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Semantics-Aware Image Aesthetics Assessment using Tag
Matching and Contrastive Ranking

Anonymous Authors

ABSTRACT
The perception of image aesthetics is built upon the understand-
ing of semantic content. However, how to evaluate the aesthetic
quality of images with diversified semantic backgrounds remains
challenging in image aesthetics assessment (IAA). To address the
dilemma, this paper presents a semantics-aware image aesthetics
assessment approach, which first analyzes the semantic content of
images and then models the aesthetic distinctions among images
from two perspectives, i.e., aesthetic attribute and aesthetic level.
Concretely, we propose two strategies, dubbed tag matching and
contrastive ranking, to extract knowledge pertaining to image aes-
thetics. The tag matching identifies the semantic category and the
dominant aesthetic attributes based on predefined tag libraries. The
contrastive ranking is designed to uncover the comparative rela-
tionships among images with different aesthetic levels but similar
semantic backgrounds. In the process of contrastive ranking, the
impact of long-tailed distribution of aesthetic data is also considered
by balanced sampling and traversal contrastive learning. Extensive
experiments and comparisons on three benchmark IAA databases
demonstrate the superior performance of the proposed model in
terms of both prediction accuracy and alleviating long-tailed effect.
The code of the proposed method will be public.

CCS CONCEPTS
• Computing methodologies→ Image representations.

KEYWORDS
Image aesthetics assessment, Semantic and aesthetic perception,
CLIP, Contrastive learning

1 INTRODUCTION
The rise of mobile Internet and the widespread popularity of social
media platforms, such as Instagram and WeChat, have transformed
the way we share and consume images. In this era, users have be-
come increasingly focused on the aesthetic appeal of images. In
view of this, image aesthetics assessment (IAA) has witnessed a
notable surge in research interest in recent years, attracting a grow-
ing number of scholars dedicated to investigating its multifaceted
dimensions. IAA approaches have extensive applications [5], such
as image recommendation [39], image enhancement [8], and image
retrieval [44], etc.
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Figure 1: Illustration of our method. Modeling aesthetic dis-
tinctions among images with similar semantic backgrounds
from two aspects: aesthetic attribute and aesthetic level.

In the past few years, a proliferation of novel IAA models have
been reported in the literature. Early IAA models primarily used
hand-crafted features and simple machine learning methods to
classify images into high and low aesthetic categories, which were
inspired by people’s intuitive judgments of image aesthetics and
widely accepted photography rules [4, 19]. With the boom of deep
learning, the mainstream methods for aesthetics assessment started
leveraging Convolutional Neural Networks (CNN) to unearth com-
mon aesthetic criteria embedded within large datasets. Accordingly,
the IAA has been refined into three specific tasks: aesthetic binary
classification [22, 41], aesthetic score regression [21, 24], and aes-
thetic distribution prediction [3, 40]. More recently, the emergence
of large language models like GPT [37] has fueled the rapid devel-
opment of the multimodal vision field. The IAA community has
also made attempts on investigating the subsidiary effect of the
language modality [7, 10, 18, 38].

The perception of image aesthetics is built upon the understand-
ing of semantic content. Numerous existing IAA methods have
proven the advantages of integrating semantic content into aes-
thetic perceptionmodeling. There are twomain types of integration:
one involves incorporating semantic categories as additional labels
for training in a multi-task manner [26, 41], while the other directly
utilizes semantic features (e.g., features from pre-trained models)
as the foundation for learning aesthetic features [6, 13]. These
approaches are designed based on an assumption that aesthetic
perception can be more easily achieved among images with similar
semantic contents. However, there is no explicit comparison made
among these images, so the model may not effectively discern and
perceive aesthetic distinctions within the same semantic context.
The aesthetic distinctions among images are typically determined

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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by two key factors. Firstly, the inherent aesthetic attributes of im-
ages, encompassing elements like composition (e.g., balanced or
unfocused) and lighting (e.g., exposure or evenness), play a pivotal
role in shaping its overall aesthetic quality. Secondly, the distinc-
tions are directly reflected in the distribution of images with similar
semantic backgrounds but different aesthetic levels. Analyzing the
comparative relationships among these images helps to evaluate
how well each image aligns with the aesthetic expectations and
preferences associated with its semantic background.

Inspired by the above facts, this paper presents a semantics-
aware image aesthetics assessment approach, which first analyzes
the semantic content of images and then models aesthetic distinc-
tions from two aspects: aesthetic attribute and aesthetic level, as il-
lustrated in Figure 1. Concretely, we propose two strategies, dubbed
tag matching and contrastive ranking, to extract knowledge per-
taining to image aesthetics. In view of the differences in the lexi-
cal representation of semantic and aesthetic attribute in aesthetic
description, two lexical tag libraries for semantic recognition and
aesthetic attribute analysis are built. The tag matching then extracts
similarity matching relationship between individual images and
the predefined semantic and attribute tag libraries. The contrastive
ranking is designed to uncover the comparative relationships be-
tween image sets with different aesthetic levels within specific
semantic backgrounds.

The contributions of this work are threefold:
• We propose a semantics-aware image aesthetics assessment
approach using tagmatching and contrastive ranking (TMCR),
which first analyzes the semantic content of images and
then models aesthetic distinctions from two perspectives:
aesthetic attributes and aesthetic levels.
• We design a novel contrastive ranking method to investigate
the information about aesthetic levels from images under
similar semantics, which extracts both intra-level aesthetic
criteria and inter-level aesthetic ordering. Moreover, the
problem of the long-tailed distribution is alleviated through
balanced sampling and traversal contrastive learning.
• We conducted extensive experiments on three benchmark
databases for image aesthetics assessment, including AVA,
AADB, and PARA. The experimental results demonstrate
that the proposed TMCR model outperforms the state-of-
the-art methods and exhibits better long-tailed prediction
capability.

2 RELATEDWORK
2.1 Image Aesthetics Assessment
Early IAAmodels utilized hand-crafted features and simplemachine
learning to classify images into high and low aesthetic categories,
based on photography rules. Datta et al. [4] extracted nine features
from images, such as exposure of light and colorfulness, compo-
sition of regions and depth-of-field, based on which the Support
Vector Machine (SVM) is utilized to build the aesthetic classification
model. Ke et al. [19] employed perceptual features to classify high
and low aesthetics images, including spatial distribution of edges,
color distribution, and hue count, etc. Although these features have
clear physical interpretation, it is challenging to comprehensively
capture the aesthetic characteristics of images, due to the inherent

abstraction of image aesthetics and the limited understanding of
the underlying mechanisms of aesthetics.

With the rise of deep learning, IAA methods began to adopt
deep neural networks to uncover the common aesthetic criteria
present in large datasets. Meantime, the IAA has been refined into
three specific tasks: aesthetic binary classification, aesthetic score
regression, and aesthetic distribution prediction. Murray et al. [33]
first established a large-scale database for aesthetic visual analysis,
called AVA. Recognizing the importance of both the global and
local characteristics of images in aesthetic assessment, several ap-
proaches based on patch-level analysis have been developed [30, 31].
Lu et al. [29] proposed the RAPID algorithm, which leverages a
double-column convolutional network to separately handle the
global and local views of images for aesthetic classification. There
are also some theme-oriented IAA networks, motivated by the fact
that perception of image aesthetics is built upon the semantic un-
derstanding of content [21, 41]. He et al. [6] presented a network
that combines aesthetic attributes and color space to jointly predict
aesthetic distributions. Li et al. [26] proposed a theme-aware vi-
sual attribute reasoning framework, which utilizes a bilevel Graph
Convolutional Network (GCN) to simulate the human aesthetic per-
ception process. More recently, Jia et al. [13] designed an effective
full-resolution technique to perform the IAA task based on theme
information.

Currently, with the rise of multimodal learning, aesthetic-related
information from the language modality has been introduced into
IAA. Large pre-trained vision-language models, like CLIP [36], have
been proved to be more suitable for image aesthetics modeling, be-
cause the language modality contains rich semantics and aesthetics
clues [7]. Zhou et al. [52] constructed the AVA-Comments database,
the first multimodal database for IAA that combines visual and
textual information. They also proposed a multimodal IAA model
based on Deep Boltzmann Machine (DBM) for binary aesthetic clas-
sification. Ke et al. [18] pretrained an image-text encoder-decoder
model using contrastive and generative objectives to learn multi-
modal aesthetic representations from user comments. Sheng et al.
[38] proposed an attribute-aware contrastive learning strategy to
mitigate the domain shift from the general visual domain to the
aesthetics domain, improving CLIP’s performance on the IAA task.
These studies have provided compelling evidence that the integra-
tion of textual information can greatly enhance the representation
capability of IAA models.

2.2 Contrastive Learning
Contrastive learning [23] is a representation learning technique
that compares similar and dissimilar data pairs to learn meaningful
patterns and discriminative information. It encourages the model
to group similar instances together and separate dissimilar ones, re-
sulting in effective feature representations. Wu et al. [43] proposed
‘Instance Discrimination’, which treats two augmented views of an
image as a positive pair and other images as negative pairs, aiming
to train the model to learn instance-specific features invariant to
different image enhancements. Li et al. [25] introduced a method
that combines prototypical networks with contrastive learning for
unsupervised representation learning. By integrating prototypical
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Figure 2: The overall framework of the proposed TMCR model.

information, the model learns more discriminative and semanti-
cally meaningful representations, leading to improved performance
in downstream tasks. Contrastive learning has been successfully
applied in various domains, allowing models to capture and utilize
valuable insights from the data [47, 49].

In the area of quality perception, Chen et al. [2] applied con-
trastive learning to video quality assessment, using distortion types
as positive and negative selection criteria to learn effective rep-
resentations for video quality score regression. Zhao et al. [50]
developed diverse degradation strategies to generate distorted im-
ages and utilized content-aware and quality-aware comparisons to
derive representations related to image quality. Contrastive learning
also has great potential for addressing long-tailed problems. Kang
et al. [16] discovered that the self-supervised contrastive learning
methods perform stably well even when the datasets are heav-
ily imbalanced. They further introduced a K-positive contrastive
learning that effectively combines the advantages of supervised
learning and contrastive learning to achieve balanced and discrim-
inative representations. Zhu et al. [53] introduced the Balanced
Contrastive Learning (BCL) method, which utilizes class-averaging
and class-complement strategies to address the optimization bias
in Supervised Contrastive Learning (SCL) [20] and enhance the
performance of long-tailed visual recognition tasks. These studies
provide insights into the investigation of contrastive learning to
explore the aesthetic comparative relationship and mitigate the
impacts of the long-tailed distribution of aesthetic data.

3 PROPOSED METHOD
3.1 Problem Formulation
Image aesthetics assessment (IAA) aims at mining the general pub-
lic’s criteria of aesthetics from large-scale image aesthetics data,
and then generating aesthetic evaluation 𝑦 in line with the ground-
truth aesthetic quality of a given image 𝐼 , which can be formulated

as:
𝑦 = M (𝐼 |𝑨𝒆𝒔𝑮 ←− 𝜃 ) , (1)

where M (·) represents the established IAA model with 𝜃 as the
parameter, 𝑨𝒆𝒔𝑮 refers to the generic aesthetics consensus learned
from large-scale aesthetic annotation data.

The perception of aesthetics is grounded in semantic analysis,
and previous studies have shown the benefits of utilizing semantic
analysis for modeling aesthetic perception [6, 11, 13, 21, 26, 41]. In
this study, we specifically examine the connection and integration
of semantic analysis to aesthetic attributes and levels. This is accom-
plished by the proposed tag matching (TM) and contrastive ranking
(CR) strategies. By incorporating these two relationships, we train
the IAA model to generate aesthetic predictions. The whole process
can be expressed as:

𝑦 = M

(
𝐼 |𝑨𝒆𝒔𝒂𝒕𝒕𝒓𝒔𝒆𝒎 ←− 𝜃𝑇𝑀 ,𝑨𝒆𝒔𝒍𝒆𝒗𝒆𝒍𝒔𝒆𝒎 ←− 𝜃𝐶𝑅

)
, (2)

where, 𝑨𝒆𝒔𝒂𝒕𝒕𝒓𝒔𝒆𝒎 and 𝑨𝒆𝒔𝒍𝒆𝒗𝒆𝒍𝒔𝒆𝒎 represent the prior knowledge related
to aesthetic perceptionmodeling, obtained fromparameters𝜃𝑇𝑀and
𝜃𝐶𝑅 , respectively. Figure 2 shows the overall framework of the pro-
posed TMCR model.

3.2 Tag Matching
When describing an image in aesthetic perception, aesthetic descrip-
tion and semantic description are often intertwined, and aesthetic
description cannot exist independently from semantics. Addition-
ally, words describing semantics are often associated with objects
or themes, while words describing aesthetics are often related to
attributes such as clarity, composition, and feeling. Recently, Zhong
et al. [51] conducted manual selection of object-related words and
aesthetics-related words to calculate the Aesthetic Relevance Score
(ARS) of a sentence, which has contributed to the development
of aesthetics assessment and aesthetics captioning. Building upon
the observations and previous studies, we construct two lexical
tag libraries, 𝑇𝑎𝑔𝑀𝑠𝑒𝑚 and 𝑇𝑎𝑔𝑁𝑎𝑡𝑡𝑟 , for semantic recognition and
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Figure 3: The process of constructing semantic and attribute
tag libraries.

aesthetic attribute analysis. These libraries are built using existing
multi-modal aesthetics databases, including DPC2022 [51], which
is currently one of the largest datasets of aesthetic comments, and
EPAD [12], which contains high-quality aesthetic comments from
experts. Specifically, we utilize GPT4 and manual filtering to create
these tag libraries, and the process is shown in Figure 3. Finally, we
obtain 2145 semantic recognition tags and 1659 attribute analysis
tags.

Next, we employ the multimodal pretrained model CLIP to iden-
tify the semantic content and aesthetic attributes of an image. Ini-
tially, the textual tags are converted into deep feature represen-
tations using the text encoder 𝐸𝑇 of CLIP, which is expressed as
follows:

F𝒎
𝒔𝒆𝒎 = 𝐸𝑇

(
𝑇𝑚
𝑠𝑒𝑚

)
,𝑇𝑚
𝑠𝑒𝑚 ∈ 𝑇𝑎𝑔𝑀𝑠𝑒𝑚, (3)

F𝒏
𝒂𝒕𝒕𝒓 = 𝐸𝑇

(
𝑇𝑛
𝑎𝑡𝑡𝑟

)
,𝑇𝑛
𝑎𝑡𝑡𝑟 ∈ 𝑇𝑎𝑔𝑁𝑎𝑡𝑡𝑟 , (4)

where F𝒎
𝒔𝒆𝒎 and F𝒏

𝒂𝒕𝒕𝒓 represent the transformed semantic tag
feature and attribute tag feature, respectively. Given an image 𝐼 ,
cosine similarity is utilized to establish the correlation between the
image and the two tag libraries:

𝑺 𝒊𝒎𝑴
𝒔𝒆𝒎 = cos𝑚∈𝑀

(
𝐸𝐼 (𝐼 ) , F𝒎

𝒔𝒆𝒎
)
, (5)

𝑺 𝒊𝒎𝑵
𝒂𝒕𝒕𝒓 = cos𝑛∈𝑁

(
𝐸𝐼 (𝐼 ) , F𝒏

𝒂𝒕𝒕𝒓

)
, (6)

where 𝑺 𝒊𝒎𝑴
𝒔𝒆𝒎 and 𝑺 𝒊𝒎𝑵

𝒂𝒕𝒕𝒓 respectively represent the similarity
features with two tag libraries. 𝐸𝐼 is the image encoder of CLIP.
Finally, the direct concatenation of the two similarity features is
utilized to represent the interconnection between semantic content
and aesthetic attributes in an image:

F𝒂𝒕𝒕𝒓
𝒔𝒆𝒎 = 𝑐𝑜𝑛𝑐𝑎𝑡

(
𝑺 𝒊𝒎𝑴

𝒔𝒆𝒎, 𝑺 𝒊𝒎𝑵
𝒂𝒕𝒕𝒓

)
, (7)

where, F𝒂𝒕𝒕𝒓
𝒔𝒆𝒎 represents the fused feature, and 𝑐𝑜𝑛𝑐𝑎𝑡 (·) denotes

the feature concatenation.
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Figure 4: Illustration of the contrastive ranking. A balanced-
level batch is first sampled according to semantic contents
and GAS. Then, pull-pushing force of contrastive learning is
employed to explore intra-level aesthetic criteria and inter-
level aesthetic ordering (Taking ‘[8, 9]’ as an example).

3.3 Contrastive Ranking
The goal of contrastive ranking is to uncover the comparative re-
lationships between image sets with different aesthetic levels but
similar semantic backgrounds. The comparative relationships are
reflected in the distribution of images within and across aesthetic
levels, representing aesthetic criteria and aesthetic ordering, respec-
tively. To this end, the images within an aesthetics database are first
semantically clustered, and then divided into subsets according
to their semantic categories and generic aesthetic scores (GAS).
Furthermore, considering the long-tailed distribution problem of
existing aesthetic data, the majority of images in the training set are
primarily distributed in the middle score segment, and there is a rel-
atively small number of images in the low and high score segments,
resulting in poor prediction performance for high-quality and low-
quality images. To address this issue, we employ a balancing process
for the divided sets, generating relatively balanced batches for each
aesthetic level across different semantic backgrounds. Then, the
traversal contrastive learning is designed to explore intra-level aes-
thetic criteria and inter-level aesthetic ordering. The process of
contrastive ranking is illustrated in Figure 4.

Semantic Clustering. Given an image aesthetics database D𝑎𝑒𝑠 ={(
𝐼 𝑖 , 𝑦𝑖

)}𝑁𝑎𝑒𝑠

𝑖=1 , where 𝐼 𝑖 denotes the i-th image, 𝑦𝑖 denotes the aes-
thetic distribution (which can be transformed into GAS) and 𝑁𝑎𝑒𝑠

represents the number of images. Firstly, Eq. 5 is utilized to iden-
tify the semantic content of images based on their similarity to
the predefined semantic tag library. Subsequently, the K-means
algorithm is employed to cluster the images with similar semantic
backgrounds. Within each cluster, the images are reorganized based
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on different aesthetic levels. Currently, most databases use integer
score ranges from 1 to 10 to collect aesthetic ratings. Therefore,
at this stage, we also partition the data based on this rating level
setting to obtain a new database D𝑐 for subsequent training:

D𝑐 =

{
...

[
..., (𝐼1, 𝐼2, ...)𝑙 , ...

]𝑘
, ...

}
, (8)

where, [·]𝑘 denotes k-th semantic cluster, and (·)𝑙 in the cluster
represents the image set at l-th aesthetic level.

Balanced Sampling. Considering the uneven distribution of im-
ages across different aesthetic levels, it is crucial to mitigate the
impact of this data distribution on modeling the contrastive rela-
tionship. Therefore, a balanced sampling process is conducted on
the database D𝑐 obtained from the previous step. Specifically, for
a particular semantic cluster [·]𝑘 , a balanced quantity value 𝑁𝑠 is
generated based on the distribution of images across different aes-
thetic levels within the cluster. Then, a random sampling operation
is performed from the image sets for each aesthetic level, form-
ing a balanced-level batch. Through repeated sampling, multiple
balanced batches are obtained with different semantic backgrounds.

Traversal Contrastive Learning. For a balanced-level batch, the
traversal contrastive learning is designed to explore the aesthetic
comparative relationship among images distributed at different
aesthetic levels. Concretely, for samples within the aesthetic level
interval ‘[8, 9]’, which is regarded as an ‘Anchor bin’, the traversal
contrastive process can be described as follows. In the first-round
comparison, the samples within the interval are considered as posi-
tive samples for each other, while the samples in other intervals in
the batch are considered as negative samples. In the second-round
comparison, the ‘Positive bin’ is adjusted to ‘[7, 8]’, and all level
intervals less than 7 are considered as ‘Negative bins’. This com-
parison process repeats until all level intervals in the batch are
traversed, which represents a traversal comparison of the anchor
bin ‘[8, 9]’. The first-round comparison aims to learn intra-level
aesthetic criteria and the subsequent comparisons aim to learn
inter-level aesthetic ordering.

The contrastive encoder 𝐸𝐶𝑅 is introduced to convert images into
deep features, which is represented as: F𝒍𝒆𝒗𝒆𝒍

𝒔𝒆𝒎 = 𝐸𝐶𝑅 (𝐼𝑖 ), where,
F𝒍𝒆𝒗𝒆𝒍
𝒔𝒆𝒎 denotes the transformed deep feature. The contrastive loss

based on the aesthetic level relationship of this batch is defined as:

L𝐶𝑅 =
∑︁

𝑎𝑛𝑐ℎ𝑜𝑟

∑︁
𝑝𝑜𝑠

Ψ𝑐 (𝑎𝑛𝑐ℎ𝑜𝑟𝑏𝑖𝑛, 𝑝𝑜𝑠𝑏𝑖𝑛, 𝑛𝑒𝑔𝑏𝑖𝑛) , (9)

Ψ𝑐 = − log exp (F𝒂 ∗ F𝒑/𝜏)
exp (F𝒂 ∗ F𝒑,𝒏/𝜏) , (10)

where,L𝐶𝑅 is the contrastive ranking loss,𝑎𝑛𝑐ℎ𝑜𝑟𝑏𝑖𝑛 , 𝑝𝑜𝑠𝑏𝑖𝑛 ,𝑛𝑒𝑔𝑏𝑖𝑛
represent the anchor sample interval and its corresponding positive
and negative sample interval in the process of traversal contrastive
learning, respectively. Ψ𝑐 is the contrastive loss, 𝑎, 𝑝 , 𝑛 are sam-
ples from 𝑎𝑛𝑐ℎ𝑜𝑟𝑏𝑖𝑛 , 𝑝𝑜𝑠𝑏𝑖𝑛 , 𝑛𝑒𝑔𝑏𝑖𝑛 , ∗ represents the inner product
operation, and 𝜏 is the temperature coefficient.

By updating the parameters through balanced-level batches sam-
pled from different semantic clusters, the contrastive encoder 𝐸𝐶𝑅
extracts knowledge related to aesthetic levels in image sets across

various semantic contexts:

𝜃𝐶𝑅 ←− 𝜃𝐶𝑅 − 𝛼 ·
1
𝑁𝑏

∑︁
𝑏𝑎𝑡𝑐ℎ

𝜕L𝐶𝑅
𝜕𝜃𝐶𝑅

, (11)

where 𝜃𝐶𝑅 is the parameter of the contrastive encoder, 𝛼 is the
learning rate, and 𝑁𝑏 is the number of balanced batches.

3.4 Aesthetics Prediction
Based on the modeling of aesthetic attribute and aesthetic level,
aesthetics prediction is performed in this stage. Specifically, we
perform dimension transformation on the F𝒂𝒕𝒕𝒓

𝒔𝒆𝒎 , F𝒍𝒆𝒗𝒆𝒍
𝒔𝒆𝒎 , and then

directly concatenate them:

F𝒂𝒆𝒔 = 𝑐𝑜𝑛𝑐𝑎𝑡

(
F𝒂𝒕𝒕𝒓
𝒔𝒆𝒎 , F𝒍𝒆𝒗𝒆𝒍

𝒔𝒆𝒎

)
, (12)

where, F𝒂𝒆𝒔 represents the fused feature. A score𝑀𝐿𝑃 is used to
generate aesthetic distribution 𝑦 based on the fused feature:

𝑦 = 𝑀𝐿𝑃 (F𝒂𝒆𝒔 ) . (13)

The Earth Mover’s Distance (EMD) loss is applied to optimize
the model parameters:

L𝑎𝑒𝑠 =
(
1
𝐷

𝐷∑︁
𝑖

��𝐶𝐷𝐹𝑦 (𝑑) −𝐶𝐷𝐹�̂� (𝑑)��𝑟 ) 1
𝑟

, (14)

𝜃 (𝐸𝐶𝑅, 𝑀𝐿𝑃) ←− 𝜃 − 𝛽 · 1
𝑁𝑎𝑒𝑠

∑︁
𝑖

𝜕L𝑎𝑒𝑠
𝜕𝜃

, (15)

where, L𝑎𝑒𝑠 is the loss function,𝐶𝐷𝐹 (·) is the cumulative distribu-
tion function, 𝑑 represents the dimensions of the aesthetic distribu-
tion, 𝑟 is set to 2 to penalize the Euclidean distance. 𝜃 (𝐸𝐶𝑅, 𝑀𝐿𝑃)
denotes the parameter to be updated, 𝛽 is the learning rate.

4 EXPERIMENTS
4.1 IAA Databases
To gauge the efficacy of the proposed IAA model, we conduct
experiments on three benchmark IAA databases, including AVA
[33], AADB [21], and PARA [45].

AVA (Aesthetic Visual Analysis) [33] is currently the largest
and most widely used database in the field of IAA. The database
contains a total of 255,530 images. Each image receives annotations
from an average of 210 annotators, with scores ranging from 1 to
10. Researchers commonly employ a standardized data partitioning
approach, using approximately 230,000 images for training and the
remaining 20,000 images for testing.

AADB (Aesthetics and Attributes DataBase) [21] is a database
specifically designed for analyzing aesthetic attributes of images.
The database comprises 10,000 images, each annotated by at least
five users. The annotations include 11 aesthetic attributes and an
overall aesthetic rating for each image. The attribute scores range
from -1 to 1, while the overall aesthetic rating ranges from 1 to 5.

PAPA (Personalized image Aesthetics database with Rich At-
tributes) [45] consists of 31,220 images annotated by 438 partici-
pants. It includes image-centric annotations such as overall aes-
thetic ratings (1-5), distortion quality ratings (1-5), scene categories
(10 types), and aesthetic attributes (5 types). Desensitized subjec-
tive information is also recorded, including gender, age, education
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Table 1: Comparison of the proposed TMCR model with the state-of-the-art methods for three IAA tasks: aesthetic binary
classification, aesthetic score regression, and aesthetic distribution prediction, on the AVA database.

Classification Score Regression DistributionMethod Backbone Input Size ACC↑ PLCC↑ SRCC↑ MSE↓ EMD1↓ EMD2↓
DMA-Net [30] AlexNet 227×227 75.4 - - - - -
Kong et al. [21] AlexNet 227×227 77.3 - 0.558 - - -
NIMA [40] VGG16 224×224 78.2 0.647 0.633 0.330 0.049 0.071
APM [32] ResNet-101 Resize (500) 80.3 - 0.709 0.279 - 0.061

A-Lamp [31] VGG16 224×224 82.5 - - - - -
Zeng et al. [48] ResNet-101 384×384 80.8 0.720 0.719 0.275 - 0.065
Hosu et al. [9] InceptionResnet Full resolution 81.7 0.757 0.756 - - -
MUSIQ [17] ViT Full resolution 81.5 0.738 0.726 0.242 - -
Niu et al. [34] ResNet-50 224×224 81.9 0.740 0.734 0.242 - -
TANet [6] MobileNet-v2, ResNet18 224×224 80.6 0.765 0.758 - 0.047 -

AesCLIP [38] ViT 224×224 83.1 0.779 0.771 0.218 0.041 0.058
VILA [18] ViT 224×224 - 0.774 0.774 - - -

Jia et al. [13] Inception-V3 Full resolution 82.4 0.775 0.774 0.231 0.039 -
TMCR ResNet-50 224×224 81.7 0.760 0.753 0.231 0.047 0.068
TMCR ViT 224×224 82.1 0.778 0.771 0.219 0.045 0.065
TMCR Swin-T(b) 224×224 82.8 0.790 0.782 0.210 0.043 0.061

background, art and photography experience, personality traits,
emotional responses, etc.

4.2 Experimental Settings
Training Settings.We implement the model using PyTorch [35]
and utilize the AdamW [28] optimizer for parameter updating. In
the tag matching stage, we employ the ViT-L/14 version of CLIP
to extract similarity features. Notably, to preserve its matching
ability, both the image and text encoders remain frozen through-
out the process. In the contrastive ranking stage, IAA databases
are reorganized based on semantic clustering and aesthetic levels.
For aesthetics prediction, a score MLP consisting of two linear lay-
ers followed by Softmax is used. Regarding hyper-parameters, the
learning rate 𝛼 for contrastive ranking is set to 1e-5 with weight
decay of 5e-2. The temperature coefficient 𝜏 is set to 0.07. The batch
size depends on the distribution of images across different aesthetic
levels. The training process lasts for 50 epochs. For aesthetics pre-
diction, the learning rate 𝛽 is set to 1e-4 with a batch size of 64,
decaying by 0.9 per epoch until convergence.

Evaluation Metrics. For aesthetic binary classification, Accu-
racy (ACC) is used to measure performance. For aesthetic score
regression, Spearman Rank order Correlation Coefficient (SRCC),
Pearson Linear Correlation Coefficient (PLCC) and Mean Squared
Error (MSE) are used to quantify the consistency between the pre-
dicted scores and the ground-truth GAS. For aesthetic distribution
prediction, EMD with 𝑟 = 1 and 𝑟 = 2 are calculated, which are
represented as EMD1 and EMD2, respectively.

4.3 Performance Evaluation
Performance on AVA.We first conducted experiments to evaluate
the performance of our model on the widely used AVA database. We
compared our model with 13 IAAmodels, including both classic and
the latest approaches, and the results are summarized in Table 1. It
is observed from the table that the proposed TMCR shows excellent
performance, particularly in aesthetic score regression, surpassing

Table 2: Comparison on AADB and PARA databases.

Database Method SRCC↑ PLCC↑
NIMA [40] 0.708 0.711

Hosu et al. [9] 0.725 0.726
PA_IAA [27] 0.720 0.728
TANet [6] 0.738 0.737
MUSIQ [17] 0.706 0.712

Celona et al. [1] 0.757 0.762
TAVAR [26] 0.761 0.763

AADB

TMCR 0.775 0.773
NIMA [40] 0.886 0.923

Hosu et al. [9] 0.842 0.892
PA_IAA [27] 0.877 0.919
TANet [6] 0.883 0.917
MUSIQ [17] 0.882 0.918

Yang et al. [45] 0.902 0.936
TAVAR [26] 0.911 0.940

PARA

TMCR 0.915 0.945

all previous algorithms. Furthermore, compared with the methods
with full-resolution input, our approach utilizes cropped patches as
input and still achieves notably superior performance. Moreover,
with an relatively lightweight backbone of ResNet-50, the proposed
method still delivers very competitive performance.

Performance on AADB and PARA. We further evaluated
the performance of the proposed model on the AADB and PARA
databases. These two databases have a relatively smaller number
of raters per image compared to AVA. Consequently, the existing
approaches primarily reported SRCC and PLCC metrics. Table 2
summarizes the performance of our model compared to the state-
of-the-art IAA models on the AADB and PARA databases. The
results demonstrate that our model achieves the best performance.
Compared to methods trained with attribute labels contained in
databases, such as TAVAR [26], the proposed model achieved even
better performance by solely utilizing aesthetic score annotations.
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Table 3: Comparison of long-tailed prediction performance
between the proposed model and state-of-the-art IAA meth-
ods on the balanced test set of AVA database.

Metrics MSE↓
Shot ALL Many Med. Few SRCC↑ PLCC↑

NIMA [40] 0.432 0.144 0.347 0.978 0.859 0.851
TANet [6] 0.718 0.089 0.537 1.902 0.860 0.855

AesCLIP [38] 0.383 0.149 0.289 0.863 0.878 0.873
VILA [18] 0.685 0.572 0.672 0.870 0.879 0.870
TMCR 0.361 0.142 0.269 0.818 0.885 0.875

4.4 Long-Tailed Performance
Imbalanced data distributions, where certain target values have
significantly fewer observations, are commonly encountered in
real-world datasets. Existing techniques for handling imbalanced
data primarily concentrate on categorical indices, typically seen in
classification problems. Yang et al. [46] first introduced the concept
of Deep Imbalanced Regression (DIR). In the IAA field, there is very
limited research addressing the aesthetic deep imbalanced regres-
sion problem [14, 15]. However, aesthetic data naturally exhibits
a long-tailed distribution, as show in Figure 5(a), and accurately
discerning the tail-end data holds significant practical value.

In the proposed method, we designed two strategies, namely
balanced sampling and traversal contrastive learning, to alleviate
the issue of long-tailed distribution when extracting knowledge
related to aesthetic levels. For long-tailed testing, we divide score
ranges into three regions (‘Many’, ‘Med’, and ‘Few’) based on the
distribution of image quantities in the AVA training set. We sample
an equal number of samples from each corresponding region in the
original test set, creating a balanced test set (457 images for each
region) for long-tailed evaluation.

We compare the performance of the proposed TMCR model with
NIMA [40] (considered as the baseline), TANet [6], AesCLIP [38],
and VILA [18] (recent models with top performances) on the bal-
anced test set. We reported the comparative results of relevant met-
rics in Table 3, where MSE is employed to quantify the prediction
performance across different regions, SRCC and PLCC are used to
measure the correlations across the whole score range. From Table
3, we have the following observations. First, all models experienced
varying degrees of long-tailed impacts, manifested by a decrease in
performance in the corresponding region of testing as the training
data decreased. Secondly, the proposed TMCR achieves the best
results in terms of overall SRCC and PLCC metrics, as well as MSE
metrics across ‘ALL’, ‘Med.’ and ‘Few’ regions, which demonstrates
the advantage of TMCR in long-tailed testing. Furthermore, in Fig-
ure 5(b), we visualize the actual prediction performance of these
models. It can be observed that ‘TANet’ predominantly generates
predicted scores within the middle range and ‘VILA’ exhibits the
widest range of score prediction intervals. The higherMSE of TANet
and VILA compared to NIMA suggests that TANet’s predictions for
the ‘Few’ region significantly affect the overall performance, while
VILA exhibits severe prediction errors despite its ability to handle
a wide range of scores. These findings highlight the importance of
investigating the long-tailed problem in IAA.
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Figure 5: Data distribution in AVA training set and predic-
tion performance of different IAA models on AVA balanced
testing set.

Table 4: Ablation study on the impact of TM and CR.

Method Classification Score Regression Distribution
ACC↑ PLCC↑ SRCC↑ MSE↓ EMD1↓ EMD2↓

TM-Net 80.3 0.732 0.721 0.251 0.047 0.068
CR-Net 81.2 0.745 0.733 0.251 0.051 0.073

TM+CR_LP 81.9 0.771 0.762 0.224 0.045 0.064
TM+CR_FT 82.8 0.790 0.782 0.210 0.043 0.061

4.5 Ablation Study
Impact of TM and CR. Table 4 summarizes the results obtained
from the ablation study on the impact of TM and CR. Specifically,
‘TM-Net’ and ‘CR-Net’ represent aesthetics prediction based solely
on tag matching and contrastive ranking, respectively. ‘LP’ and
‘FT’ denote the contrastive encoder under two commonly used
evaluation protocols, namely linear probe and fine-tuning. The
results demonstrate the validity of the two branching features for
modeling image aesthetics.

Impact of Semantics and Attribute Tags. We also conduct
a comparison between using semantic tags alone and using both
semantics and aesthetic attribute tags during the tagmatching stage,
and the results are listed in Table 5. The results demonstrate that the
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Table 5: Ablation study on the impact of Semantics and At-
tribute tags.

Tags Classification Score Regression Distribution
ACC↑ PLCC↑ SRCC↑ MSE↓ EMD1↓ EMD2↓

Sem-only 82.1 0.780 0.770 0.223 0.046 0.065
Sem+Attr 82.8 0.790 0.782 0.210 0.043 0.061
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Figure 6: Performances with different sampling frequency.

use of semantic tags alone, delivers a very competitive performance.
Incorporating attribute tags leads to further improvements to the
model performance.

Impact of Sampling Frequency.We further conduct experi-
ments to analyze the impact of sampling frequency on the learned
representations during contrastive ranking. The contrastive rank-
ing is performed on balanced-level batches sampled from different
semantic clusters. Figure 6 shows the model performance in the lin-
ear probe protocol with varying sampling frequencies. The results
clearly demonstarte that increasing the sampling frequency results
in enhanced feature representations.

4.6 Visual Analysis
The proposed IAA model aims to capture the aesthetic distinctions
among images with similar semantic backgrounds from two aspects:
aesthetic attribute and aesthetic level. To visually demonstrate the
effectiveness of the model in representation difference across the
Semantic space, Attribute space and Level space, we conduct a
visual analysis. Specifically, we utilize the T-SNE [42] to visualize
the feature embeddings F𝒎

𝒔𝒆𝒎 of individual images in relation to
the semantic tag library. Subsequently, we visualize the attribute
feature embeddings F𝒏

𝒂𝒕𝒕𝒓 and the level feature embeddings F𝒍𝒆𝒗𝒆𝒍
𝒔𝒆𝒎

of images from a balanced-level batch, which is sampled from a
specific semantic cluster. In addition, we visualize three instances,
their top-5 semantic and aesthetic attribute tags, as well as their
mappings in three spaces. The visualizations of Sem space, Attr
space and Level space are shown in Figure 7. It can be observed
that, features displaying clustering patterns in the semantic space
show distinct separability in both the attribute space and the level
space. Specifically, in the level space, features belonging to different
aesthetic levels are clearly separated and arranged according to
their hierarchical relationship. These findings provide evidence
for the effectiveness of the tag matching and contrastive ranking
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Figure 7: Visualizations of feature embeddings of images in
Sem space, Attr space and Level space, and three images from
a specific cluster (ID: ①②③) with their top-5 semantic and
aesthetic attribute tags, as well as their mappings in three
spaces.

strategies, thus demonstrating the efficacy of the proposed TMCR
in modeling aesthetic perception.

5 CONCLUSION
In this paper, we have presented a semantics-aware image aes-
thetics assessment approach using tag matching and contrastive
ranking, dubbed TMCR. We learn effective representations in the
aesthetic attribute space and aesthetic level space to model the
aesthetic distinctions among images under similar semantic back-
grounds. In view of the differences in the expression of semantics
and aesthetic attribute in aesthetic description, we propose lever-
aging CLIP’s text-image matching ability to model the relationship
between individual images and two predefined tag libraries. More-
over, we proposed a novel contrastive ranking strategy to model
aesthetic level knowledge. During the contrastive ranking process,
the impact of the long-tailed distribution of aesthetic annotation
data is alleviated through balanced sampling and traversal con-
trastive learning. Extensive experimental results demonstrate that
our proposed model outperforms state-of-the-art methods. While
very encouraging performances have been achieved in this work,
further investigations are needed to explore the extraction and
modeling of aesthetic-related information in the language modality,
as well as addressing the challenge of aesthetic deep imbalanced
regression problem.
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