
Two-sided fairness in rankings via Lorenz dominance

Virginie Do1,2, Sam Corbett-Davies1, Jamal Atif2, Nicolas Usunier1

1Facebook AI
2LAMSADE, Université PSL, Université Paris Dauphine, CNRS, France

virginiedo@fb.com, scd@fb.com, jamal.atif@dauphine.psl.eu, usunier@fb.com

Abstract

We consider the problem of generating rankings that are fair towards both users and
item producers in recommender systems. We address both usual recommendation
(e.g., of music or movies) and reciprocal recommendation (e.g., dating). Following
concepts of distributive justice in welfare economics, our notion of fairness aims at
increasing the utility of the worse-off individuals, which we formalize using the
criterion of Lorenz efficiency. It guarantees that rankings are Pareto efficient, and
that they maximally redistribute utility from better-off to worse-off, at a given level
of overall utility. We propose to generate rankings by maximizing concave welfare
functions, and develop an efficient inference procedure based on the Frank-Wolfe
algorithm. We prove that unlike existing approaches based on fairness constraints,
our approach always produces fair rankings. Our experiments also show that it
increases the utility of the worse-off at lower costs in terms of overall utility.

1 Introduction

Recommender systems have a growing impact on the information we see and on our life opportunities,
as they help us browse news articles, find a new job, house, or people to connect with. While the
objective of recommender systems is usually defined as maximizing the quality of recommendations
from the user’s perspective, the recommendations also have an impact on the recommended “items”.
News outlets rely on exposure to generate revenue, finding a job depends on which recruiter gets to see
our resume, and the effectiveness of a dating application also depends on who we are recommended
to—and if we are being recommended, then someone else is not. Two-sided fairness in rankings is
the problem of generating personalized recommendations by fairly mediating between the interests of
users and items. It involves a complex multidimensional trade-off. Fairness towards item producers
requires boosting the exposure of small producers (e.g., to avoid winner-take-all effects and popularity
biases [1]) at the expense of average user utility. Fairness towards users aims at increasing the utility
of the least served users (e.g., so that least served users do not support the cost of item-side fairness),
once again at the expense of average user utility. The goal of this paper is to provide an algorithmic
framework to generate rankings that achieve a variety of these trade-offs, leaving the choice of a
specific trade-off to the practitioner.

The leading approach to fairness in rankings is to maximize user utility under constraints of equal
item exposure (or equal quality-weighted exposure) [54, 7] or equal user satisfaction [6]. When these
constraints imply an unacceptable decrease in average user utility, so-called “trade-offs between utility
and fairness” [65, 41] are obtained by relaxing the fairness constraints, leading to the optimization of
a trade-off between average user utility and a measure of users’ or items’ inequality.

Thinking about fairness in terms of optimal utility/inequality trade-offs has, however, two fundamental
limitations. First, the optimization of a utility/inequality trade-off is not necessarily Pareto-efficient
from the point of view of users and items: it sometimes chooses solutions that decrease the utility
of some individuals without making anybody else better off. We argue that reducing inequalities
by decreasing the utility of the better-off is not desirable if it does not benefit anyone. The second
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limitation is that focusing on a single measure of inequality does not address the question of how
inequality is reduced, and in particular, which fraction of the population benefits or bears the cost of
reducing inequalities.

In this paper, we propose a new framework for two-sided fairness in rankings grounded in the analysis
of generalized Lorenz curves of user and item utilities. Widely used to study efficiency and equity in
cardinal welfare economics [53], these curves plot the cumulative utility obtained by fractions of the
population ordered from the worst-off to the best-off. A curve that is always above another means that
all fractions of the populations are better off. We define fair rankings as those with non-dominated
generalized Lorenz curves for users and items. First, this definition guarantees that fair rankings
are Pareto efficient. Second, examining the entirety of the generalized Lorenz curves provides a
better understanding of which fractions of the population benefit from an intervention, and which
ones have to pay for it. We present our general framework based on Lorenz dominance in usual
recommendation settings (e.g., music or movie recommendation), and also show how extend it to
reciprocal recommendation tasks such as dating applications or friends recommendation, where users
are recommended to other users.

We present a new method for generating rankings based on the maximization of concave welfare
functions of users’ and items’ utilities. The parameters of the welfare function control the relative
weight of users and items, and how much focus is given to the worse-off fractions of users and items.
We show that rankings generated by maximizing our welfare functions are fair for every value of
the parameters. Our framework does not aim at defining what parameters are suitable in general —
rather, the choice of a specific trade-off depends on the application.

From an algorithmic perspective, two-sided fairness is challenging because items’ utilities depend on
the rankings of all users, requiring global inference. Previous work on item-side fairness addressed
this issue with heuristic methods without guarantees or control on the achievable trade-offs. We show
how the Frank-Wolfe algorithm can be leveraged to make inference tractable, addressing both our
welfare maximization approach and existing item-side fairness penalties.

We demonstrate that our welfare function approach enjoys stronger theoretical guarantees than
existing methods. While it always generates rankings with non-dominated generalized Lorenz curves,
many other approaches do not. We show that one of the main criteria of the literature, called equity
of attention by Biega et al. [7], can lead to decrease user utility, while increasing inequalities of
exposure between items. Moreover, equal user satisfaction criteria in reciprocal recommendation
can lead to decrease the utility of every user, even the worse-off. Our notion of fairness prevents
these undesirable behaviors. We report experimental results on music and friend recommendation
tasks, where we analyze the trade-offs obtained by different methods by looking at different points of
their Lorenz curves. Our welfare approach generates a wide variety of trade-offs, and is, in particular,
more effective at improving the utility of worse-off users than the baselines.

We present our formal framework in Section 2. We discuss the theoretical properties of previous
approaches in Section 3, and present our ranking algorithm in Section 4. Our experiments are
described in Section 5, and the related work is discussed in Section 6.

2 Two-sided fairness via Lorenz dominance

2.1 Formal framework

Terminology and notation. We identify an item with its producer, so that “item utility” means
“item producer’s utility”. The main paper focuses on fairness towards individual users and items.
We describe in Appendix B the extension of our approach to sensitive groups of users or items. |X |
denotes the cardinal of the set X . Given n ∈ N, we denote by [[n]] = {1, . . . , n}. The set of users
N is identified with {1, ..., |N |} and the set of items I is identified with {|N | + 1, ..., n} where
n = |N |+ |I|. For (i, j) ∈ N × I, we denote by µij the value of item j to user i.

A (deterministic) ranking σ : I → [[|I|]] is a one-to-one mapping from items j to their rank σ(j).
Following [54], we use stochastic rankings because they allow us to perform inference using convex
optimization (see Section 4). The recommender system produces one stochastic ranking per user,
represented by a 3-way ranking tensor P where Pijk is the probability that j is recommended to i at
rank k. We denote by P the set of ranking tensors.
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Figure 1: Generalized Lorenz curves for usual (left) and reciprocal (right) recommendation.

Utilities of users and items are defined through a position-based model, as in previous work [54, 7, 63].
Let v ∈ R|I|, where vk is the exposure weight at rank k. We assume that lower ranks receive
more exposure, so that ∀k ∈ [[|I| − 1]], vk ≥ vk+1 ≥ 0.1 Given a user i and a ranking σi, the
user-side utility of i is the sum of the µijs weighted by the exposure weight of their rank σi(j):
ui(σi) =

∑
j∈I vσi(j)µij . Given an item j, the item-side utility of j is the sum over users i of the

exposure of j to i. These definitions extend to stochastic rankings by taking the expectation over
rankings, written in matrix form:2

user-side utility: ui(P ) =
∑
j∈I

µijPijv item-side utility (exposure): uj(P ) =
∑
i∈N

Pijv

We denote by u(P ) = (ui(P ))ni=1 the utility profile for P , and by U = {u(P ) : P ∈ P} the set of
feasible profiles. For u ∈ U , uN = (ui)i∈N and uI = (ui)i∈I denote the utility profiles of users
and items respectively.

Two-sided fairness in rankings. In practice, values of µij are not known to the recommender
system. Ranking algorithms use an estimate µ̂ of µ based on historical data. We address here the
problem of inference: the task is to compute the ranking tensor given µ̂, with the goal of making fair
trade-offs between (true) user and item utilities. Notice that the user-side utility depends only on
the ranking of the user, but for every item, the exposure depends on the rankings of all users. Thus,
accounting for both users’ and items’ utilities in the recommendations is a global inference problem.

More general item utilities We consider exposure as the item-side utility to follow prior work and
for simplicity. Our framework and algorithm readily applies in a more general case of two-sided
preferences, where items also have preferences over users (for instance, in hiring, job seekers have
preferences over which recruiters they are recommended to). Denoting µji the value of user i to item
j, the item side-utility is then uj(P ) =

∑
i∈N

µjiPijv.

2.2 Lorenz efficiency and the welfare function approach

Our notion of fairness aims at improving the utility of the worse-off users and items. Since this
does not prescribe exactly which fraction of the worse-off users/items should be prioritized, the
assessment of trade-offs requires looking at all fractions of the population. This is captured by the
generalized Lorenz curve used in cardinal welfare economics [53]. Formally, given a utility profile
u, let (u(i))

n
i=1 be the sorted values in u from smallest to largest, i.e., u(1) ≤ . . . ≤ u(n), then the

generalized Lorenz curve plots (Ui)
n
i=1 where Ui = u(1) + . . . + u(i). To assess the fairness of

trade-offs, we rely on the following dominance relations on utility profiles:

Pareto-dominance �P. u �P u′ ⇐⇒ (∀i ∈ [[n]], ui ≥ u′i and ∃i ∈ [[n]], ui > u′i).

Lorenz-dominance �L. Then u �L u′ ⇐⇒ U �P U ′.

We write �L for non-strict Lorenz dominance (i.e., ∀i, Ui ≥ U ′i ). Notice that Pareto-dominance
implies Lorenz-dominance. Our notion of fairness, which we call Lorenz efficiency, states that a
ranking is fair if the utility profiles for users and for items are not jointly Lorenz-dominated:

1We use a user-independent v for simplicity. Considering user-dependent weights is straightforward.
2We consider Pij as a row vector in the formula, so that Pijv =

∑|I|
k=1 Pijkvk.
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Definition 1 (Lorenz efficiency). A utility profile u ∈ U is Lorenz-efficient if there is no u′ ∈ U
such that either (u′I �L uI and u′N �L uN ) or (u′N �L uN and u′I �L uI).

We consider that Lorenz-dominated profiles are undesirable (and unfair) because the utility of worse-
off fractions of the population could have been increased at no cost for total utility. Examples of
Lorenz-curves of users and items are given in Fig. 1. The blue solid, green dotted and orange dashed
curves are all non-dominated (the blue solid ranking has higher user utility but high item inequality,
the green dotted and orange dashed curves have similar item exposure profiles, but user curves that
intersect). On the other hand, the red dot/dashed curve is an unfair ranking: compared to the green
dotted and orange dashed curve, all fractions of the worse off users have lower utility, together with
less exposure for worse-off items.

A fundamental result from cardinal welfare economics is that concave welfare functions of utility
profiles order profiles according to Lorenz dominance [3, 53]. The choice of the welfare function
specifies which (fair) trade-off is desirable in a specific context. This result holds when all utilities are
comparable. In our case where there are users and items, we propose the following welfare function
parameterized by θ = (λ, α1, α2):3

∀u ∈ Rn+ : Wθ(u) = (1− λ)
∑
i∈N

ψ(ui, α1) + λ
∑
j∈I

ψ(uj , α2) with ψ(x, α) =


xα if α > 0

log(x) if α = 0

−xα if α < 0

.

Inference is carried out by maximizing Wθ (an efficient algorithm is proposed in Section 4):

(ranking procedure) P ∗ ∈ argmax
P∈P

Wθ(u(P )) (1)

In Wθ, λ ∈ [0, 1] controls the relative weight of users and items. The motivation for the specific
choice of ψ is that it appears in scale invariant welfare functions [43], but other families can be used as
long as the functions are increasing and concave. Monotonicity implies that maxima ofWθ are Pareto-
efficient. For α1 < 1 and α2 < 1, Wθ is strictly concave. Then, Wθ exhibits diminishing returns,
which is the key to Lorenz efficiency: an increment in utility for a worse-off user/item increases
welfare more than the same increment for a better-off user/item. The effect of the parameters is shown
in Fig. 1 (left): For item fairness we obtain more item equality by using α1 < 1 (here, α1 = 0.5) and
incrasing λ (see blue solid vs orange dashed curve). The parameter α2 controls user fairness: smaller
values yield more user utility for the worse-off users at the expense of total utility, with similar item
exposure curve (green dotted vs orange dahsed curves). Let Θ = {(λ, α1, α2) ∈(0, 1)× (−∞,1)2}.
For every θ ∈ Θ,Wθ is strictly concave, and users and items have non-zero weight. We then have
(the result is a straightforward consequence of diminishing returns, see Appendix C):

Proposition 1. ∀θ ∈ Θ,∀P ∗ ∈ argmax
P∈P

Wθ(u(P )), P ∗ is Lorenz-efficient.

Relationship to inequality measures A well-known measure of inequality is the Gini index,
defined as 1− 2×AULC, where AULC is the area under the Lorenz curve. The difference between
Lorenz and generalized Lorenz curves is that the former is normalized by the cumulative utility.
This difference is fundamental: we can decrease inequalities while dragging everyone’s utility to
0. However, this would lead to dominated generalized Lorenz curves. Interestingly, for item-side
fairness, the cumulative exposure is a constant and thus trade-offs between user utility and item
exposure inequality are not really problematic. However, for user-side fairness, the total utility is
not constant and reducing inequalities might require dragging the utility of some users down for the
benefit of no one.

Additional theoretical results In App. C.2, we show that as α1, α2 → −∞, utility profiles tend
to leximin-optimal solutions [43]. Leximin optimality corresponds to increasing the utility of the
worst-off users/items one a a time, similarly to a lexical order. In App. C.3, we present an excess risk
bound, which provides theoretical guarantees on the true welfare when computing rankings based on
estimated preferences, depending on the quality of the estimates.

3Wθ(u) = −∞ if α ≤ 0 and ∃i, ui = 0. In practice, we use ψ(x+ η, α) for η > 0 to avoid this case.
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2.3 Extension to reciprocal recommendation

In reciprocal recommendation problems such as dating, the users are also items. The notion of
fairness simplifies to increasing the utility of the worse-off users, which can in practice be done by
boosting the exposure of worse-off users. Our framework above applies readily by takingN = I and
n = |N |. The critical step however is to redefine the utility of a user to account for the fact that (1)
the user utility comes from both the recommendation they receive and who they are recommended to,
and (2) users have preferences over who they are recommended to.

To define this two-sided utility, let us denote by µij the mutual preference value between i and j,
and our examples follow the common assumption that µij = µji (see e.g., [45]). For instance, when
recommending CVs to recruiters, µij can be the probability of interview, while in dating, it can be
that of a “match”. The two-sided utility is then the sum of the user-side utility and item-sided utility
of the user:

user-side utility
(j recommended to i)︷ ︸︸ ︷

ui(P ) =
∑
j∈I

µijPijv

item-side utility
(i recommended to j)︷ ︸︸ ︷

vi(P ) =
∑
j∈N

µijPjiv

(two-sided) utility︷ ︸︸ ︷
ui(P ) = ui(P ) + vi(P )

With this definition of two-sided utility, our previous framework can be readily applied using N = I .
A (two-sided) utility profile u ∈ U is Lorenz-efficient if there is no u′ ∈ U such that u′ �L u. The
welfare function simplifies to Wθ(u) =

∑n
i=1 ψ(ui, α), and Proposition 1 also holds true in this

setting: maximizing the welfare function always yields Lorenz-efficient rankings.

Fig. 1 (right) illustrates how decreasing α increases utilities for the worse-off users at the expense
of total utility. It also shows a Lorenz-dominated (unfair) profile, in which all fractions from the
worst-off to the better-off users have lower utility.

From now on, we refer to one-sided recommendation for non-reciprocal recommendation.

3 Comparison to utility/inequality trade-off approaches

As stated in the introduction, leading approaches to fairness in ranking are based on utility/inequality
trade-offs. We describe here the representative approaches we consider as baselines in our experiments.
We then present theoretical results illustrating the undesirable behavior of some of them.

3.1 Objective functions

One-sided recommendation In one-sided recommendation, the leading approach is to define
exposure-based criteria for item fairness [54, 7]. The first criterion, equality of exposure, aims at
equalizing exposure across items. The second one, quality-weighted exposure4, which is advocated
by many authors, defines the quality of an item as the sum of user values qj =

∑
i∈N µij and aims

for item exposure proportional to quality. The motivation of quality-weighted exposure is to take user
utilities into account in the extreme case where the constraint is strictly enforced. Interestingly, as we
show later, this approach has bad properties in terms of trading off user and item utilities.

In our experiments, we use the standard deviation as a measure of inequality. Denoting by E =
|N | ‖v‖1 the total exposure and by Q =

∑
j∈I qj the total quality:

quality-weighted
exposure F qua

β (u) =
∑
i∈N

ui − β
√
Dqua(u) with Dqua(u) =

1

n

∑
j∈I

(
uj −

qjE

Q

)2
.

equality of
exposure Fβ(u) =

∑
i∈N

ui − β
√
D(u) with D(u) =

∑
j∈I

1

n

(
uj −

1

|I|
∑
j′∈I

uj′
)2
.

Some authors use D′(u) =
∑

(j,j′)∈I2 |
uj
qj
− uj′

qj′
| instead of

√
Dqua [55, 42, 6]. Dqua and D′ have

qualitatively the same behavior. We propose Dqua(u) as a computationally efficient alternative to D′,
since it involves only a linear number of terms and

√
Dqua is convex and differentiable except on 0.

4We use here the terminology of [63]. This criterion has also been called “disparate treatment” [54],
“merit-based fairness” [55] and “equity of attention” [7].
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Reciprocal recommendation For reciprocal recommendation, we consider as competing approach
a trade-off between total (two-sided) utility and inequality of utilities, as measured by the standard
deviation:

equality of
utility Fβ(u) =

∑
i∈N

ui − β
√
D(u) with D(u) =

∑
j∈I

1

n

(
uj −

1

|I|
∑
j′∈I

uj′
)2
.

3.2 Inequity and inefficiency of some of the previous approaches

We point out here to two deficiencies of previous approaches.

First, for one-sided recommendation, we show that in some cases, compared to the welfare approach
with any choice of the parameter θ ∈ Θ, quality-weighted exposure leads to the undesirable behavior
of decreasing user utility while increasing inequalities of exposure between items. This is formalized
by the proposition below, which uses the following notation: for θ ∈ Θ, let uθ = argmax

u∈U
Wθ(u),

and for β > 0, let Uqua
β = argmax

u∈U
F qua
β (u).

Proposition 2. The following claims hold irrespective of the choice of uqua,β ∈ Uqua
β .

For every d ∈ N∗ and every N ∈ N∗, there is a one-sided recommendation problem, with d+ 1 items
and N(d+ 1) users, such that ∀θ ∈ Θ, we have:(

∃β > 0,uθN �L uqua,β
N and uθI �L uqua,β

I
)

and lim
β→∞

∑
i∈N u

qua,β
i∑

i∈N u
θ
i

−−−→
d→∞

5

6
.

Second, in reciprocal recommendation, striving for pure equality can even lead to 0 utility for every
user, even that of the worst-off user. More precisely, we show that in some cases, compared to the
welfare approach with any choice of parameter θ ∈ Θ, there exists β > 0 such that equality of utility
has lower utility for every user, eventually leading to 0 utility for everyone in the limit β →∞.
Proposition 3. For β > 0, let Ueq

β = argmaxu∈U Fβ(u). The claim below holds irrespective of the
choice of ueq,β ∈ Ueq

β . Let n ≥ 5. There is a reciprocal recommendation task with n users such that:

∀θ ∈ Θ,uθ,∃β > 0 : ∀i ∈ [[n]], uθi > ueq,βi and lim
β→∞

∑
i∈N

ueq,βi = 0.

Proofs and additional results All proofs are deferred to App. D, where we provide several addi-
tional results regarding the use of quality-weighted exposure and equality of exposure in reciprocal
recommendation: We show in Prop. 8 that there are cases where both approaches lead to user utility
profiles with Lorenz-dominated curves, and significantly lower total user utility than the welfare
approach for any choice of the parameters.

4 Efficient inference of fair rankings with the Frank-Wolfe algorithm

We now present our inference algorithm for (1). Appendix E contains the proofs of this section and
describes a similar approach for the objective functions of the previous section. From an abstract
perspective, the goal is to find a maximum P ∗ such that:

P ∗ ∈ argmax
P∈P

W (P ) with W (P ) =

n∑
i=1

Φi

( n∑
j=1

µij(Pij + Pji)v

)
where for every i, Φi : R+ → R is concave increasing, µij ≥ 0 and v is a vector of non-negative
non-increasing values. Since W is concave and P is defined by equality constraints, the problem
above is a convex optimization problem. However, this is a global optimization problem over the
rankings of all users, so a naive approach would require |N ||I|2 parameters and 2|N ||I| linear
constraints. The same problem arises with the penalties of previous work. In the literature, authors
either considered applying the item-fairness constraints to each ranking individually [54, 6], which
leads to inefficiencies with our definition of utility (see Appendix H), or resort to heuristics to compute
the rankings one by one without guarantees on the trade-offs that are achieved [42, 7].

Our approach is based on the Frank-Wolfe algorithm [18], which was previously used in machine
learning in e.g., structured output prediction or low-rank matrix completion [30], but to the best of
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(a) Examples of generalized Lorenz curves achieved by welf. (b) Summary of trade-offs (c) Dominated curve

Figure 2: Summary of results on Lastfm-2k, focusing on the user utility/item inequality trade-off.

our knowledge not for ranking. Denoting 〈X |Y 〉 =
∑
ijkXijkYijk the dot product between tensors,

the algorithm creates iterates P (t) by first computing P̃ = argmaxP∈P〈P | ∇W (P (t))〉 and then
updating P (t) = (1− γ(t))P (t−1) + γ(t)P̃ with γ(t) = 2

t+2 [13]. Starting from an initial solution5,
the algorithm always stays in the feasible region without any additional projection step. Our main
contribution of this section is to show that argmaxP∈P〈P | ∇W (P (t))〉 can be computed efficiently,
requiring only one sort operation per user after computing the utilities. In the result below, for a
ranking tensor P and a user i, we denote by S(Pi) the support of Pi in ranking space.6

Theorem 1. Let µ̃ij = Φ′i
(
ui(P

(t))
)
µij + Φ′j

(
uj(P

(t))
)
µji. Let P̃ such that:

∀i ∈ N ,∀σ̃i ∈ S(P̃i): σ̃i(j) < σ̃i(j
′) =⇒ µ̃ij ≥ µ̃ij′ . Then P̃ ∈ argmax

P∈P
〈P | ∇W (P (t))〉.

Moreover, it produces a compact representation of the stochastic ranking as a weighted sum of
permutation matrices. The number of iterations of the algorithm allows to control the trade-off
between memory requirements and accuracy of the solution. Using previous convergence results for
the Frank-Wolfe algorithm [13], assuming each Φ′′i is bounded, we have:

Proposition 4. Let B = max
i∈[[n]]

‖Φ′′i ‖∞ and U = max
u∈U
‖u‖22. Let K be the maximum index of a

nonzero value in v (or |I|). Then ∀t ≥ 1,W (P (t)) ≥ max
P∈P

W (P ) − O(BUt ). Moreover, for each

user, an iteration costs O(|I| lnK) operations and requires O(K) additional bytes of storage.

5 Experiments

5.1 One-sided recommendation

We first present experiments on movie recommendation task. We report here our experiments with
the Lastfm-2k dataset [9, 47], which contains the music listening histories of 1.9k users. We present
in App. F.2 experiments on a larger portion of the Last.fm dataset, and in App. F.3 results using the
MovieLens-20m dataset [24]. Our results are qualitatively similar across the three datasets.

We select the top 2500 items most listened to, and estimate preferences with a matrix factorization
algorithm using a random sample of 80% of the data. All experiments are carried out with three
repetitions for this subsample. The details of the experimental protocol are in App. F.1. Since the goal
is to analyze the behavior of the ranking algorithms rather than the quality of the preference estimates,
we consider the estimated preferences as ground truth when computing user utilities and comparing
methods, following previous work. We compare our welfare approach (welf) to three baselines. The
first one is the algorithm of [47] (referred to as Patro et al. in the figures), who consider envy-freeness
for user-side fairness and, for item-side fairness, a constraint that the minimum exposure of an
item is β E

|I| where β is the trade-off parameter. The other baselines are quality-weighted exposure
(qua.-weighted) and equality of exposure (eq. exposure) as described in Sec. 3.

5In our experiments, we initialize with the utilitarian ranking (Proposition 6).
6Formally, S(Pi) =

{
σ : I → [[|I|]]

∣∣σ is one-to-one, and ∀j ∈ I, Pijσ(j) > 0
}

.
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(a) User inequality. (b) Total user utility. (c) Cumulative utility at
10% worse-off users.

(d) Cumulative utility at
25% worse-off users.

(e) Item inequality ≈ 0.4. (f) Item inequality ≈ 0.6.

Figure 3: Summary of results on Lastfm-2k for two-sided fairness: effect of varying α1.

Item-side fairness We first study in isolation item-side fairness, defined as improving the exposure
of the worse-off item (producers). To summarize the trade-offs, we show the trade-offs by looking at
exposure inequalities as measured by the Gini index (see Sec. 2.2). The results are given in Fig. 2:

• Generating user utility/item inequality trade-offs is performed with our approach by keeping
α1 = α2 = 0 and varying the relative weight of items λ. Fig. 2a plots some trade-offs achieved by
our approach. As expected, the user utility curve degrades as we increase the weight of items, while
at the same time the curve of item exposure moves towards the straight line, which corresponds
to strict equality of exposure. Fig. 6 in the appendix provides analogous curves for all methods,
obtained by varying the weight β of the inequality measure.

• qua.-weighted yields unfair trade-offs Fig. 2c shows a welf ranking that dominates a qua.-weighted
ranking on both user and item curves. This is in line with the discussion of Section 3, qua.-weighted
can lead to unfair rankings on utility/item inequality trade-offs.

• welf dominates the user utility/item inequality (Gini) trade-offs as seen on Fig. 2b: while all
methods have the same total user utility when accepting high item inequality, welf dominates Patro
et al., eq. exposure and qua.-weighted as soon as Gini ≤ 0.5. Note, however, that the Gini index is
only one measure of inequality. When measuring item inequalities with the standard deviation, eq.
exposure becomes optimal since our implementation optimizes a trade-off with this measure (see
Fig. 8 in App. F.1). Overall, welf and eq. exposure yield different fair trade-offs.

Two-sided fairness Fig. 3 shows the effect of the user curvature α1 ∈ {−2, 0, 1}, keeping α2 = 0.
Fig. 8 in App. F.1 shows similar plots when the item inequality is measured by the standard deviation
rather than the Gini index.

• Smaller α1 reduce user inequalities at the expense of total user utility, at various levels of item
inequality. This is observed by comparing the results for α1 ∈ {−2, 0, 1} in Fig. 3a and Fig. 3b.

• welf α1 = 0 is better than Patro et al., which can be seen by jointly looking at Fig. 3c, 3d and
Fig. 3b which give the cumulative utility at different points of the Lorenz curve (10%, 25% and
100% of the users respectively). We observe that welf α1 = 0 is similar to Patro et al. at the 10%
and 25% levels, but has higher total utility. Example curves are given in Fig. 3e and 3f which plot
welf α1 = 0 and Patro et al. at two levels of item inequality. welf α1 = 0 obtains similar curves
to Patro et al., except that it performs better at the end of the curve. A similar comparison can be
made with welf α1 = 1 and eq. exposure.

• More user inequalities is not necessarily unfair as seen in Fig. 3a comparing welf α1 = 0 and
Patro et al.. We observe that welf α1 = 0 has slightly higher Gini index, but this is not unfair: as
seen in Fig. 3e and 3f, this is due to the higher utility at the end of the generalized Lorenz curve of
welf, but the worse-off users have similar utilities with welf and Patro et al..

8



5.2 Reciprocal recommendation

We now present results on a reciprocal recommendation task, where fairness refers to increasing
the utility of the worse-off users (this can be done by boosting their exposure at the expense of
total utility). Since there is no standard benchmark for reciprocal recommendation, we generate an
artificial task based on the Higgs Twitter dataset [15], which contains follower links, and address the
task of finding mutual followers (i.e., “matches”). We keep users having at least 20 mutual links,
resulting in a subset of 13k users. We build estimated match probabilities using matrix factorization.
The experimental protocol is detailed in App. F.4. We also present in App. F.5 additional experiments
using the Epinions dataset [49]. The results are qualitatively similar.

Our main baseline is equal utility (eq. utility) defined in Section 3. We also compare to quality-
weighted exposure, and equality of exposure as baselines that ignore the reciprocal nature of the task.
The results are summarized in Fig. 4:

• Example of trade-offs obtained by varying α are plotted in Fig. 4a. As α decreases, the utility
increases for the worse-off users at the expense of better-off users. We note that increasing the
utility of worse-off users has a massive cost on total user utility: looking at the exact numbers we
observe that α = −5 has more than doubled the cumulative utility of the 10% worse off users
compared to α = 1 (120 vs 280), but at the cost of more than 60% of the total utility (17k vs 6.4k).
Fig. 6 in Appendix F.4 contains plots of the trade-offs achieved by the other methods.

• qua.-weighted and eq. exposure are dominated by welf on a large range of hyperparameters. An
example is given in Fig. 4b, where welf α = 0.5 already dominates some of their models, even
though in this region of α there is little focus on worse-off users. More generally, all values of
β ≥ 0.1 for qua.-weighted and eq. exposure lead to rankings with dominated curves. This is
expected since they ignore the reciprocal nature of the task.

• eq. utility is dominated by welf near strict equality as illustrated in Fig. 4c: for large values of β,
it is not possible to increase the utility of the worse off users, and eq. utility only drags utility of
better-off users down.

• welf is more effective at increasing utility of the worse-off users as can be seen in Fig. 4e-g, which
plots the total utility as a function of the cumulative utility at different points of the Lorenz curve
(10%, 20%, 50% worse-off users respectively). For total utilities larger than 50% of the maximum
achievable, welf significantly dominates eq. utility in terms of utility of worse-off users (10% and
25%) at a given level of total utility. welf also dominates eq. utility on the 50% worse-off users
(Fig. 4h) in the interesting region where the total utility is within 20% of the maximum.

• More inequality is not necessarily unfair As shown in Fig. 4d, we see that for the same utility for
the 10% worse-off users, welf models have higher inequalities than eq. utility. As seen before, this
higher inequality is due to a higher total utility (and higher total utilities for the 25% worse-off
users. The analysis of these Lorenz curves allow us to conclude that these larger inequalities are
not due to unfairness. They arise because welf optimizes the utility of the worse-off users at lower
cost in terms of average utility than eq. utility.

6 Related work

The question of fairness in rankings originated from independent audits on recommender systems
or search engines, which showed that results could exhibit bias against relevant social groups
[57, 33, 21, 40, 35] Our work follows the subsequent work on ranking algorithms that promote
fairness of exposure for individual or sensitive groups of items [10, 8, 7, 54, 42, 65]. The goal is often
to prevent winner-take-all effects, combat popularity bias [1] or promote smaller producers [39, 41].
Section 3 is devoted to the comparison with this type of approaches. Most of these works use a
notion of fairness oriented towards items only. Towards two-sided fairness, Wang and Joachims [60]
promote user-side fairness using concave functions of user utilities, similarly to us. Other works use
equality constraints to define user-side fairness [6, 63]. These three approaches rely on the definitions
of item-side fairness discussed in Section 3. Patro et al. [47] generate rankings that are envy-free
on the user side, and guarantees the fair min-share for items. This approach is not amenable to
controllable trade-offs between user and item utilities.

We are the first to address one-sided and reciprocal recommendation within the same framework.
There is less existing work studying the fairness of rankings in the reciprocal setting. Xia et al.
[64] aim at equalizing user utility between groups, which suffers from the problems discussed in
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(a) Example trade-offs
achieved by welf.

(b) welf dominates
exposure-based methods.

(c) welf dominates eq.
utility near strict equality.

(d) Total utility vs inequal-
ity.

(e) Total utility vs utility
of 10% worse-off users.

(f) Total utility vs utility
of 25% worse-off users.

(g) Total utility vs utility
of 50% worse-off users.

Figure 4: Results on the twitter dataset.

Section 3. Jia et al. [31] generate rankings using a welfare function approach, but optimizing only the
utility of users being recommended. Paraschakis and Nilsson [46] postprocess rankings to correct
for inconsistencies between estimated and declared preferences of users. In contrast, we aim at fair
trade-offs between user and item utilities, under the assumption that biases in the preference estimates
have been addressed earlier in the recommendation pipeline. Fairness is also studied in the context of
ridesharing applications [62, 37, 44], but they address matching rather than ranking problems.

There is growing interest in making the relationship between fairness in machine learning and social
choice theory [25, 59, 4, 20, 27, 12, 16, 17], and welfare economics in particular [56, 28, 34, 36, 67].
In line with Hu and Chen [28], who focused on classification and parity penalties, we argue that
Pareto-efficiency should be part of fairness assessments. We are the first to propose concave welfare
functions and Lorenz dominance to address two-sided fairness in recommendation.

7 Conclusion

We view fairness in rankings as optimizing the distribution of user and item utilities, giving priority
to the worse-off. Following this view, we defined fair rankings as having non-dominated generalized
Lorenz curves of user and item utilities, and develop a new conceptual and algorithmic framework for
fair ranking. The generality of the approach is showcased on several recommendation tasks, including
reciprocal recommendation.

The expected positive societal impact of this work is to provide more principled approaches to
mediating between several parties on a recommendation platform. Yet, we did not address several
questions that are critical for the deployment of our approach. In particular, true user preferences are
often not directly available, and we only observe proxies to them, such as clicks or likes. Second,
interpersonal comparisons of utilities are critical in this work. It is thus necessary to make sure that
the proxies we choose lead to meaningful comparisons of utilities between users. Third, estimating
preferences or their proxies is itself not trivial in recommendation because of partial observability.
The true fairness of our approach is bound to a careful analysis of (at least) these additional steps.
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A Outline of the appendices

These appendices are structured as follows:

• In Appendix B, we present how our fairness framework can be applied to sensitive groups
of users or categories of items.

• In Appendix C, we present a deeper analysis of the trade-offs achieved by the welfare
approach. We also provide a theoretical guarantee relating the true welfare obtained by max-
imizing the welfare using estimated preferences, depending on the quality of the estimates.

• In Appendix D, we present the proofs for the theoretical results comparing our results and
previous criteria of fairness in rankings. In addition, in Appendix D.3, we describe how to
extend the criteria of equality of exposure and quality-weighted exposure in a reciprocal
recommendation setting. This is the extension used in our experiments on reciprocal
recommendation. In Proposition 8, we present an additional result regarding the inefficiency
of these criteria in reciprocal recommendation.

• In Appendix E, we present the more general version of the Frank-Wolfe algorithm, which
we use both to optimize the welfare function over stochastic rankings, as well as the penalty-
based baselines. This appendix also contains the proofs of the results in Section 4. In
addition, this appendix contains fundamental lemmas that are used in other appendices.

• Appendix F gives the details of the experiments presented in Section 5, as well we many
additional experiments (two additional, larger scale datasets on one-sided recommendation,
and an additional dataset for reciprocal recommendation)

• Appendix G briefly discusses the difference between the penalty we use in our implementa-
tion of the baseline approaches and an alternative penalty used by some authors.

• Finally, Appendix H discusses the difference between applying item-side fairness criteria
for every ranking, compared to what we do in the paper, which defines item-side utility as
an aggregate over the rankings of all users.

B Fairness towards sensitive groups rather than individuals

In all the paper we focus on fairness towards individual users and items rather than groups of users or
items. Prior work [54, 42, 55] considered the utlity of a group as the sum or the average utility of its
members. Using this definition of group utility, our framework dirrectly extends to groups rather than
individuals. In this section we describe the case of one-sided recommendation with groups of users
and item categories. The case of reciprocal recommendation (with user groups only) is similar but
simpler.

Let S = (sp)
|S|
p=1 be (possibly overlapping) user groups, i.e., ∀p ∈ [[|S|]], sp ⊆ N and ∪p∈[[|S|]]sp =

N . Similarly, let C = (cq)
|C|
q=1 be (possibly overlapping) item categories, i.e., ∀q ∈ [[|C|]], cq ⊆ I and

∪q∈[[|C|]]cq = I. On the user side, such groups would typically correspond to demographic groups
considered sensitive for the application at hand [57]. On the item side, groups can represent a single
producer for the case where we want to be fair to producers based on the aggregate utility they obtain
from their products [41], or demographic groups as well [33].

In all cases, we redefine the user-side utility for groups and the item-side utility for categories:

ugrsp(P ) =
∑
i∈sp

ui(P ) ucatcq (P ) =
∑
j∈cq

uj(P )

Let ugr(P ) = (ugrsp(P ))
|S|
p=1 and ucat(P ) = (ucatcq (P ))

|C|
q=1 be the utility profiles of user groups

and item categories associated to P respectively. The two-sided Lorenz efficiency for groups and
categories is defined as:

Definition 2. Let S be a set of user groups and C a set of item categories. Let P ∈ P . P is
(S, C)-Lorenz efficient if there is no P ′ ∈ P such that either condition holds:

1. ugr(P ′) �L ugr(P ) and ucat(P ′) �L ucat(P ), or
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2. ucat(P ′) �L ucat(P ) and ugr(P ′) �L ugr(P ).

The welfare function associated to (S, C), still parametrized by θ = (λ, α1, α2) ∈ Θ, is defined as

W gr
θ (P ) = (1− λ)

∑
s∈S

ψ(ugrs (P ), α1) + λ
∑
c∈C

ψ(ucatc (P ), α2)

The welfare function follows the general form of objective function used for the algorithm in
Appendix E, so the optimization of W gr

θ requires similar computational complexity as Wθ.

Finally, the extension of Proposition 1 is straightforward. Its proof is similar to the proof presented in
Appendix C.

Proposition 5. ∀θ ∈ Θ,∀P ∗ ∈ argmax
P∈P

W gr
θ (P ), P ∗ is (S, C)-Lorenz efficient.

Note that this way of treating groups is not necessarily optimal. In particular, in does not account for
within-group fairness. The separate consideration of within-group and between-group fairness has
been studied extensively in the literature on equality of opportunity [50], which has inspired several
works on algorithmic fairness [22, 26]. Yet, how to apply these principles to two-sided fairness in
recommendation is still open, and is left as future work.

C More on welfare functions

This appendix provides an in-depth analysis of the trade-offs that are achievable by the welfare
approach. We first pove the proposition of Section 2.2, and analyze the utilitarian rankings (obtained
with α1 = α2 = 1). We then analyze how to obtain leximin optimal solutions on the side of the items
in Appendix C.2, as mentioned in Section 2.2. Finally, we prove Theorem 2 in Appendix C.3, which
provides a regret bound relating the true welfare achieved when maximizing welfare on estimated
preferences. Some results in this section use Lemma 3 of Appendix 4, which is proved in Appendix 4.

Throughout the appendices, we use the more general version of item utilities (two-sided preferences),
described at the end of Section 2.1. Moreover, to clarify the notation, we remind that a ranking tensor
is a three-way tensor P where Pijk is the probability that item j is recommended to user i at rank k.
We consider P as an n× n× |I| tensor, where irrelevant entries are set to 0. With this notation, the
utility for both users and items can be written with the same formula:

∀i ∈ [[n]], ui(P ) =

n∑
j=1

µij(Pij + Pji)v.

Note that this formula also corresponds to the two-sided utility in reciprocal recommendation. In
general, the results in this appendix can be extended to reciprocal recommendation with minimal
changes to their proofs, using N = I = [[n]] and the formula above for the utility.

C.1 Lorenz efficiency and utilitarian ranking

We first prove Proposition 1:

Proposition 1. ∀θ ∈ Θ,∀P ∗ ∈ argmax
P∈P

Wθ(u(P )), P ∗ is Lorenz-efficient.

Proof. It is well known that if Φ is increasing and strictly concave, then F (u) =
∑n
i=1 Φ(ui) is

monotonic with respect to Lorenz dominance [53, 58]: u �L u′ =⇒ F (u) > F (u′).

In the case of Wθ, for every θ = (λ, α1, α2) ∈ Θ, both ψ(., α1) and ψ(., α2) are strictly concave by
the definition of Θ (recall that in Θ, we have α1, α2 < 1).

The partial function7 u′N 7→Wθ((uI ,u
′
N )) is, up to a constant, of the form of F and likewise for

the partial function u′I 7→Wθ((u
′
I ,uN )). We now prove the result by contradiction. Assume that

u ∈ argmaxu∈U Wθ(u) is not Lorenz efficient. Then there is u′ ∈ U such that (u′N �L uN and

7We denote by (uI ,u
′
N ) the vector Rd such that (uI ,u′N )i = ui if i ∈ I and (uI ,u

′
N )i = u′i if i ∈ N .
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u′I �L uI) or (u′N �L uN and u′I �L uI). Let us assume (u′N �L uN and u′I �L uI), the
other case is dealt with similarly. We then have:

Wθ(u
′) ≥Wθ((u

′
I ,uN )) (because u′N �L uN )

> Wθ((uI ,uN )) (because u′I �L uI)

which contradicts the maximality of u.

The analogous for Proposition 1 for reciprocal recommendation is a direct consequence of standard
results that concave welfare functions are monotonic with respect to Lorenz dominance [53, 58].

Utilitarian ranking Proposition 6 below generalizes to two-sided utilities the well-known result
that maximizing user-side utility is achieved by sorting j ∈ I by decreasing µij (see e.g., [14]). For a
ranking tensor P and a user i, we denote by S(Pi) the support of Pi in ranking space.8 We remind
that σ(j) is the rank of item j, and that lower ranks are better. For a user i and item j, we use µji = 1.

Proposition 6 (Utilitarian ranking). Assume ∀k ∈ [[n− 1]], vk > vk+1 ≥ 0 and let

P ∗ ∈ argmax
P∈P

W 1
2 ,1,1

(P ) = argmax
P∈P

∑
i∈[[n]]

ui(P ).

1. ∀i ∈ N ,∀σ ∈ S(P ∗i ) : σ(j) < σ(j′) =⇒ µ̃ij ≥ µ̃ij′ with µ̃ij = µij + µji.

2. If ∀(i, j) ∈ [[n]]2, µij = µji, then µ̃ij ≥ µ̃ij′ ⇐⇒ µij ≥ µij′ .

When mutual preferences are symmetric (i.e., µij = µji), the utilitarian ranking is the same as the
usual sort by decreasing µij . This also obviously holds when we consider exposue as item utility
(µji = 1). This means that without considerations of two-sided fairness (α1, α2 < 1), the optimal
ranking for two-sided utilities is the same as the usual ranking. This might explain why the two-sided
utility has never been studied before, even in reciprocal recommendation [45].

For the proof of Proposition 6, the main part is the following lemma:

Lemma 1. Let F (u(P )) =
n∑
i=1

ui(P ) and µ̃ij = µij + µji. Assume ∀k ∈ [[n− 1]], vk ≥ vk+1 ≥ 0.

If P ∗ ∈ P is such that ∀σ ∈ S(P ∗i ),∀j, j′, σ(j) < σ(j′) =⇒ µ̃ij ≥ µ̃ij′ then P ∗ ∈ argmax
P∈P

u(P ).

Moreover, if ∀k ∈ [[n− 1]], vk > vk+1 ≥ 0, then the reciprocal is true.

Proof. Notice that, thanks to the completion of P with zeros on irrelevant entries and formula C,
F (u(P )) can be rewritten as:

F (u(P )) =

n∑
i=1

ui(P ) =

n∑
i=1

n∑
j=1

µij(Pij + Pji)v =

n∑
i=1

n∑
j=1

(µij + µji)Pijv

where the last equality is obtained by swapping i and j in the second sum, which is possible since i
and j span the same range.

The result is then a direct consequence of Lemma 3 in Appendix E, using Aij = µij + µji.

The first of statement of Proposition 6 assumes that the exposure weights v are non-negative and
strictly decreasing as per the second point of Lemma 1. Lemma 1 above gives the statement for the
more general case of non-increasing v.

Proof of Proposition 6. The first statement is the consequence of Lemma 1 above, noticing that
F (u(P )) in Lemma 1 always has the same argmax. The second statement is obvious from the
assumptions.

8Formally, S(Pi) =
{
σ : I → [[|I|]]

∣∣σ is one-to-one, and ∀j ∈ I, Pijσ(j) > 0
}

.
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C.2 Item-side leximin optimality

The most egalitarian trade-off achievable by our method is described by the leximin order [51]. Given
two utility profiles u and u′, u≥lex u

′ if U is greater than U ′ according to the lexicographic order.9
The leximin optimal profile is egalitarian in the sense that it maximizes the utility of individuals in
sequence, from the worse-off to the better-off. Depending on the set of feasible profiles, this may not
lead to equal utility for everyone, but any further reduction of inequality can only be achieved by
making people worse off for the benefit of no other, in violation of Pareto-dominance.

The proposition below formalizes how leximin optimal solutions on the side of items are found. It
shows that item-side leximin solutions are obtained by having α2 → −∞ and λ → 1 at the same
time. The proposition gives a formal statement of the rate at which λ should converge to 1 relative to
α.

In the statement of the proposition, given two functions F and G, we use F (α) ≥
α→−∞

G(α) as a

shorthand for F (α) ≥ G(α) for α sufficiently small.10.
Proposition 7. Let U item

lex = {u ∈ U : ∀u′ ∈ U ,uI ≥lex u
′
I} and let u∗ = argmax

u∈U item
lex

∑
i∈N

ψ(ui, α1).

∀η > max(1, ‖u∗I‖∞),∀u ∈ U : W1−ηα,α1,α(u∗) ≥
α→−∞

W1−ηα,α1,α(u).

This means that among the leximin-optimal item-side utility profiles, α1 still controls the redistribution
profile on the user side, since it is possible that |U item

lex | > 1 in one-sided recommendation. A similar
result holds for user-side item leximin.

Proof. Let u∗ = argmax
u∈U item

lex

∑
i∈N

ψ(ui, α1) and u ∈ U . Let θ = (λ, α1, α) and take α < min(0, α1).

Let (j1, j2, . . . , j|I|) be the ranking of u∗I in increasing order: u∗j1 ≤ . . . u∗j|I| . Likewise, let
(j′1, j

′
2, . . . , j

′
|I|) be the ranking of uI in increasing order: uj′1 ≤ . . . ≤ uj′|I| .

Let m = max{k ∈ [[|I|]]∪{0} : ∀` ≤ k, u∗j` = uj′`}+ 1, be the last index (+1) such that the smallest
values of u∗ and u are equal (m = 1 if the smallest values are different).

Let C(α) = W1−ηα,α1,α(u∗)−W1−ηα,α1,α(u).

Let K =
∑
i∈N

(
ψ(u∗i , α1)− ψ(u′i, α1)

)
.

case 1: m = |I|+ 1. Then C(α) = (1− ηα)K ≥ 0 since u∗I = uI and u∗ maximizes the user-side
welfare.

case 2: m < |I|. Then, we have uj′m < u∗jm by the leximin optimality of u∗I . We then have:

C(α) = (1− ηα)K + ηα
∑
j∈I
−(u∗j )

α + (uj)
α

= −(1− ηα)
(
u∗jm

)α( K

1− ηα
( η

u∗jm

)α
︸ ︷︷ ︸
−−−−−→
α→−∞

0

+1 +
∑
k>m

( u∗jk
u∗jm

)α
︸ ︷︷ ︸
−−−−−→
α→−∞

0

−
(uj′m
u∗jm

)α
︸ ︷︷ ︸
−−−−−→
α→−∞

+∞

−
∑
k>m

(uj′m
u∗jm

)α
︸ ︷︷ ︸
≥0

)

which implies lim
α→−∞

C(α) = +∞ and thus the desired result.

C.3 Guarantees when performing inference with estimated preferences

In practice, inference is carried out on an estimate µ̂ of µ, meaning that, denoting û the resulting
estimated utility11 the system output P̂ = argmaxP∈PWθ(û(P )). The following result extends

9Formally, u>lex u
′ if (∃k ∈ [[d]] s.t. ∀i < k, Ui = U ′i and Uk > U ′k). u≥lex u

′ ⇐⇒ ¬(u′≥lex u).
10Formally, F (α) ≥

α→−∞
G(α) ⇐⇒ ∃α0 ∈ R, ∀α ≤ α0, F (α) ≥ G(α).

11We have ûi(P ) =
∑
j∈I µ̂ijPijv for i ∈ N .
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surrogate regret bounds that exist in classification [5, 66] and learning to rank [14, 48, 2]to the case
of welfare functions and global stochastic rankings. It makes the link between the quality of the
estimate µ̂ and an optimality guarantee for u(P̂ ) (i.e., the true welfare of the ranking inferred on the
estimated values). We prove the result for θ = ( 1

2 , α, α) for α ≤ 1 to simplify notation.12

Theorem 2. Let α ≤ 1 and θ = ( 1
2 , α, α) ∈ Θ. Let µ̂ ∈ R|N |×|I|+ , P̂ = argmaxP∈PWθ(û(P )),

and P ∗ = argmaxP∈PWθ(u(P )).

Let furthermore B(µ̂) = max
(

maxi∈[[n]] ψ
′(ui(P̂ ), α),maxi∈[[n]] ψ

′(ûi(P
∗), α)

)
. We have:

Wθ(u(P ∗))−Wθ(u(P̂ )) ≤ 4B(µ̂)

√
n ‖v‖22

√ ∑
(i,j)∈N×I

(µ̂ij − µij)2.

The existing results closest to our Theorem 2 are Theorem 2 of [14]. Here the result is substantially
more difficult to prove because of the concave function and the fact that utilities are two-sided, calling
for considering the rankings of multiple users at once.

Proof. We have:

Wθ(u(P ∗))−Wθ(u(P̂ )) = Wθ(u(P ∗))−Wθ(û(P̂ ))︸ ︷︷ ︸
≥Wθ(û(P∗)

+Wθ(û(P̂ ))−Wθ(u(P̂ ))

≤Wθ(u(P ∗))−Wθ(û(P ∗))︸ ︷︷ ︸
=C1

+Wθ(û(P̂ ))−Wθ(u(P̂ ))︸ ︷︷ ︸
=C2

Let B1(µ̂) = maxi∈[[n]] ψ
′(ûi(P

∗), α).

We first prove:

C1 ≤ 2B1(µ̂)

√
n ‖v‖22

√ ∑
(i,j)∈[[n]]2

(µ̂ij − µij)2. (2)

To prove (2), we start by using the concavity of ψ(., α) for α ≤ 1. Let Φ(.) = 1
2ψ(., α). We have:

C1 =

n∑
i=1

(
Φ(u(P ∗))− Φ(û(P ∗))

)
≤

n∑
i=1

Φ′(ûi(P
∗))
(
u(P ∗))− û(P ∗)

)
thus C1 ≤

n∑
i=1

n∑
j=1

Φ′(ûi(P
∗))(µij − µ̂ij)(P ∗ij + P ∗ji)v

=

n∑
i=1

n∑
j=1

(
Φ′(ûi(P

∗))(µij − µ̂ij) + Φ′(ûj(P
∗))(µji − µ̂ji)︸ ︷︷ ︸

=Aij

)
P ∗ijv

where, similarly to the proof of Lemma 1, we swapped the indexed (i, j) in the Φ′(ûi(P
∗))µijP

∗
ji)v,

which is possible because i and j span the same range in the sum.

Notice that the terms AijP ∗ijv are all zero except if i ∈ N and j ∈ I (because P ∗ijk = 0 otherwise).
For i ∈ N , let σi be a ranking which ranks (Aij)j∈I in decreasing order, i.e., σi(j) < σi(j

′) =⇒
Aij ≥ Aij′ . Using Lemma 3 in Appendix E, we have:

C1 ≤ max
P∈P

n∑
i∈N

∑
j∈I

AijPijv =

n∑
i∈N

∑
j∈I

Aijvσi(j)

Now let V = [vσi(j)]i∈N
j∈I

. By Cauchy-Shwarz inequality and denoting ‖X‖F =
√∑

ij X
2
ij

the Frobenius norm of matrix X , we have ‖V ‖F =
√
n ‖v‖22 and ‖A‖F ≤ B1(µ̂)(‖µ− µ̂‖F +

12The dependency on µ̂ inB(µ̂) is because ψ′(., α) is not bounded in general. In practice, we use ψ(x+η, α)
for a small η > 0 to avoid the singular point at 0, in which case B < ψ′(η, α).
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∥∥µ> − µ̂>∥∥
F

), leading to:

C1 ≤
√
n ‖v‖22 ‖A‖F ≤ 2B1(µ̂)

√
n ‖v‖22 ‖µ− µ̂‖F

which proves (2).

Similarly, using B2(µ̂) = maxi∈[[n]] ψ
′(ui(P̂ ), α) and the same arguments as above, we obtain:

C2 ≤
√
n ‖v‖22 ‖A‖F ≤ 2B2(µ̂)

√
n ‖v‖22 ‖µ− µ̂‖F

which yields the desired result.

D Comparison to utility/inequality trade-offs

In this appendix, we provide the proofs of Section 3, and describe more precisely how we applied
quality-weighted exposure and equality of exposure in reciprocal recommendation.

D.1 One-sided recommendation: quality-weighted exposure

We prove here Proposition 2 of Section 3. The result shows that in some cases, compared to any
choice of the parameter θ ∈ Θ of the welfare approach, quality-weighted exposure leads to the
undesirable behavior of decreasing user utility while increasing inequalities of exposure between
items. Figure 5 gives an example.
Proposition 2. The following claims hold irrespective of the choice of uqua,β ∈ Uqua

β .

For every d ∈ N∗ and every N ∈ N∗, there is a one-sided recommendation problem, with d+ 1 items
and N(d+ 1) users, such that ∀θ ∈ Θ, we have:

(
∃β > 0,uθN �L uqua,β

N and uθI �L uqua,β
I

)
and lim

β→∞

∑
i∈N u

qua,β
i∑

i∈N u
θ
i

−−−→
d→∞

5

6
.

Proof. We prove it for N = 1, the more general case is just obtained by repeating the pattern with
d+ 1 items and d+ 1 users.

Let i1, ..., id+1 be the indexes of the users and j1, ..., jd+1 the indexes of the items. The preferences
have the following pattern:

∀k ∈ [[d+ 1]], µikjk = 1 ∀k ∈ [[d]], µikjd+1
=

1

2

all other µij (for user i and item j) are set to 0 (note that we are in a problem with one-sided
preferences, which means µji = 1 for every item j and user i.

We consider a task with a single recommendation slot (v1 = 1, v2 = . . . = v|I| = 0). On that
problem, the optimal ranking for every θ ∈ Θ is to show item jk to user ik, which leads to perfect
equality in terms of item exposure, and maximizes every user utility. It is thus leximin optimal for
both users and items for every θ ∈ Θ.

Then, the qualities are equal to:

∀k ∈ [[d]], qjk = 1 qjd+1
=

1

2
d+ 1

the target exposure is thus tjk = d+1
3
2d+1

for k ∈ [[d]] and tjd+1
= (d+ 1)

1
2d+1
3
2d+1

.

Since the problem is symmetric in the users i1, ..., id, by the concavity of F qua
β (u(P )) with respect

to P , there is an optimal ranking described by a single probability p as:

∀k ∈ [[d]], Pikjk = 1− p Pikjd+1
= p Pid+1jd+1

= 1

Note that for such a P , ∀k ∈ [[d]], uqua,β
ik

(P ) = 1− 1
2p, and it is clearr that there is β > 0 such that

p > 0, which then implies uθ �L uqua,β
N and uθ �L uqua,β

I .
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Now, as β →∞, p is such that exposure equals its target, which leads to the following equation:

dp+ 1 = (d+ 1)
1
2d+ 1
3
2d+ 1

.

We thus get p = d+1
d

d+2
3d+2 −

1
d −−−→d→∞

1
3 , which gives the result uqua,β

ik
(P ) = 1− 1

2p −−−→
p→ 1

3

5
6 .

Notice that similarly to Proposition 3, the result does not depend on the choice of uqua,β because the
sum of user utilities converges.

D.2 Reciprocal recommendation: equality of exposure

We now prove Proposition 3.
Proposition 3. For β > 0, let Ueq

β = argmaxu∈U Fβ(u). The claim below holds irrespective of the
choice of ueq,β ∈ Ueq

β . Let n ≥ 5. There is a reciprocal recommendation task with n users such that:

∀θ ∈ Θ,uθ,∃β > 0 : ∀i ∈ [[n]], uθi > ueq,βi and lim
β→∞

∑
i∈N

ueq,βi = 0.

Proof. The example is given in Figure 5. We still consider a recommendation task with a single
recommendation slot.

Let us rename the users by i1, i2, ..., i5. The preference patterns are µi1i2 = µi1i3 = 1 and µi4i5 = 1.
Apart from µij = µji, other µijs are 0. In this proof, we show that ueq,βi1

= 2ueq,βi2
for every β, which

implies that ueq,βi1
−−−−→
β→∞

0 because 0 utility for every user is feasible. On this task, the leximin

ranking also maximizes the sum of users utilities (as shown in Figure 5), so the optimal ranking is the
same for every θ ∈ Θ, and every user has a two-sided utility of at least 1.5.

Since Fβ(u) is stricly Schur-concave for β > 0, i2 and i3 always have the same utility in an optimal
utility profile (because they play a symmetric role). i4 and i5 also have the same utility. Note that
the interest of i4 and i5 in that problem is to make it possible to recommend them to i1, which has 0
value.

Similarly to the problem in one-sided recommendation, the only way to decrease the penalty is
to reduce the utility of i1, i4, i5. However, reducing the utility of i1 can only be done by either
recommending i4 or i5 to i1, or recommending i4/i5 to i2/i3. In all cases, decreasing i1’s utility
decreases i2/i3’s utilities.

More precisely, because of the symmetries and the concavity of Fβ(u(P )) with respect to P , for
every β > 0, there is an optimal ranking tensor described by three probabilities p, q, q′ such that:13

Pi1i2 =Pi1i3 =
1

2
p Pi2i1 =Pi3i1 =q Pi4i5 =Pi5i4 =q′

Pi1i4 =Pi1i5 =
1

2
(1− p) Pi2i3 =Pi2i4 =Pi2i5 =

1

3
(1− q) Pi4i1 =Pi4i2 =Pi4i3 =

1

3
(1− q′)

Pi3i2 =Pi3i4 =Pi3i5 =
1

3
(1− q) Pi5i1 =Pi5i2 =Pi5i3 =

1

3
(1− q′)

In all cases, the two-sided utility are

ui1(P ) = p︸︷︷︸
Pi1i2µi1i2+Pi1i3µi1i3

user-side utility

+ 2q︸︷︷︸
Pi2i1µi2i1+Pi3i1µi3i1

item-side utility

and ui2(P ) = q +
1

2
p

Thus, in an optimal ranking for Fβ(u), we must have ui1(P ) = 2ui2(P ). Equality, which is achieved
at β →∞ can then only be at 0 utility for every user (since 0 is feasible).

The task used in the proof contains only 5 users. Any number of users can be added to the group
{i4, i5}, with a “complete” preference profile (µij = 1 for all pair i, j in that group).

13Since there is a single recommendation slot, we identify Pij1 with Pij
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The Lorenz efficiency of our welfare approach guarantees that it cannot exhibit the undesirable
behaviors of equality or quality-weighted exposure penalties described in Propositions 2 and 8.

D.3 Equality of exposure and quality-weighted exposure in reciprocal recommendation

In one-sided recommendation with one-sided preferences, equality of exposure is the same as equality
of utility. More generally, let ej(P ) =

∑
i∈N Pijv the total exposure of item j. Equality of exposure

is defined by:

F expo
β (P ) =

∑
i∈N

ui(P )− β

√√√√∑
j∈I

(
ej(P )− |N |

|I|
‖v‖1

)2
In one-sided recommendation, parity of exposure is relatively well behaved because the exposure
target |N ||I| ‖v‖1 is constant. Driving towards equality can thus not lead to a decrease of the total
exposure budget, which was the problem with equality of utility in settings with two-sided preferences
(driving towards equality of utility leads to a decrease of total utility), as we described in Section 3.

The formula allows us to extend parity of exposure in the next section and in our experiments, since
it is also valid in reciprocal recommendation. Likewise, the formula of quality-weighted exposure
that is also valid in reciprocal recommendation is given by:

F qua
β (P ) =

∑
i∈N

ui(P )− β
√∑
j∈I

(
ej(P )− qjE

Q

)2
.

The result below shows that equality of exposure and quality-weighted exposure lead to inefficiencies
in reciprocal recommendation settings:
Proposition 8. For every n ∈ N∗, there is a reciprocal recommendation task with n users such that:

∀θ ∈ Θ,∃β > 0 : uθ �L uexpo,β and uθ �L uqua,β .

Moreover, lim
β→∞

∑
i∈N

uexpo,βi =
2

n

∑
i∈N

uθi and lim
β→∞

∑
i∈N

uqua,βi =
2 + n

2n

∑
i∈N

usumi .

Proof. An example of extreme case is with n users when there is a “leader” who is the only possible
match with other users. We consider a single recommendation slot. The preferences are:

∀j ∈ {2, . . . , n}, µ1j = µj1 = 1 ∀(i, j) ∈ {2, . . . , n}2, µij = 0.

On this task, the for every θ ∈ Θ, the optimal ranking is given by:

∀j ∈ {2, . . . , n}, P1j =
1

n− 1
∀i ∈ {2, . . . , n}Pi1 = 1.

The reason it is the only possible optimal ranking is because it is leximin optimal and has the
maximum achievable sum of utilities. The utilities are then u1(P ) = n and ui(P ) = 1 + 1

n−1 , which
leads to

∑n
i=1 ui = 2n.

Equality of exposure Driving towards equality of exposure requires to reduce the exposure of user 1,
which in turn reduces the utility of user 1 and the utilities of those who user 1 is less exposed to. Thus,
there is β > 0 such that uθ �L uexpo,β because of the loss of efficiency. Finally, by the concavity
of the objective with respect to P , and by the symmetry of the problem with respect to i2, . . . , in,
we can conclude that an optimal way to achieve perfect equality of exposure is to recommend, to
every user i, every user j 6= i with probability 1

n−1 . The utility is then u1(P ) = 1 + (n− 1) 1
n−1 and

ui(P ) = 2
n−1 for i ≥ 2, leading to

∑n
i=1 ui = 4, which gives the result.

Quality-weighted exposure On the same example, the qualities are q1 = n − 1 and qi = 1 for
1 ≥ 2. The total exposure targets are then t1 = 1

2n and ti = n
2(n−1) . These exposure targets mean

less exposure for 1 than in the leximin ranking. Thus β sufficiently large has the effect of reducing
1’s exposure14, which reduces the utility of 1 and the users to whom 1 is less recommended. Thus

14Direct calculations of the derivatives show that when β > 0 is too small the penalty has no effect.
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Figure 5: Left: Example of a reciprocal recommendation task where equality of utility leads to 0
utility (see the proof of Prop. 3 in App. D). There is one recommendation slot per user. We give
the recommendation probabilities and utilities for the utilitarian ranking and three users, the other
ones are obtained by the symmetry of the problem. The utilitarian ranking is also leximin optimal, so
our approach yields the same recommendations for all θ. Right: Example where quality-weighted
exposure reduces user utility while increasing inequalities between items.

uθ �L uqua,β . By the symmetry of the problem, as β →∞, quality weighted exposure is achieved
by setting:

∀j ∈ {2, . . . , n} : P1j =
1

n− 1
Pj1 =

n

2(n− 1)

∀j′ ∈ {2, . . . , n}, j′ 6= j, Pjj′ =
1− n

2(n−1)

n− 2
=

1

2(n− 1)

The utilities are then u1(P ) = 1 + (n− 1) n
2(n−1) = 1 + n

2 and ui(P ) = n
2(n−1) + 1

n−1 = n+2
2(n−1) .

The total utility is thus 2 + n, which gives the result.

The Lorenz efficiency of our welfare approach guarantees that it cannot exhibit the undesirable
behaviors of parity or quality-weighted exposure penalties described in Propositions 2 and 8.

E A generic Frank-Wolfe algorithm for ranking

In this section, we present a general form of our algorithm presented in Section 4, as well as the
proofs of the claims.

Let F : Rn → R, concave, and we want to find

P ∗ ∈ argmax
P∈P

F (u(P )). (3)

Let 〈X |Y 〉 =
∑
ijkXijkYijk be the dot product between three-way tensors, and let ∇(F ◦ u)(P )

be the gradient of P 7→ F (u(P )) taken at P , i.e., (∇(F ◦ u))ijk = ∂F◦u
∂Pijk

Starting from P (0) ∈ P (in our experiments we always use a utilitarian ranking P (0) ∈
argmaxP∈P

∑n
i=1 ui(P )), the Frank-Wolfe algorithm alternates two steps for t ≥ 1:

1. let P̃ ∈ argmaxP∈P〈P | ∇(F ◦ u)(P t−1)〉
2. P (t) = (1− γ(t))P (t−1) + γ(t)P̃ with γ(t) = 2

t+2

The stepsize 2
t+2 is from Clarkson [13, Section 3], which avoids a line search and in our experiments

seemed to yield acceptable results. Irrespective of the step size, the fundamental results which allows
to use Frank-Wolfe in the setting of (3) are the two following lemmas:

Lemma 2. Recall that ui(P ) =
∑n
i=1 µij(Pij + Pji)v. Let ∂F

∂ui
denote the derivative of F with

respect to its i-th argument and ∂F
∂ui

(u(P )) the value of this derivative at u(P ).

Then, ∀i ∈ N ,∀j ∈ I,∀k ∈ [[|I|]], we have:

∂F ◦ u
∂Pijk

(P ) =
(
µij

∂F

∂ui

(
u(P )

)
+ µji

∂F

∂uj

(
u(P )

))
vk.
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Proof. The result is a consequence of the chain rule:

∂F ◦ u
∂Pijk

(P ) =

n∑
p=1

∂F

∂up
(u(P ))

∂up(P )

∂Pijk

With

up(P ) =

n∑
q=1

µpq

|I|∑
r=1

(Ppqr + Pqpr)vk.

Thus ∂up(P )
∂Pijk

= (µij1{p=i} + µji1{p=j})vk, which gives the desired result.

Lemma 3. Let A be an n × n matrix with Aij ∈ R (not necessarily non-negative). Let v ∈ R|I|
with non-negative and non-increasing entries, i.e., ∀k ∈ [[|I| − 1]], vk ≥ vk−1 ≥ 0. Let K be the last
index such that vK > 0 (or K = |I| if there is no such index).

Let P ∈ P such that:

∀i, ∀σi ∈ S(Pi),∀(j, j′) ∈ I2 :
(
σi(j) ≤ K and σi(j) < σi(j

′) =⇒ Aij ≥ Aij′
)
.

And let X be the n× n× |I| tensor defined as Xijk = Aijvk.

Then P ∈ argmaxP∈P〈P |X〉.
Moreover, if ∀k ∈ [[|I| − 1]], vk > vk−1 ≥ 0, then for every P ∈ argmaxP∈P〈P |X〉, we have:

∀i, ∀σi ∈ S(Pi),∀(j, j′) ∈ I2 :
(
σi(j) < σi(j

′) =⇒ Aij ≥ Aij′
)
.

Proof. The result stems from the rearrangement inequality (also known as the Hardy-Littlewood
inequality [23]), which states that for two vectors a ∈ Rn+, and b ∈ Rn, argmaxν

∑n
j=1 aν(j)bj ,

where ν spans the permutations of [[n]], is the set of permutations such that b is ordered similarly to
(aν(i))

n
i=1. If the aks are non-increasing, then every permutation that sorts b in decreasing order is in

the argmax. We need the reciprocal statement for the second part of our Lemma: if the ais are strictly
decreasing, then only the permutations that sort b in decreasing order are in argmaxν

∑n
j=1 aν(j)bj .

Note that these arguments are well-known in learning to rank [see, e.g., 14].

In our case, notice that
〈P |X〉 =

∑
i∈N

(∑
j∈I

AijPijkvk

)
The maximization over P can then be performed over each user i (and thus each bistochastic matrix
Pi separately). Now, if Pi is such that every σi ∈ S(Pi) orders Aij in decreasing order, then by the
rearrangement inequality σi ∈ argmaxν

∑
j∈I Aijvν(j). Notice that if only the K first elements of

v are non-zero, we only need a top-K ranking. This gives us the first part of the thoerem.

The second part of the theorem follows from the reciprocal of the rearrangement inequality, since for
Pi to be an optimal stochastic ranking for

∑
j∈I AijPijkvk, every permutation σi in its support must

be in argmaxν
∑
j∈I Aijvν(j).

E.1 Proof of Theorem 1

Lemma 2 and 3 together are sufficient to give algorithms for the inference of stochastic rankings using
our welfare function (1) and using the penalties of Section 3, by computing the partial derivatives
∂F
∂ui

. The main result of Section 4, which we prove now, instantiates this principle for the welfare
function approach:

Theorem 1. Let µ̃ij = Φ′i
(
ui(P

(t))
)
µij + Φ′j

(
uj(P

(t))
)
µji. Let P̃ such that:

∀i ∈ N ,∀σ̃i ∈ S(P̃i): σ̃i(j) < σ̃i(j
′) =⇒ µ̃ij ≥ µ̃ij′ . Then P̃ ∈ argmax

P∈P
〈P | ∇W (P (t))〉.

Proof. Notice that with W (P ) = F (u(P )) =
∑n
i=1 Φi(ui(P )), then ∂F

∂ui
(u(P )) = Φ′i(ui(P )). By

Lemma 2, we have that 〈P | ∇F (P (t〉) is of the form 〈P |X〉 with Xijk = Aijvk with Aij = µ̃ij ,
so the result is implied by Lemma 3.
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E.2 Proof of Proposition 4

Proposition 4. Let B = max
i∈[[n]]

‖Φ′′i ‖∞ and U = max
u∈U
‖u‖22. Let K be the maximum index of a

nonzero value in v (or |I|). Then ∀t ≥ 1,W (P (t)) ≥ max
P∈P

W (P ) − O(BUt ). Moreover, for each

user, an iteration costs O(|I| lnK) operations and requires O(K) additional bytes of storage.

Proof. Note that P is a simplex over ranking tensors containing one deterministic ranking for each
user. Using [13, Section 3], the Frank-Wolfe algorithm with our step-size converges in O

(
CW
t

)
,

where, using [13, Equation 11] and denoting by ∇2W the Hessian of W , we have

CW ≤ sup
u,u′∈U
ũ∈U

−1

2
(u− u′)>∇2W (ũ)(u− u′) ≤ B

2
sup

u,u′∈U
‖u− u′‖22 ≤ 2BU.

where we used ‖u− u′‖22 ≤ 2 ‖u‖22 + 2 ‖u′‖22.

For the computation cost, we use Lemma 3, which is more precise than Theorem 1, to see that finding
the argmax only requires a top-K ranking. While technically any P ∈ P should contain a whole
bistochastic matrix, it is not necessary to store a completion of the top-K rankings because they have
no impact on the utility. As such, storing each P̃ only costs O(K) bytes per user, which contain the
indices of the top-K items in the ranking found by Theorem 2.

Computing the two-sided utilities costs O(|N ||I|), and thus O(|I|) per user. Moreover, computing
the top-K ranking costs O(|I| lnK) in the worst case, with a streaming method that maintains a
min-heap of the top-K elements seen so far, and finish with sorting the top-K elements.

Notice that for faster average performance, the top-K sort can be performed using a fast selection
algorithm (such as quickselect), to obtain the top-K elements with O(|I|) expected time complexity,
and then sorting, yielding O(|I|+K lnK) expected time complexity per user at each iteration.
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F Additional experimental results

Our experiments are fully implemented in Python 3.9 using PyTorch15. We provide the code as
supplementary material. We compare our welfare maximization approach with the fairness penalties
presented in Section 3.

We also compare ourselves to the algorithm FairRec from Patro et al. [47] (referred to as Patro et
al. in the figures and description), who consider envy-freeness as user-side fairness criterion, and
max-min share of exposure as item-side fairness criterion. Envy-freeness states that every user should
prefer their recommendation list to that of any other user. The max-min exposure criterion on the item
side means that each user should receive an exposure of at least β E

|I| , where β is a parameter allowing
to control how much exposure is guaranteed to items. We vary this parameter in our experiments to
show the trade-offs achieved by Patro et al.. Since Patro et al. does not produce rankings, we took
the recommendation list with the given order as a ranked list.

F.1 One-sided recommendation: Lastfm-2k dataset

We describe in this section the details of the experiments presented in Section 5.1. We use a dataset
from the online music service Last.fm16. In the main paper, we presented results on Lastfm-2k
from Cantador et al. [9] which contains real play counts of 2k users for 19k artists, and was used
by Patro et al. [47] who also study two-sided fairness in recommendation. We filter the top 2, 500
items most listened to. Following [32], we pre-process the raw counts with log-transformation.
We split the dataset into train/validation/test sets, each including 70%/10%/20% of the user-item
play counts. We create three different splits using three random seeds. One-sided preferences are
estimated using the standard matrix factorization algorithm17 of Hu et al. [29] trained on the train set,
with hyperparameters selected on the validation set by grid search. The number of latent factors is
chosen in [16, 32, 64, 128], the regularization in [0.1, 1., 10., 20., 50.], and the confidence weighting
parameter in [0.1, 1., 10., 100.]. The estimated preferences we use are the positive part of the resulting
estimates.

Rankings are inferred from these estimated preferences. The exposure weights we use in the
computation of utilities are the standard weights of the discounted cumulative gain (DCG) (also
used in e.g., [54, 7, 42]): ∀k ∈ [[|I|]], vk = 1

log2(1+k)
. For each ranking approach, the Frank-Wolfe

algorithm is run with 5000 iterations to make sure we are close to convergence, and the number of
recommendation slots is set to 40.

We evaluate rankings on estimated preferences, considered as ground truth, following
many works on fair recommendation [54, 47, 60, 63]. This is because the goal is to
evaluate the fairness of ranking algorithms themselves, rather than biases in preference
estimates. All results are averaged over three random seeds. To obtain various trade-
offs, for welf we vary λ in [0.001, 0.01, 0.05, 0.075, 0.1, 0.125, 0.15, 0.2, 0.3, 0.325, 0.35]
and [0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.9, 0.95, 0.99, 0.999]. For Pa-
tro et al. we vary β in [0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4] and
[0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1], and for other methods we vary β
in [0.001, 0.005, 0.01, 0.015, 0.0175, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06] and
[0.065, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1, 0.105, 0.11, 0.2, 0.5, 1, 2, 5, 10, 20, 30, 40, 50, 70, 100].

Item-side fairness Figure 6 presents the various trade-offs achieved by each method in one-sided
recommendation, as discussed in Section 5.1. We observe that only qua.-weighted is unable to reach
equal exposure because of its quality-weighted exposure target: perfectly equal exposure is only
permitted when all items have the same quality.

Two-sided fairness Figure 7 shows the effect of varying α1 and λ on user fairness as in Figure 3
of the main paper, but with results repeated over three random seeds. We observe the same trade-offs
and conclude again that welf is better than Patro et al. and eq. exposure, in terms of its impact on
worse-off users.

15http://pytorch.org
16https://www.last.fm/
17Using the Python library Implicit: https://github.com/benfred/implicit (MIT License).
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(a) Welfare (ours) (b) Patro et al. (c) eq. exposure (d) qua.-weighted

Figure 6: representative trade-offs achieved by the various compared methods on Lastfm-2k. The
trade-offs achieved by the different methods look alike, except that qua.-weighted does not aim at
reaching equality of exposure for exteme values of β. See Section 5.1 for the discussions on the
differences between the trade-offs achieved by the different approaches.

(a) Total user utility. (b) User inequality. (c) Cumulative utility for
10% worse-off users

(d) Cumulative utility for
25% worse-off users

Figure 7: Focus on user fairness on Lastfm-2k: effect of varying α1 (user-side curvature of the
welfare function) keeping α2 = 0. The figure shows all the results obtained with a repetition of three
seeds. Overlapping points correspond to the same model parameter across different seeds. We can
see that the variance is negligible compared to the observed differences.

The importance of considering the whole Lorenz curve In Fig. 8 we show the results of the same
models as before, but changing the way we measure the item inequality: using the standard deviation
of exposure rather than the Gini index. Now, eq. exposure dominates the total utility/item inequality
plot, since the plot corresponds exactly to the objective function of the algorithm. Comparing eq.
exposure with welf α1 = 1, we now see that the trade-offs are different, with eq. exposure performing
better on the worse-off users. Comparing welf α1 = 0 and Patro et al., we see that they still exhibit
similar behaviors, with welf α1 = 0 being better for better off users. Finally, welf α1 = −2 still
dominates the othe methods in terms of performance on the worse-off users.

F.2 One-sided recommendation: Lastfm-15k dataset

We replicate the experiments on a larger dataset to verify our conclusions at a larger scale. We
consider another Lastfm dataset from Celma [11], which includes 360k users and 180k items (artists).
We select the top 15, 000 users and items having the most interactions, so we refer to this dataset as
Lastfm-15k. We apply exactly the same experimental protocol as for Lastfm-2k, with the same range
of hyperparameters for the different methods.
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(a) Total user utility. (b) User inequality. (c) Cumulative utility for
10% worse-off users

(d) Cumulative utility for
25% worse-off users

Figure 8: Focus on user fairness on Lastfm-2k, measuring item inequality with standard deviation
rather than Gini index. We observe a similar relative behavior between welf and Patro et al., but
now equality of exposure is optimal on the total utility/item inequality trade-off since it corresponds
exactly to the objective of the algorithm. Nonetheless, welf α1 = −2 still obtains higher performance
on 10%-25% worse-off users, showing that welf offers a larger range of trade-offs than eq. exposure.

(a) Total user utility. (b) User inequality. (c) Cumulative utility for
10% worse-off users

(d) Cumulative utility for
25% worse-off users

Figure 9: Results on Lastfm-15k when measuring the inequality between items with the Gini
coefficient.

Results Fig. 11 and 10 show the results obtained by welf, Patro et al. and eq. exposure. The
conclusions are similar to those on Lastfm-2k, with the results of welf α = 0 being more uniformly
better than those of Patro et al., even though overall similar. welf α1 = −2 dominates in terms of user
utility on worse-off users. welf and eq. exposure still find different trade-offs, with welf dominating eq.
exposure when inequality between items is measured by the Gini index, and eq. exposure dominating
welf when inequality is measured by the standard deviation.

F.3 One-sided recommendation: Movielens dataset

We provide additional results on the MovieLens-20m dataset [24], which contains ratings on a 5-star
scale of movies by real users. To simulate a collaborative filtering task with implicit feedback similar

(a) Total user utility. (b) User inequality. (c) Cumulative utility for
10% worse-off users

(d) Cumulative utility for
25% worse-off users

Figure 10: Results on Lastfm-15k when measuring inequalities between items with the standard
deviation.
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(a) Total user utility. (b) User inequality. (c) Cumulative utility for
10% worse-off users

(d) Cumulative utility for
25% worse-off users

Figure 11: Results on Movielens when measuring the inequality between items with the Gini
coefficient.

(a) Total user utility. (b) User inequality. (c) Cumulative utility for
10% worse-off users

(d) Cumulative utility for
25% worse-off users

Figure 12: Results on Movielens when measuring inequalities between items with the standard
deviation.

to Last.fm, we consider missing ratings as negative feedback and the task is to predict positive values.
Since ratings < 3 are usually considered as negative [38, 61], we set ratings < 3 to zero, resulting in
a dataset with preference values among {0, 3, 3.5, 4, 4.5, 5}. As for Lastfm-15k, we select the top
15, 000 users and items with the most interactions. For the inference and evaluation of rankings, we
follow the same protocols as for Last.fm.

The experimental protocol is the same as for Lastfm-2k and Lastfm-15k except that we do not run the
algorithm by [47] because its runtime was prohibitive.

results The results are qualitatviely similar to those on Lastfm-2k and Lastfm-15k except that the
trends are magnified. welf α = 1 and eq. exposure seem more similar, with welf α = 0 dominating
the trade-off total utility/item iniequality when item inequality is measured with the Gini index, and
eq. exposure dominating this trade-off when item inequality is measured with standard deviation.
welf α = −2 has great performance on worse-off users compared to eq. exposure or welf with larger
α, but also comes at a significant cost in terms of total user utility, which is very rapidly driven down.

F.4 Reciprocal recommendation: Twitter-13k dataset

We now provide the full details of the experiments on Twitter presented in Section 5.2 of the main
body. Given the lack of common benchmark for reciprocal recommendation [45], we generate
a reciprocal recommendation task for people-to-people recommendation problems based on the
social network Twitter. We use the Higgs Twitter-13k dataset which includes (directed) follower
relationships between users.18 We keep users having at least 20 mutual follows, resulting in a
subset of 13k users. We use the directed links to estimate the probability φij that i follows j, and
the (symmetric) probability of a mutual follow, which is µij = φij × φji. As in the experiments
for one-sided recommendation, we split the dataset into train/validation/test sets, each including
70%/10%/20% of the directed follower links. We create three random uniform splits, corresponding
to three different seeds.

18It was collected following the discovery of the Higgs boson in July, 2012.
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(a) Welfare (ours) (b) eq. utility (c) eq. exposure (d) qua.-weighted

Figure 13: representative trade-offs achieved by the various compared methods on Twitter-13k.
Exposure-based approaches (qua.-weighted and eq. exposure) do not yield interesting trade-offs as
they are unable to increase the utility of worse-off users. The trade-offs achieved by the welf and eq.
utility are different. Equal utility rapidly generates near-flat curves without really focusing on the
very first users, while welf increases the utility of the worst-off users while keeping the total utility
relatively high.

Estimates φ̂ij are built with logistic matrix factorization19 [32] trained on the train set with hyperpa-
rameter selection on the validation set. The number of latent factors is chosen in [16, 32, 64, 128], the
regularization in [0.1, 1., 10., 20., 50.], and the confidence weighting parameter in [0.1, 1., 10., 100.].
Rankings are inferred from all estimated mutual preferences µ̂ij = max(φ̂ij φ̂ji, 0). For each ranking
method, the Frank-Wolfe algorithm is run with 5000 iterations, and the number of recommendation
slots is set to 40. As for one-sided recommendation, rankings are estimated on estimated mutual
preferences taken as ground truth.

We generate different trade-offs with welf by varying α in
[0.99, 0.9, 0.75, 0.5, 0.25, 0,−0.25,−0.5,−0.6,−0.7,−0.8,−0.9,−1.0],
[−1.1,−1.25,−1.5,−1.75,−2.0,−2.5,−3,−5,−10,−15,−16,−17,−18]. For all other methods,
we vary β in [0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.25, 1.5, 2, 5, 10, 50, 100].

All presented results are obtained by averaging performance over the three seeds.

Results Figure 13 presents the trade-offs achieved by the different methods on Twitter-13k. As
expected, qua.-weighted and eq. exposure do not exhibit a good behavior: stronger penalties lead to
more dominated curves where the utility of every user is decreased. This is because constraining item
exposure is not meaningful in reciprocal recommendation, where the relevant utility is the two-sided
utility. The trade-offs achieved by the welf and eq. utility are different. Equal utility rapidly generates
near-flat curves without really focusing on the very first users, while welf increases the utility of the
worst-off users while keeping the total utility relatively high.

F.5 Reciprocal recommendation: Epinions dataset

We present additional experiments on reciprocal recommendation with the Epinions dataset [49].
Epinions.com is a consumer review site with a who-trust-whom network, and the dataset gathers
(directed) trust relationships between members of the platform. Here, we consider the task of finding
mutual trust links. We keep users having at least 20 mutual trust links, resulting in a subset of 800
entities. For the inference and evaluation of rankings, we use the same protocols as for the Twitter
experiments described in the previous subsection. The experimental parameters are the same as for
the Twitter-13k dataset.

Results Figure 14 presents the trade-offs achieved by the different methods on Epinions. As
expected, qua.-weighted and eq. exposure do not exhibit a good behavior: stronger penalties lead to
more dominated curves where the utility of every user is decreased. In Figure 15 plots the equivalent
of Fig. 4. The results are similar: all of qua.-weighted, eq. exposure and eq. utility have dominated
curves. We also observe that in the more interesting region where we are closer to the maximum
achievable utility, welf optimizes better the utility of worse-off users. Yet, in that region, there is no
strict dominance of welf over eq. utility.

19Using the Python library Implicit (MIT License).
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(a) Welfare (ours) (b) eq. utility (c) eq. exposure (d) qua.-weighted

Figure 14: representative trade-offs achieved by the various compared methods on Epinions. The
results are qualitatively similar to those on Twitter-13k.

(a) Example trade-offs
achieved by welf.

(b) welf dominates
exposure-based methods.

(c) welf dominates eq.
utility near strict equality.

(d) Total utility vs inequal-
ity.

(e) Total utility vs utility
of 10% worse-off users.

(f) Total utility vs utility
of 25% worse-off users.

(g) Total utility vs utility
of 50% worse-off users.

Figure 15: Results on the epinions dataset.

G Pairwise vs pointwise penalties

Our penalty-based approach uses the penalty
√
D(u) with:

D(u) =
∑
j∈I

(
uj −

1

|I|
∑
j′∈I

uj′
)2
.

Some authors use D′(u) =
∑

(j,j′)∈I2 |uj − u′j | instead of
√
D(u) [55, 42, 6], but it is less

computationally efficient than our penalty because it involves a quadratic number of terms.

The penalties are similar in that they are related to well-known measures of inequalities:

• D′(u)
2|I|

∑
j∈I uj

is the Gini index of uI [19], which, up to an affine transform is the area under the
Lorenz curve.

• D(u), which is (up to a constant) the variance of uI is part of the family of additively decomposable
inequality measures [52]. We use

√
D(u) to scale the penalty with the sum of users’ utilities.

Note that
√
D(u) and D′(u) have the same dependency to the overall scale of the utilities (i.e.,

multiplying all utilities by a constant factor has the effect of multiplying both penalties by the same
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factor). Since both penalties drive towards equality, it is straightforward to show that the results of
Section 3 as β →∞ also apply to D′(u).

H Exposure constraints at the level of every ranking

The notions of fairness of exposure are sometimes defined with item-side constraints defined at the
level of every ranking [54, 6]. We give here the examples of constraints for equality of exposure and
quality-weighted exposure:

equality of
exposure P expo ∈ argmax

P∈P

∑
i∈N

ui(P ) u.c. ∀(i, j) ∈ N × I, Pijv =
‖v‖1
|I|

quality-weighted
exposure P qua ∈ argmax

P∈P

∑
i∈N

ui(P ) u.c. ∀(i, j) ∈ N × I, Pijv =
µij ‖v‖1∑
j′∈I µij′

The advantage of this formulation is that it leads to optimization problems that can be solved locally
for every user, since there is no dependency between user rankings through item utility anymore.

However, applying the exposure criterion at the level of every ranking effectively applies a different
notion of fairness. In our setting, this corresponds to defining a separate recommendation task for
every user, i.e., taking |N | = 1. The welfare function then mediates, within a single ranking, between
the user utility and the utility of the different items.

When evaluated on exposures aggregated over all users, as we do in the paper, applying the fairness
constraints at the level of individual rankings can lead to drastic reductions of user utility for no
benefit in terms of total item exposure. This is summarized in the following result, which shows
that there exists problems for which the optimal rankings for every θ ∈ Θ satisfy the constraints
of equality of exposure and quality-weighted exposure as we define them in Section 3, but when
applying the constraints at the level of every ranking, it has the effect of reducing user utility. In
the proposition, we use the notation of the objective function for parity of exposure Fβ and F qua

β of
Section 3.
Proposition 9. For every d ∈ N∗ and every N ∈ N∗, there is a one-sided recommendation task with
d+ 1 items and N(d+ 1) users such that, ∀θ ∈ Θ:

∀uθ ∈ argmaxu∈U Wθ(u), ∀β > 0 we have: uθ ∈ argmax
u∈U

Fβ(u) and uθ ∈ argmax
u∈U

F qua
β (u),

and ∑
i∈N

ui(P
expo) =

2

d+ 1

∑
i∈N

uθi and
∑
i∈N

ui(P
qua) = (

1

2
+

1

d
)
∑
i∈N

uθi .

In other words, applying the constraints at the level of every ranking might lead to a drastic decrease
of user utilities, even in tasks where satisfying the constraints on average over users (as we do in this
paper) does not conflict with the optimal ranking.

Proof. We describe the problem with N = 1, the general case is obtained by repeating the preference
pattern. Let us consider a task with d+ 1 users, d+ 1 items and a single recommendation slot. Let
i1, . . . , id+1 be the user indexes, and j1, . . . , jd+1 the item indexes. The preferences are defined as:

∀k ∈ [[d+ 1]], µikjk = 1 ∀j 6= jk, µikj =
1

d
.

All items have the same quality. For every θ ∈ Θ, uθ is given by the utilitarian ranking, which gives
probability 1 to item jk for user ik, which leads to optimal user utility uθi = 1 and equal exposure to
every item uθj = 1. Since the quality is the same for all items (equal to 1 + d 1

d ), the ranking for uθ
satisfies both equality of exposure and quality-weighted exposure constraints. Thus, for every β > 0,
uθ ∈ argmaxu∈U Fβ(u) and uθ ∈ argmaxu∈U F

qua
β (u).

On the other hand, satisfying equality of exposure at the level of every ranking requires P expo
ij = 1

d+1

for every user i and item j, which leads to ui(P expo) = 1
d+1 + d× 1

d ×
1
d+1 = 2

d+1 for every user.
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For quality-weighted exposure for every ranking, it leads to:

∀k ∈ [[d+ 1]], P qua
ikjk

=
1

2
∀j 6= jk, P

qua
ikj

=
1

d

and thus a user utility ui(P qua) = 1
2 + d× 1

d ×
1
d = 1

2 + 1
d .

Notice that in the examples of the proof, the global exposure of items is constant in P expo and P qua,
as well as in the ranking given by optimal welfare. So from the point of view of our definitions of
utility, applying the constraints at the level of every ranking only decreased user utility for the benefit
of no items. Yet, we re-iterate that applying item-side fairness at the level of every ranking might be
meaningful in some contexts. The goal of this section is to highlight the difference between using
global and local definitions of item utilities.
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