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Testing programs for optical recognition of molecular structures from scientific articles
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1. Introduction
The advancement of optical recognition technolo-

gies for chemical structures has increased interest
in automated analysis and processing of chemical
data. These systems are applicable in pharmaceu-
tical, biological, and chemical industries, enabling
rapid analysis of large volumes of visual data and ac-
celerating the discovery of new compounds [1, 2, 3].
This paper presents an extensive review and testing
of current software solutions for the optical recog-
nition of 2D chemical structure images, including
both rule-based algorithms and neural network ap-
proaches.

2. Methods
To evaluate the performance of optical recogni-

tion tools, a unique dataset of 2405 molecule images
wasmanually extracted from scientific publications.
Each molecule was redrawn in ChemDraw to gen-
erate corresponding SMILES strings. Additionally,
synthetic images were generated using the RDKit li-
brary [4] to compare algorithm performance on real
and artificial data (Fig. 1).
The study tested two main categories of recog-

nition tools: rule-based algorithms and neural net-
works. Rule-based tools included OSRA [5, 6], Imago
[7, 8, ?], and Molvec [9], which rely on predefined
image-processing rules to extract molecular struc-
tures. Neural network-based tools, such as ChemG-
rapher [10], DECIMER [11, 12, 13, 14], Img2Mol [15],
Img2SMILES [16], MolScribe [17], SwinOCSR [18],
MolMiner [19], AutoChemplete [20], utilized deep
learning models trained on large datasets.
Performance was assessed by comparing recog-

nized SMILES strings with ground truth values. Two
key evaluation metrics were used: (1) SMILES string
accuracy, which measures the exact match between
recognized and expected SMILES, and (2) Tanimoto
coefficient, which quantifies structural similarity be-
tween predicted and actual molecular fingerprints.
Testingwas conducted separately formoleculeswith
and without chirality to assess the impact of stereo-
chemical information on recognition accuracy.
To analyze performance variations, molecule im-

ages were categorized by atom count and structural
complexity. Recognition difficulties were identified
by testing challenging cases such as organometal-
lic compounds, polycyclic structures, andmolecules
withunconventional representations. The study also

examined the effects of image resolution and quality
on recognition accuracy.

Fig. 1: a) Datasets the programs were tested on; b)
steps of building a dataset of pictures ofmolecules
with their corresponding SMILES.

3. Results
Comparative testing (Fig. 2) demonstrated that

rule-based algorithms are less sensitive to image
quality compared to neural networks. Among rule-
based tools, OSRA performed the best with relatively
stable recognition rates across different image types,
while Imago and Molvec showed higher error rates
for low-resolution images.
For neural network-basedmethods, DECIMER 2.0

exhibited the highest accuracy on synthetic RDKit-
generated images (88.98%), followed by MolScribe
(65.53%). On real molecule images extracted from
scientific articles, MolScribe demonstrated the best
performance (58.13%), though a significant drop
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in accuracy was observed compared to synthetic
data. This drop highlights the limitations of current
datasets in trainingmodels to handle real-world vari-
ations in molecular depictions.
The study also revealed a strong correlation be-

tween recognition accuracy and molecule complex-
ity. As molecule size increased (measured by atom
count), accuracy declined across all tested tools (Ap-
pendix A). Large and highly branched molecules
were particularly challenging for both rule-based
and neural networkmethods. Additionally, the pres-
ence of chiral centers reduced recognition accuracy,
with DECIMER 2.0 experiencing a decline of 7.4%
when chirality was considered.
Recognition challenges were most pronounced

for specific molecular features (Fig. 3), such as
organometallic complexes, polycyclic systems, and
structures containing charged fragments. Programs
also struggled with non-standard representations,
including superatoms and condensed structural for-
mulas.

Fig. 2: (a) Tanimoto index of molecule image recog-
nition results and (b) accuracy (in percent) of
molecule image recognition results.

4. Discussion
Neural network-based recognition tools per-

formed significantly worse on real molecular
images than synthetic ones, confirming the limi-
tations of current training datasets. The reliance
on RDKit-generated structures fails to account for
real-world variations, reducing performance, par-
ticularly for complex structures such as polycyclic
systems, organometallic compounds, and chiral
molecules. Larger molecules (over 60 atoms) also

showed lower recognition accuracy, with errors
increasing as structural complexity grew.
To improve recognition accuracy, future datasets

should incorporate more real molecular images
from scientific literature and apply augmentation
techniques to simulate real-world distortions. Addi-
tionally, refining neural network architectures and
integrating rule-based preprocessing could enhance
generalization across different molecular represen-
tations.

Fig. 3: (a) Manually generated molecule reflecting
the main recognition problems: 1) organometal-
lic complexes; 2) isotopes; 3) charged particles;
4) single-symbol chemical elements; 5) bicyclic
structures; 5) polyaromatic systems; 6) condensed
structural format; 7) two-symbol elements; 9) con-
text highlights; 10) letter abbreviation of chemical
compounds and fragments; 11) chirality; (b) ways
of the same molecule recognition by various in-
struments.

5. Conclusion
This study highlighted the importance of creat-

ing diverse and high-quality datasets with molecule
images for training neural network-based recogni-
tion systems. Current algorithms have limitations
in dealing with complex and non-standard chemi-
cal structures. Nevertheless, ongoing developments
and enhancements in optical recognition technolo-
gieswill significantly simplify and accelerate thedig-
itization of chemical data, enhancing research effec-
tiveness and facilitating broader access to chemical
information.
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Appendix A. orrelation between the number of
atomsand thequality of recognition

There is a correlation between the number of atoms
and the quality of recognition.
The larger themolecule, themore difficult it is for

its image to transform into SMILES. However, what
is this correlation in numbers? To confirm this as-
sumption, we have posted diagrams that can be used
to give a certain estimate of recognition accuracy
(Fig. A1).

Appendix B. Availability of a unique dataset for
testing

The collected dataset, as well as images
of structures generated with the RDKit li-
brary are available in the GitHub repository
at https://github.com/RodionGolovinsky/
dataset_testing_recognition_tools. Also in this
repository there is a complete table with the results
of testing optical recognition tools on the described
datasets.
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Fig. A1: (a) Comparison of molecule image recogni-
tion results depending on the amount of atoms
on RDKit-generated images not considering chi-
rality; (b) comparison of molecule image recog-
nition results depending on the amount of atoms
on RDKit-generated images considering chiral-
ity; (c) comparison of molecule image recogni-
tion results depending on the amount of atoms
on images from original dataset not consider-
ing chirality; (d) comparison of molecule image
recognition results depending on the amount of
atoms on images from original dataset consider-
ing chirality.
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