761 0.305

Group Size
groupsize = 2 15.69 0.784 0.299 12.37 0.763 0.301
groupsize = 4 18.19 0.761 0.291 13.85 0.739 0.298
groupsize = 8 48.26 0.701 0.252 18.28 0.701 0.290

Inpainting
SDEdit 15.71 0.702 0.299 12.15 0.751 0.303
trainable 10.91 0.725 0.287 10.94 0.755 0.298

Quality Tuning
before 15.91 0.778 0.300 11.30 0.761 0.305
after 12.53 0.792 0.298 10.03 0.781 0.303

4.2.2 DATA SCALING

Without the demand of task-specific supervision, it is quite easy to acquire a large abundance of
group data from the Internet. We scale the training data to 5k, 50k, and 500k groups, to explore the
impact of data scale in GDTs. As illustrated in Table 2, with the increase of the amount of training
data, GDTs behave increasingly better in content consistency and prompt adherence. Interestingly,
we find that FID would become lower when training on less data, which may be that it is easier to
overfit to small datasets. We plan to further scale up our data to the level of hundreds of millions of
groups in the future, in order to fully leverage the potential of GDTs.

4.2.3 GROUP SIZE

We gradually increase the upper limit of group size to 2, 4, and 8, and perform inference based
on that limit. Note that doubling the group size will, in turn, double the sequence length in self-
attention, leading to a corresponding increase in computational complexity, so we cap the maximum
group size at 8 in our ablation. From the ablated results in Table 2, we find that larger group sizes
lead to a more pronounced performance decline in image quality, content consistency, and prompt
adherence. The reason may be that it is more difficult to learn the complex relationships across a
large group of images. Besides, the scarcity of data of large group sizes prevents the model from
being adequately trained. In the future, we would greatly scale our training data.

4.2.4 SDEDIT OR INPAINTING

When conditioned on a subset of the group data, using methods like SDEdit Meng et al. (2021)
or trainable inpainting Xie et al. (2023); Xu et al. (2024), GDTs can be instructed to generate the
remaining data of the group. Specifically, SDEdit is a training-free technique which provides the
reference images that are added with the same noise step as the generated images during the de-
noising stage. In contrast, trainable inpainting concatenates the reference image to the noised one in
channel dimension, allowing the model to “copy” the reference images and generate the remaining
ones. In our ablation study, as illustrated in Table 2, it is observed that trainable inpainting performs
better in image quality and content consistency, while the training-free SDEdit is good at prompt
adherence. We adopt the model design of trainable inpainting in our GDTs.

4.2.5 QUALITY TUNING

While quality tuning is a common practice in visual generation models to enhance aesthetic appeal,
we investigate its impact under the paradigm of group generation. As illustrated in Table 2, after the
supervised fine-tuning on a small subset of high-quality image groups, GDTs exhibit significantly
better image quality. We also find that quality tuning helps generating image groups with higher
content consistency, while barely compromising the adherence to textual descriptions.
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5 RELATED WORK

5.1 TEXT-TO-IMAGE GENERATION

The emergence of DDPM Ho et al. (2020) has catalyzed rapid advancements in text-to-image
(T2I) generation. Earlier frameworks focused on T2I generation in pixel space, exemplified by
GLIDE Nichol et al. (2022) and Imagen Saharia et al. (2022). In contrast, Stable Diffusion Rom-
bach et al. (2022) introduced latent space for T2I generation, while DALLE-2 (unCLIP)Ramesh
et al. (2022a) expanded this to a multimodal latent space. EMUDai et al. (2023) demonstrated
that supervised fine-tuning on a small set of appealing images can significantly enhance genera-
tion quality. Unlike U-Net architectures, several approaches, including DiT Peebles & Xie (2023),
Pixart Chen et al. (2023a), HunyuanDiT Li et al. (2024b), and SD3 Esser et al. (2024b), adopt
transformers as their backbone.

5.2 CONTROLLABLE TEXT-TO-IMAGE GENERATION

Personalization. Personalization in T2I generation Cui et al. (2024); Salehi et al. (2024); Ham et al.
(2024); Wang et al. (2024) aims to capture concepts like subject Li et al. (2023a); Kumari et al.
(2023), person Xiao et al. (2023); Li et al. (2024a); Chen et al. (2024b; 2023b), style Liu et al.
(2023a); Sohn et al. (2023), and image Ye et al. (2023b); Xu et al. (2023); Ramesh et al. (2022b).
Techniques like Textual Inversion Gal et al. (2022) and DreamBooth Ruiz et al. (2022) facilitate
concept embedding. Subject-driven methods Valevski et al. (2023); Chen et al. (2024b) use face
recognition models for personalization.

Spatial Control. Spatial control in T2I generation Li et al. (2023b) is crucial for representing image
structure. ControlNet Zhang et al. (2023) and UniControl Qin et al. (2023) are examples of models
that incorporate positional signals for spatial control.

Advanced Controllable Text-to-Image Generation. New directions in controllable T2I generation
include Attend-and-Excite Chefer et al. (2023), Composer Huang et al. (2023), Cocktail Hu et al.
(2023), Cones Liu et al. (2023c), Universal Guidance Bansal et al. (2023), EMU2 Sun et al. (2024),
and FreeDom Yu et al. (2023), which aim to enhance text alignment and achieve universal control.

5.3 GENERALIZATION ABILITY OF GENERATIVE MODELS

Beyond fundamental generative capabilities, recent approaches are investigating the generalization
and versatility of models. ControlNeXt Peng et al. (2024) is designed to support both images and
videos while incorporating diverse forms of control information. EMU2 Sun et al. (2024) demon-
strates task-agnostic in-context learning capabilities. MT-Diffusion Chen et al. (2024a) achieves
multi-modality diffusion through multi-task learning.

In contrast to the aforementioned methods, Group Diffusion Transformers aim to provide a general-
purpose visual generation framework with the following capabilities: 1) no need for task-specific
pretraining or finetuning; 2) generating multiple images in parallel; 3) conditioning on text or im-
ages; and 4) enabling zero-shot task generalization.

6 CONCLUSION AND LIMITATIONS

We reformulate most visual generation tasks into a group generation problem, thereby introducing
a unified framework named Group Diffusion Transformers (GDTs). We present that with scalable,
unsupervised, and task-agnostic pretraining on group data, GDTs could achieve competitive zero-
shot performance on a vast array of visual generation tasks. Our results demonstrate the potential of
GDTs as scalable, general-purpose visual generation systems.

Moreoever, we point out that there is still a discrepancy in image quality between GDTs and the
state-of-the-art text-to-image models. The amount of group data for pretraining is also not sufficient
yet, which has not fully unleashed the model’s capabilities. We are optimistic that with an enlarged
group dataset, we can further optimize the model’s performance and reduce the discrepancy. In the
future, we also plan to extend the time dimension of GDTs to enable multi-shot video generation,
which can be naturally expressed under our group generation framework.
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Hernan Carrillo, Michaël Clément, Aurélie Bugeau, and Edgar Simo-Serra. Diffusart: Enhancing
line art colorization with conditional diffusion models. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 3486–3490, 2023.

Hila Chefer, Yuval Alaluf, Yael Vinker, Lior Wolf, and Daniel Cohen-Or. Attend-and-excite:
Attention-based semantic guidance for text-to-image diffusion models. ACM Transactions on
Graphics, 42:1–10, 07 2023.

Changyou Chen, Han Ding, Bunyamin Sisman, Yi Xu, Ouye Xie, Benjamin Z. Yao, Son Dinh
Tran, and Belinda Zeng. Diffusion models for multi-task generative modeling. In The Twelfth
International Conference on Learning Representations, 2024a. URL https://openreview.
net/forum?id=cbv0sBIZh9.

Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang,
James T. Kwok, Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-α: Fast training of diffusion
transformer for photorealistic text-to-image synthesis. ArXiv, abs/2310.00426, 2023a. URL
https://api.semanticscholar.org/CorpusID:263334265.

Li Chen, Mengyi Zhao, Yiheng Liu, Mingxu Ding, Yangyang Song, Shizun Wang, Xu Wang, Hao
Yang, Jing Liu, Kang Du, et al. Photoverse: Tuning-free image customization with text-to-image
diffusion models, 2023b.

Zhuowei Chen, Shancheng Fang, Wei Liu, Qian He, Mengqi Huang, and Zhendong Mao. Dreami-
dentity: Enhanced editability for efficient face-identity preserved image generation. Proceedings
of the AAAI Conference on Artificial Intelligence, 38(2):1281–1289, Mar. 2024b.

Siying Cui, Jia Guo, Xiang An, Jiankang Deng, Yongle Zhao, Xinyu Wei, and Ziyong Feng.
Idadapter: Learning mixed features for tuning-free personalization of text-to-image models, 2024.
URL https://arxiv.org/abs/2403.13535.

Xiaoliang Dai, Ji Hou, Chih-Yao Ma, Sam Tsai, Jialiang Wang, Rui Wang, Peizhao Zhang, Simon
Vandenhende, Xiaofang Wang, Abhimanyu Dubey, Matthew Yu, Abhishek Kadian, Filip Rade-
novic, Dhruv Mahajan, Kunpeng Li, Yue Zhao, Vladan Petrovic, Mitesh Kumar Singh, Simran
Motwani, Yi Wen, Yiwen Song, Roshan Sumbaly, Vignesh Ramanathan, Zijian He, Peter Va-
jda, and Devi Parikh. Emu: Enhancing image generation models using photogenic needles in a
haystack, 2023. URL https://arxiv.org/abs/2309.15807.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Patrick Esser, Sumith Kulal, A. Blattmann, Rahim Entezari, Jonas Muller, Harry Saini, Yam Levi,
Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English, Kyle
Lacey, Alex Goodwin, Yannik Marek, and Robin Rombach. Scaling rectified flow transformers
for high-resolution image synthesis. ArXiv, abs/2403.03206, 2024a. URL https://api.
semanticscholar.org/CorpusID:268247980.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion En-
glish, Kyle Lacey, Alex Goodwin, Yannik Marek, and Robin Rombach. Scaling rectified flow
transformers for high-resolution image synthesis, 2024b. URL https://arxiv.org/abs/
2403.03206.

11

https://arxiv.org/abs/2302.07121
https://arxiv.org/abs/2302.07121
https://openreview.net/forum?id=cbv0sBIZh9
https://openreview.net/forum?id=cbv0sBIZh9
https://api.semanticscholar.org/CorpusID:263334265
https://arxiv.org/abs/2403.13535
https://arxiv.org/abs/2309.15807
https://api.semanticscholar.org/CorpusID:268247980
https://api.semanticscholar.org/CorpusID:268247980
https://arxiv.org/abs/2403.03206
https://arxiv.org/abs/2403.03206


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H. Bermano, Gal Chechik, and Daniel
Cohen-Or. An image is worth one word: Personalizing text-to-image generation using textual
inversion, 2022. URL https://arxiv.org/abs/2208.01618.

Giorgio Giannone, Didrik Nielsen, and Ole Winther. Few-shot diffusion models. arXiv preprint
arXiv:2205.15463, 2022.

Cusuh Ham, Matthew Fisher, James Hays, Nicholas Kolkin, Yuchen Liu, Richard Zhang, and Tobias
Hinz. Personalized residuals for concept-driven text-to-image generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8186–8195,
June 2024.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Infor-
mation Processing Systems, volume 33, pp. 6840–6851, 2020.

Ming-Yang Ho, Che-Ming Wu, Min-Sheng Wu, and Yufeng Jane Tseng. Every pixel has its mo-
ments: Ultra-high-resolution unpaired image-to-image translation via dense normalization. arXiv
preprint arXiv:2407.04245, 2024.

Minghui Hu, Jianbin Zheng, Daqing Liu, Chuanxia Zheng, Chaoyue Wang, Dacheng Tao, and Tat-
Jen Cham. Cocktail: Mixing multi-modality controls for text-conditional image generation. arXiv,
2023.

Lianghua Huang, Di Chen, Yu Liu, Yujun Shen, Deli Zhao, and Jingren Zhou. Composer: Creative
and controllable image synthesis with composable conditions. arXiv preprint arXiv:2302.09778,
2023.

Nisha Huang, Yuxin Zhang, Fan Tang, Chongyang Ma, Haibin Huang, Weiming Dong, and Chang-
sheng Xu. Diffstyler: Controllable dual diffusion for text-driven image stylization. IEEE Trans-
actions on Neural Networks and Learning Systems, 2024.

Ze Jin and Zorina Song. Generating coherent comic with rich story using chatgpt and stable diffu-
sion. arXiv preprint arXiv:2305.11067, 2023.

Maxwell Jones, Sheng-Yu Wang, Nupur Kumari, David Bau, and Jun-Yan Zhu. Customizing text-
to-image models with a single image pair. arXiv preprint arXiv:2405.01536, 2024.

Ziyi Kou, Shichao Pei, Yijun Tian, and Xiangliang Zhang. Character as pixels: A controllable
prompt adversarial attacking framework for black-box text guided image generation models. In
IJCAI, pp. 983–990, 2023.

Manoj Kumar, Neil Houlsby, and Emiel Hoogeboom. Semantica: An adaptable image-conditioned
diffusion model. arXiv preprint arXiv:2405.14857, 2024.

Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, and Jun-Yan Zhu. Multi-concept
customization of text-to-image diffusion. 2023.

Black Forest Labs. Flux.1, 2024. URL https://github.com/black-forest-labs/
flux.

Dongxu Li, Junnan Li, and Steven Hoi. BLIP-diffusion: Pre-trained subject representation for
controllable text-to-image generation and editing. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023a. URL https://openreview.net/forum?id=
g6We1SwaY9.

Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei Yang, Jianfeng Gao, Chunyuan Li,
and Yong Jae Lee. Gligen: Open-set grounded text-to-image generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 22511–22521,
June 2023b.

Zhen Li, Mingdeng Cao, Xintao Wang, Zhongang Qi, Ming-Ming Cheng, and Ying Shan. Pho-
tomaker: Customizing realistic human photos via stacked id embedding. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2024a.

12

https://arxiv.org/abs/2208.01618
https://github.com/black-forest-labs/flux
https://github.com/black-forest-labs/flux
https://openreview.net/forum?id=g6We1SwaY9
https://openreview.net/forum?id=g6We1SwaY9


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zhimin Li, Jianwei Zhang, Qin Lin, Jiangfeng Xiong, Yanxin Long, Xinchi Deng, Yingfang Zhang,
Xingchao Liu, Minbin Huang, Zedong Xiao, Dayou Chen, Jiajun He, Jiahao Li, Wenyue Li, Chen
Zhang, Rongwei Quan, Jianxiang Lu, Jiabin Huang, Xiaoyan Yuan, Xiaoxiao Zheng, Yixuan Li,
Jihong Zhang, Chao Zhang, Meng Chen, Jie Liu, Zheng Fang, Weiyan Wang, Jinbao Xue, Yangyu
Tao, Jianchen Zhu, Kai Liu, Sihuan Lin, Yifu Sun, Yun Li, Dongdong Wang, Mingtao Chen,
Zhichao Hu, Xiao Xiao, Yan Chen, Yuhong Liu, Wei Liu, Di Wang, Yong Yang, Jie Jiang, and
Qinglin Lu. Hunyuan-dit: A powerful multi-resolution diffusion transformer with fine-grained
chinese understanding, 2024b. URL https://arxiv.org/abs/2405.08748.

Zhexin Liang, Zhaochen Li, Shangchen Zhou, Chongyi Li, and Chen Change Loy. Control color:
Multimodal diffusion-based interactive image colorization. arXiv preprint arXiv:2402.10855,
2024.

Gongye Liu, Menghan Xia, Yong Zhang, Haoxin Chen, Jinbo Xing, Xintao Wang, Yujiu Yang, and
Ying Shan. Stylecrafter: Enhancing stylized text-to-video generation with style adapter. arXiv
preprint arXiv:2312.00330, 2023a.

Yuan Liu, Cheng Lin, Zijiao Zeng, Xiaoxiao Long, Lingjie Liu, Taku Komura, and Wenping Wang.
Syncdreamer: Generating multiview-consistent images from a single-view image. arXiv preprint
arXiv:2309.03453, 2023b.

Zhiheng Liu, Ruili Feng, Kai Zhu, Yifei Zhang, Kecheng Zheng, Yu Liu, Deli Zhao, Jingren
Zhou, and Yang Cao. Cones: Concept neurons in diffusion models for customized gener-
ation. In International Conference on Machine Learning, 2023c. URL https://api.
semanticscholar.org/CorpusID:257427549.

Yanzuo Lu, Manlin Zhang, Andy J Ma, Xiaohua Xie, and Jianhuang Lai. Coarse-to-fine latent
diffusion for pose-guided person image synthesis. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 6420–6429, 2024.

Simian Luo, Yiqin Tan, Suraj Patil, Daniel Gu, Patrick von Platen, Apolinário Passos, Longbo
Huang, Jian Li, and Hang Zhao. Lcm-lora: A universal stable-diffusion acceleration module.
arXiv preprint arXiv:2311.05556, 2023.

Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
Sdedit: Guided image synthesis and editing with stochastic differential equations. In International
Conference on Learning Representations, 2021. URL https://api.semanticscholar.
org/CorpusID:245704504.

Paritosh Mittal, Kunal Aggarwal, Pragya Paramita Sahu, Vishal Vatsalya, Soumyajit Mitra, Vikrant
Singh, Viswanath Veera, and Shankar M Venkatesan. Photo-realistic emoticon generation us-
ing multi-modal input. In Proceedings of the 25th International Conference on Intelligent User
Interfaces, pp. 254–258, 2020.

Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, and Ying Shan.
T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion
models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 4296–
4304, 2024.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models, 2022.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4195–4205, October
2023.

13

https://arxiv.org/abs/2405.08748
https://api.semanticscholar.org/CorpusID:257427549
https://api.semanticscholar.org/CorpusID:257427549
https://api.semanticscholar.org/CorpusID:245704504
https://api.semanticscholar.org/CorpusID:245704504


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Bohao Peng, Jian Wang, Yuechen Zhang, Wenbo Li, Ming-Chang Yang, and Jiaya Jia. Controlnext:
Powerful and efficient control for image and video generation. arXiv preprint arXiv:2408.06070,
2024.

Can Qin, Shu Zhang, Ning Yu, Yihao Feng, Xinyi Yang, Yingbo Zhou, Huan Wang, Juan Car-
los Niebles, Caiming Xiong, Silvio Savarese, et al. Unicontrol: A unified diffusion model for
controllable visual generation in the wild. arXiv preprint arXiv:2305.11147, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. ArXiv, abs/2204.06125, 2022a. URL https:
//api.semanticscholar.org/CorpusID:248097655.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents, 2022b. URL https://arxiv.org/abs/
2204.06125.

Benjamin Rodatz, Ian Fan, Tuomas Laakkonen, Neil John Ortega, Thomas Hoffman, and Vin-
cent Wang-Mascianica. A pattern language for machine learning tasks. arXiv preprint
arXiv:2407.02424, 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 10684–10695, June 2022.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kam-
yar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim Sal-
imans, Jonathan Ho, David J Fleet, and Mohammad Norouzi. Photorealistic text-to-image diffu-
sion models with deep language understanding, 2022.

Sogand Salehi, Mahdi Shafiei, Teresa Yeo, Roman Bachmann, and Amir Zamir. ViPer: Visual
personalization of generative models via individual preference learning. ECCV, 2024.

Fei Shen, Hu Ye, Jun Zhang, Cong Wang, Xiao Han, and Wei Yang. Advancing pose-guided image
synthesis with progressive conditional diffusion models. arXiv preprint arXiv:2310.06313, 2023.

Ruoxi Shi, Hansheng Chen, Zhuoyang Zhang, Minghua Liu, Chao Xu, Xinyue Wei, Linghao Chen,
Chong Zeng, and Hao Su. Zero123++: a single image to consistent multi-view diffusion base
model. arXiv preprint arXiv:2310.15110, 2023.

James Seale Smith, Yen-Chang Hsu, Lingyu Zhang, Ting Hua, Zsolt Kira, Yilin Shen, and Hongxia
Jin. Continual diffusion: Continual customization of text-to-image diffusion with c-lora. arXiv
preprint arXiv:2304.06027, 2023.

Kihyuk Sohn, Nataniel Ruiz, Kimin Lee, Daniel Castro Chin, Irina Blok, Huiwen Chang, Jarred
Barber, Lu Jiang, Glenn Entis, Yuanzhen Li, et al. Styledrop: Text-to-image generation in any
style. arXiv preprint arXiv:2306.00983, 2023.

Yiren Song, Shijie Huang, Chen Yao, Xiaojun Ye, Hai Ci, Jiaming Liu, Yuxuan Zhang, and
Mike Zheng Shou. Processpainter: Learn painting process from sequence data, 2024. URL
https://arxiv.org/abs/2406.06062.

Quan Sun, Yufeng Cui, Xiaosong Zhang, Fan Zhang, Qiying Yu, Zhengxiong Luo, Yueze Wang,
Yongming Rao, Jingjing Liu, Tiejun Huang, and Xinlong Wang. Generative multimodal models
are in-context learners, 2024.

14

https://api.semanticscholar.org/CorpusID:248097655
https://api.semanticscholar.org/CorpusID:248097655
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2406.06062


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Dani Valevski, Danny Lumen, Yossi Matias, and Yaniv Leviathan. Face0: Instantaneously condi-
tioning a text-to-image model on a face. In SIGGRAPH Asia 2023 Conference Papers, 2023.

Andrey Voynov, Kfir Aberman, and Daniel Cohen-Or. Sketch-guided text-to-image diffusion mod-
els. In ACM SIGGRAPH 2023 Conference Proceedings, pp. 1–11, 2023.

Chi Wang, Min Zhou, Tiezheng Ge, Yuning Jiang, Hujun Bao, and Weiwei Xu. Cf-font: Content
fusion for few-shot font generation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 1858–1867, 2023a.

Dejiang Wang, Zhuoran Zhai, Ngai Cheong, and Li Peng. Script-generated picture book technology
based on large language models and aigc. In Proceedings of the 7th International Conference on
Digital Technology in Education, pp. 104–108, 2023b.

Qiang Wang, Di Kong, Fengyin Lin, and Yonggang Qi. Diffsketching: Sketch control image syn-
thesis with diffusion models. arXiv preprint arXiv:2305.18812, 2023c.

Qixun Wang, Xu Bai, Haofan Wang, Zekui Qin, and Anthony Chen. Instantid: Zero-shot identity-
preserving generation in seconds. arXiv preprint arXiv:2401.07519, 2024.

Yuxiang Wei, Yabo Zhang, Zhilong Ji, Jinfeng Bai, Lei Zhang, and Wangmeng Zuo. Elite: Encoding
visual concepts into textual embeddings for customized text-to-image generation. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 15943–15953, 2023.

Guangxuan Xiao, Tianwei Yin, William T. Freeman, Frédo Durand, and Song Han. Fastcomposer:
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Figure 1: Detailed results of Group Diffusion Transformers.
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Figure 2: Detailed results of Group Diffusion Transformers.
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Figure 3: Detailed results of Group Diffusion Transformers.
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Figure 4: Detailed results of Group Diffusion Transformers.
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Figure 5: Detailed results of Group Diffusion Transformers.
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Figure 6: Detailed results of Group Diffusion Transformers.
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Figure 7: Detailed results of Group Diffusion Transformers.
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