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Abstract1

Evaluation of a cancer patient’s prognostic outlook is an essential step in the clinical2

decision-making process, involving the assessment of complex tissue structures in3

multi-gigapixel whole slide images (WSIs). Effective risk stratification of patients4

from WSIs has proven challenging despite several approaches across the literature5

due to their large size and inability of existing approaches to effectively model6

inter-relationships between different tissue components. We propose a graph neural7

network (GNN) model that performs pairwise ranking of graph representations8

of WSIs based on survival scores. The proposed approach translates spatially-9

localised deep features along with their spatial context to a graph neural network10

to produce survival scores. Analysis over breast cancer patients from The Cancer11

Genome Atlas (TCGA) shows that the proposed GNN approach is able to rank12

patients with respect to their disease-specific survival times with a concordance13

index of 0.672 ± 0.058. This is a significant improvement over existing state of14

the art and paves the way for neural graph modelling of WSI data for survival15

prediction for other cancer types.16

1 Introduction17

Breast cancer (BCa) most commonly affects women, with around 55,500 women per year diagnosed18

in the UK and 1 in 7 women will develop breast cancer in their lifetime [1]. As of 2022 breast cancer19

is the most commonly diagnosed cancer in the UK and is the second most common form of cancer20

related deaths in women. According to Public Health England, 85% of women diagnosed with breast21

cancer in England survive their disease for five years or more [2], with survival rates doubling over22

the last 40 years driven by more thorough early cancer detection and improved treatment regimes.23

Mortality rates are projected to fall by a further 26% before 2035.24

In the process of an individual’s breast cancer diagnosis, a tissue sample is typically taken from25

the tumour region and analysed by a histopathologist. The sample is stained using Haematoxylin26

and Eosin (H&E) and then digitised using a high resolution whole slide imaging scanner resulting27

in a multi-gigapixel ( 100, 000× 100, 000 pixels at 0.25 microns per pixel resolution) whole slide28

image (WSI). Pathologist assessment of the WSI involves inspection of the morphological features29

of the tissue cells to draw conclusions relating to the grade, type, and hormone receptor status of30

the patient’s cancer. All of these features have strong correlations to a given patient’s likelihood of31

survival and is used to determine treatment options.32

Currently the analysis of WSIs is performed by human histopathologists and there is a significant33

possibility for human error and bias in making decisions. Most notable in this regard is the assesment34

of nuclear pleaomorphism, a component step of the Nottingham grading system. This assessment is35

often the most subjective and so pathologists differ markedly in their nuclear grading. It has been36

found that breast specialists will assign higher grades than non-specialists [3] based of the assessment37

of the tissue nuclear pleaomorphism. This degree of subjectivity is not conducive to reproducible and38

reliable categorisations. There is, therefore, significant motivation to create an objective approach39

method for survival prediction that avoids human subjectivity by stratifying patients based on their40

risk.41

Submitted to the First Learning on Graphs Conference (LoG 2022). Do not distribute.



Neural Graph Modelling of Whole Slide Images for Survival Analysis

(a) (b) (c)
Figure 1: Major steps in the proposed approach: (a) Input Whole Slide Image. (b) Patch level feature
extraction and graph construction by spatial clustering and inter-linking neighbouring patches. (c)
Using Graph Neural Network based node level survival scoring to generate both node level and WSI
level predictions.

Weakly supervised learning from whole slide images has seen a number of contributions recently,42

particularly aiming to solve classification tasks. However, the regression based problem of survival43

prediction is considerably more difficult as disease risk presents its self as a combination of a number44

of histological features which correspond to disease status. While there has been some work done45

aiming to predict survival from local information extracted from sub-patches of the WSI, there are46

only a few frameworks that perform prediction at a global WSI level. Existing methods [4, 5] follow47

a structure of taking a large number of random patches from the image and clustering them according48

to a rule set, commonly by phenotype. These clusters at patch level will undergo aggregation and49

produce a prediction. Alternative methods include MCAT, a co-attention mapping between WSIs50

and genomic sequencing formulated in an embedding space [6]. A number of studies have also51

investigated model performance when patient data is also fed in however the goal of this work is52

to construct a model capable of WSI level survival prediction alone. Furthermore, there have been53

successful integrations when using a NTL (Nucleus, Tumour, and Lymphocyte) data along side the54

RGB WSI [7]. However, the concordance between predicted and true survival using whole slide55

image data remains low.56

A considerable limitation to the existing systems in the literature is the loss of spatial context between57

the random patches. Macro-scale histological structures formed from specific cell types contribute58

heavily to a prognostic prediction for a patient. Furthermore, existing implementations have also59

relied on external information (such as gene expression patterns) from the WSI to boost scores. The60

motivation for this work is to learn survival from the WSI alone.61

In order to identify significant survival associated features in multi-gigapixel WSIs, we need an62

effective way of capturing the inter-relationship between different components in the WSI. For this63

purpose, graph based modelling of whole slide images is an attractive solution. Existing work in64

this domain (SlideGraph and SlideGraph+) [8, 9] has shown that it is possible to solve classification65

problems for breast cancer receptor status prediction using WSI-level graph neural networks. In66

this work, we demonstrate the effectiveness of graph based neural models of whole slide images67

for survival analysis by using a pairwise ranking loss over predicted survival scores. The proposed68

approach results in significant improvement over existing state of the art approaches in this domain69

and paves the way for more effective graph based models.70

2 Methodology71

2.1 Whole slide image and survival data72

We collected 1133 whole slide images of Formalin-Fixed paraffin-Embedded (FFPE) Hematoxylin73

and Eosin (H&E) stained tissue section of 1084 breast cancer patients from The Cancer Genome74

Atlas (TCGA) [10, 11]. The Disease Specific Survival (DSS) data for these patients were collected75

from the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR) [12]. DSS is the length of time76

between the data being taken and a disease specific event occurring, in this case death. For some of77

the patients the survival data was missing and, consequently, was not used in the study. In line with78

clinical practice, patient survival times were censored at 10 years.79
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2.2 Pre-processing80

Quality of a digitised H&E stained tissue section can be adversely affected by tissue processing81

artefacts such as tissue folds and pen-marking originating from histology laboratory. We filter these82

artefacts by segmenting the tissue region of whole slide image and ignoring regions with tissue83

artefacts (tissue folding, and pen-marking etc.) using our in-house tissue segmentation model. As84

an entire WSI at full resolution can be of size 100, 000 × 150, 000 pixels and can be challenging85

to fit into a GPU memory, therefore we tile each WSI into patches of size 512 × 512 pixels at a86

spatial resolution of 0.25 microns-per-pixel (MPP). Patches with less than 40% of tissue region (mean87

pixel intensity of 60% pixels being higher than 200) are discarded and the rest of patches (tumor and88

non-tumor) are used in the study. The total number of 512× 512 patches in the data is 8, 487, 768.89

2.3 Graph Representation of a Whole Slide Image90

For each WSI, we construct its graph representation, Gi = G(Xi) where Xi is the set of features91

extracted from each patch within the WSI. In general, a WSI is represented as a set X = {pm|m =92

1, ...,M} where pm ≡ (xm, fm) is composed of the location of the given patch, xm, along with its93

feature vector, fm. The graph construction process can be broken down into three steps which are94

explained below (see Figure-1):95

2.3.1 Patch-Level Feature Extraction96

The tissue region in the whole slide image is broken down into patches and representative features97

of each patch are then extracted. Specifically, we extract Shuffle-Net [13] based deep features. We98

encode the patch image of size 512× 512 pixels into a 1024-dimensional feature vector by extracting99

latent representation of the penultimate fully-connected layer in Shuffle-Net. However, other types of100

feature representations can be used in the proposed framework as well such as patch level cellular101

composition [14].102

2.3.2 Spatial Clustering103

Due to the large size of a whole slide image and the large number of tissue patches, it is necessary to104

reduce the size of the graph while maintaining as much of the stored information as possible. This is105

done to reduce the computational cost of learning and subsequent analysis with the graphs. In line106

with the SlideGraph approach, agglomerative clustering [15] is used to group patches in the original107

set P into K clusters represented by the set C = {ck|k = 1, ...,K} based on spatial neighbourhood108

and feature similarity. The number of clusters is different for each WSI depending upon its size and109

tissue heterogeneity. For further details, the interested reader is referred to [8, 9].110

2.3.3 Graph Construction111

For each WSI, each cluster in its cluster set C is considered to be a vertex in the vertex set V of112

its graph representation G = (V,E) [16, 17]. The geometric centre of the node is obtained as:113

gc = 1
|c|

∑
pj∈c pj whereas, the feature representation of each node is taken as the average of patch114

features within the cluster and denoted by hc. The purpose of using graphs in the proposed approach115

is to model the inter-relationship between neighbouring regions in the WSI to capture large-scale116

topology. This is done by inter-connecting nodes within a maximum connection distance of 1,500117

pixels (between top left corners of patches) to construct the edge set E. This effectively connects all118

patches within 1mm in the tissue.119

2.4 GNN for ranking based on survival times120

Following the construction of the WSI graph Gi, it can be passed to a graph neural network model121

F (Gi; θ) for prediction of WSI-level survival scores. Here, θ denotes the trainable weight parameters122

of the GNN. For training the GNN, we consider the graph representation Gi, i = 1 . . . N of each123

WSI in the training set along with the corresponding survival time Ti (in days) and the event indicator124

variable δi ∈ {0, 1} representing whether the patient died of breast cancer (δi = 1) or not (δi = 0).125

We use pairwise ranking to train the GNN to predict survival scores based on the constraint that126

if the corresponding survival time for patient i is larger than that of patient j and the event for127

patient j has taken place, i.e., Ti > Tj |δj = 1, then GNN generated survival score for Gi should128
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Figure 2: Schematic of graph neural network with message passing block layers using Edge-Conv
(equation 2) or GIN-Conv layers (equation 3). The base net is composed of a linear layer, batch
normalisation (BN), and gaussian error linear units activation (GELU) layer. Each message passing
block includes feature level information from increasing order of neighbourhood nodes, as illustrated
by the grey and blue graphs. Black lines indicate latent node representations. Red lines carry node
level prediction scores. Green lines are the layer-wise WSI-level outputs which form the final WSI-
level output.

be larger than that of Gj , i.e., F (Gi; θ) > F (Gj ; θ) [18]. This results in a pairwise comparison set129

S = {(i, j)|Ti > Tj , δj = 1, i, j = 1 . . . N} consisting of WSI pairs that can be used for model130

training. A pairwise ranking loss is then used for model training with adaptive momentum based131

gradient descent as follows:132

θ∗ = argmin
θ

∑
(i,j)∈S

max(0, 1− (F (Gi; θ)− F (Gj ; θ))). (1)

The survival prediction framework proposed in this work can utilise different types of graph neural133

network architectures. However, we have used the architecture shown in Figure-2. It is constructed134

from a base net consisting of a multi-layered perceptron (MLP) that operates on node level feature135

representations. The output of the base network is then passed to a series of graph message passing136

blocks (GMPBs) which take nodal connectivity in the graph into account. Each time the GMPB137

is invoked the architecture accumulates information from increasingly higher-order neighbours.138

Additionally, following each GMPB the node features are retained and passed through their own MLPs,139

which considers each node’s embedding and the difference in embedding with its neighbours. Thus,140

for a given neighbourhood, Nk, of the node k the lth GMPB will return the feature embedding, f (l)
k ,141

of a node pk ≡ (xk, fk) ∈ X , which is then passed to a linear layer generating node level predictions142

fl(pk) = wT
l f(l)k . The resulting node level prediction scores are then pooled, F(G) =

∑
∀p∈P fl(p)143

to create layer-wise WSI level scores. These layer wise scores can then be aggregated to produce an144

overall WSI level prediction.145

It is thus the case that graph neural networks (GNN) [19], built using Edge Convolution (Edge-Conv)146

or graph isomorphic convolution (GIN-Conv) [20], are suitable for producing a prediction for the147

input graph G. The GNN’s learning is predicated upon the ability to extract abstract representations148

of node level features as a function of their local neighbourhood, by simulating message passing149

between neighbouring nodes.150
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Mathematically the Edge-Conv and GIN-Conv layers can be expressed by the following functions,151

respectively:152

h(l)
k =

∑
u∈Nk

H
(l)
θ (h(l−1)

k ,h(l−1)
u − h(l−1)

k ), (2)

153

h(l)
k = H

(l)
θ ((1 + ϵ(l)) · h(l−1)

k +
∑
u∈Nk

h(l−1)
u ). (3)

Here, h(l)
k is the feature vector for the kth node on the lth layer (with h

(0)
k = fk). As shown in154

equation 2, Egde-Conv works by aggregating node representation of a given node with its difference155

with the representation of node in its neighborhood Nk = {u ∈ V |(u, k) ∈ E} . For GIN-Conv, the156

first term in the right hand side of the equation 3 determines the local contributions from a given157

node, controlled by ϵ and the second term takes the contributions from the neighbourhood. Finally,158

H
(l)
θ is the all encapsulating multi-layer perceptron that is capable of learning the non-linear node159

level transformations that are required. We have experimented with both Edge-Conv and GIN-Conv160

layers in the paper and found that Edge-Conv offers superior predictive performance.161

The GCN produces a prediction score from the summation of the node level feature representations.162

The MLP weights are tuned through the propagation of gradients which result from the ranking loss163

function discussed earlier.164

2.5 Code and data availability165

The proposed approach has been implemented in Python using the PyTorch-Geometric library for166

graph neural networks. In line with anonymity requirements of the paper, the complete architecture167

will be released on the organisational Github account for academic use upon acceptance of the paper168

to allow complete reproducibility. The graph representations, associated survival data and trained169

predictive models will also be released.170

3 Experiments and Results171

In order to evaluate predictive performance of the proposed approach, we have used 5 runs in each172

of which the dataset was randomly divided into a training and test set with 20% of the overall data173

for reporting test performance. We ensured that the percentage of cases with events is kept the174

same across training and test splits. We report the predictive performance of the proposed approach175

using concordance index (c-index). C-index measures the degree of concordance between relative176

prediction scores of test patients and their actual survival times. In line with area under the receiver177

operating characteristic curve (AUROC), the C-index ranges from 0.0 (inverted ranking of survival178

scores) to 0.5 (no concordance between predicted scores and actual survival times) to 1.0 (perfect179

concordance between prediction scores and actual survival times). It enables us to compare our180

predictive performance with previously published results. In addition to this, we have also report the181

Kaplan-Meier survival curves for high-survival and low-survival group stratifications obtained by182

thresholding the prediction score generated by the model with a threshold selected using training data183

examples. The p-value of the log-rank test is also reported.184

3.1 Quantitative results and Comparison185

As shown in Table-1 the average concordance index over the test set for the proposed approach is186

0.672 ± 0.058 which is markedly better in comparison to previous approaches.187

The Kaplan-Meier curve over a representative test set data split is shown in Figure-3. It shows that the188

prediction score generated by the proposed approach was able to produce meaningful stratification189

of patients into two groups whose survival is statistically significantly different (p = 0.002 (3 s.f)190

<< 0.05). The patients in the low group (prediction score below the threshold) have significantly191

better survival probability over time in comparison to patients in the high risk group. Results of this192

stratification were consistent over multiple evaluation runs.193

We believe that the proposed method is able to perform better in comparison to other existing ap-194

proaches due its effective inclusion of spatial context between the patch level features. As discussed195

earlier many alternative methods rely on generic grouping of random patches from the WSI. Exami-196

nation of the global spatial context of micro-features in histology images is a common practice for197
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pathologists and so exclusion of this information limits a given model’s ability to perform survival198

prediction. We have also investigated the impact of various architectural choices which are discussed199

below.200

Choice of Model Layers201

We have experimentally compared the predictive performance of GIN vs Edge-Conv which has202

resulted in a significant improvement in concordance index from 0.602± 0.093 (With GIN-Conv) to203

0.672± 0.058 (with Edge-Conv).204

Role of Patch Clustering205

Our analysis shows that the predictive performance in terms of test concordance index does not206

change much with (0.672 ± 0.058) and without clustering (0.685 ± 0.072). However, patch-level207

clustering reduces the size of the graphs leading to faster computation times. Without clustering, the208

average per train-test split run time is approximately 1800 whereas with clustering it stands at 770209

seconds. This is, as expected, dependent upon the amount of memory available on the GPU.210

Role of Knowledge Jump Connections211

We have investigated the role of "knowledge jumping" or connections from each layer to the final212

prediction experimentally and found that the difference between average test concordance with213

(0.672± 0.058) and without (0.687± 0.074) these connections is marginal. The addition of these214

connections seems to reduce the variance in prediction results.215

Choice of node level features216

In addition to deep features obtained from Shuffle-Net, we have also used estimates of patch-level217

cellular composition i.e., counts of neoplastic, inflammatory, connective and epithelial cells in218

each patch, as node level features. These estimates are obtained from a machine learning method219

called ALBRT (see [14] for details). Using these features, the best average concordance index was220

0.63 ± 0.09 which is lower in comparison to deep features from Shuffle-Net. We conjecture that221

despite lower concordances such clinical features may offer novel insights into the role of different222

cells in conjunction with other histologically important features such as blood vessels and mitotic223

figures along with genomic or transcriptomic features.224

Effect of edge connectivity threshold225

We have also analyzed the impact of edge connectivity threshold used for defining the edges in the226

graph on test concordance figures. We have found that an optimal test concordance (0.689± 0.08) is227

obtained with a connectivity threshold of 2000 pixels whereas 1500 pixels offers lower variation. The228

predictive performance started to drop beyond the 1mm tissue region bounds on edge connectivity229

between nodes. However, we believe that this range is dependent upon the choice of features and can230

be chosen as a design parameter for different problems.231

Impact of censoring232

We have used 10 years as the censoring threshold. However, if no such artificial censoring is used the233

average test concordance index improves to 0.702± 0.076. This is expected due to the increase in234

the number of pairs of examples that contribute to the loss function in training.235

Processing times236

The approach has been developed in Python using the PyTorch Geometric library for graph neural237

networks. On an NVIDIA RTX 3080 GPU, the per train-test split execution time is around 12 minutes238

(on average). The creation of graphs from node level features for the whole dataset requires (on239

average) 35 minutes whereas the extraction of deep features and pre-processing can be expected to240

take 8 to 10 minutes per whole slide image (WSI) for pre-processing, patch extraction and node level241

feature computation depending upon the size of tissue within the WSI.242
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Figure 3: Kaplan-Meier survival curves showing the probability of disease specific survival (y-axis)
over time (in days, x-axis) for high and low risk groups in the test set along with the number of
patients who are at-risk, censored or experienced a survival event at various time steps (bottom).

Method Concordance Index ± std dev
MCAT[6] 0.580 ± 0.069

Attention MIL[21] 0.564 ± 0.050
DeepAttnMISL[4] 0.524 ± 0.043

Proposed (with Edge-Conv) 0.672 ± 0.058
Table 1: Table of concordance indexes comparing alternative methods from elsewhere in the literature
to the proposed survival model.

3.2 Visual Results243

Omission of the pooling stage when getting a prediction from the model means node level scores244

can be extracted to provide insight into the tumour regions that contribute most heavily towards risk.245

Conversion of the node prediction score to a false colour representation of each node provides a WSI246

visualisation in which the colour on each node corresponds to its node level prediction. Figure-4247

illustrates how the proposed approach at node level, when trained for survival, can distinguish between248

high and low risk patients and indicate the regions that contribute most to those survival predictions.249

Patients selected had both experienced an event to provide a defined difference in their survival times.250

Node level scoring would be a useful addition to the clinical study of WSI prognostication. This251

visualisation capability supports the assertion that inclusion of spatial context information has great252

utility in machine learning applications in computational pathology.253

4 Conclusions and Future Work254

In this work, we have developed a graph neural network model of whole slide images for ranking255

breast cancer patients based on their disease-specific survival times. The proposed approach provides256

a general architecture for modelling whole slide images as graphs for survival analysis and compares257

favourably to previous methods. The proposed approach currently relies on using deep features which258

are not easily explainable. It can be improved by inclusion of more clinically-oriented features so that259

the predictions can be explained and used for discovery of novel prognostic biomarkers. In addition260

to that, the correlation of the prediction scores with different clinical covariates such as age, disease261

subtype, grade and stage needs to be investigated. In the future, we would like to expand the analysis262

to other cancer types and utilise external and completely independent cohorts from other clinical263
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Figure 4: Graph visualisation of TCGA-B6-A0RS (δ = 1, T = 3063 days, WSI model score = 4.515)
(Top) and TCGA-AC-A2QJ (δ = 1, T = 446 days, WSI model score = 1.548) (Bottom) using node
level prediction scores with red to blue false colour mapping. Our initial investigation into regions
associated with low survival indicates their association to larger number of pleomorphic tumour cells
along with increased cellularity.

centres for performance assessment. Linking histopathology based features with other genomic and264

transcriptomic features can further improve predictive performance.265
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