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Abstract
We present novel reductions from sample compression schemes in multiclass classification, regres-
sion, and adversarially robust learning settings to binary sample compression schemes. Assuming
we have a compression scheme for binary classes of size f(dVC), where dVC is the VC dimension,
then we have the following results: (1) If the binary compression scheme is a majority vote or a
stable compression scheme, then there exists a multiclass compression scheme of size O(f(dG)),
where dG is the graph dimension. Moreover, for general binary compression schemes, we obtain
a compression of size O(f(dG) log |Y|), where Y is the label space. (2) If the binary compres-
sion scheme is a majority vote or a stable compression scheme, then there exists an ϵ-approximate
compression scheme for regression over [0, 1]-valued functions of size O(f(dP)), where dP is
the pseudo-dimension. For general binary compression schemes, we obtain a compression of size
O(f(dP) log(1/ϵ)). These results would have significant implications if the sample compression
conjecture, which posits that any binary concept class with a finite VC dimension admits a bi-
nary compression scheme of size O(dVC), is resolved (Littlestone and Warmuth, 1986; Floyd and
Warmuth, 1995; Warmuth, 2003). Our results would then extend the proof of the conjecture im-
mediately to other settings. We establish similar results for adversarially robust learning and also
provide an example of a concept class that is robustly learnable but has no bounded-size com-
pression scheme, demonstrating that learnability is not equivalent to having a compression scheme
independent of the sample size, unlike in binary classification, where compression of size 2O(dVC)

is attainable (Moran and Yehudayoff, 2016).
Keywords: Sample Compression Schemes, PAC Learning, Binary Classification, Multiclass Clas-
sification, Regression, Adversarially Robust Learning.

1. Introduction

A common guiding principle in machine learning is to favor simpler hypotheses when possible,
following Occam’s razor, which suggests that simpler models are more likely to generalize well.
One approach to achieving simplicity, introduced by Littlestone and Warmuth (1986); Floyd and
Warmuth (1995), is through a sample compression scheme for Probably Approximately Correct
(PAC) learning (Valiant, 1984). This framework simplifies the process of hypothesis learning by
compressing the information needed to represent a learned model. This is done by encoding the
hypothesis using a small subset of the original training data (along with a short bit string), known as
the compression set, and a reconstruction function that recovers from this subset a sample-consistent
hypothesis on the entire training set. The size of the compression set reflects the complexity of the
learning task, with smaller sets implying simpler models (in some sense). A well-known example
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is the Support Vector Machine (SVM) algorithm, which constructs a halfspace in Rd using at most
d + 1 support vectors to represent its decision boundary. A significant open problem in binary
classification, known as the sample compression conjecture, proposes that any concept class with a
finite VC dimension admits a compression scheme of size O(dVC), where dVC is the VC dimension
(Warmuth, 2003). A notable breakthrough by Moran and Yehudayoff (2016) demonstrated that
every learnable binary concept class indeed admits a constant-size sample compression scheme
(independent of the sample size), specifically of order 2O(dVC).

Beyond binary classification, sample compression schemes have also been explored in multi-
class classification (Daniely et al., 2015; Daniely and Shalev-Shwartz, 2014; David et al., 2016;
Brukhim et al., 2022; Pabbaraju, 2024). In particular, it is known that multiclass learnability with a
finite set of labels is equivalent to having a constant-size compression scheme, with a compression
size of 2O(dG) being achievable (David et al., 2016), where dG denotes the graph dimension of the
concept class. However, more recently, Pabbaraju (2024) demonstrated that this equivalence no
longer holds when the label set is infinite, and in such cases, any sample compression must grow at
least logarithmically with the sample size.

In the context of regression, there is a type of equivalence between learnability and sample com-
pression (Hanneke et al., 2019; Attias et al., 2023, 2024). Specifically, in regression settings with
respect to the ℓp loss, learnability has been shown to be equivalent to the existence of a bounded-
size approximate compression scheme. In the realizable case, Hanneke et al. (2019) constructed
an ϵ-approximate compression scheme of size 1

ϵ2
O(fatcϵ), for some constant c > 0, where fatγ de-

notes the fat-shattering dimension (at scale γ) of the concept class. This can be extended to the
agnostic setting, where the goal is for the approximate sample compression scheme to output a hy-
pothesis with near-optimal error on the training data (with respect to the underlying concept class),
rather than a sample-consistent hypothesis. Attias et al. (2024) showed that in this agnostic case,
a compression scheme of size 1

ϵ2
O(fatcϵ) can also be constructed. As with binary classification,

determining the optimal size of a compression scheme for multiclass classification and regression
remains a major open question.

In this paper, we explore reductions from sample compression schemes in multiclass classifica-
tion, regression, and adversarially robust learning settings to binary sample compression schemes.
Assuming the existence of a compression scheme for binary classes of size f(dVC), we construct
compression schemes of approximately the same order for these more general settings, where dVC

is replaced by the appropriate dimension, in both realizable and agnostic settings. Our results would
have significant implications if the sample compression conjecture were resolved, as this would
allow us to extend the proof of the conjecture to other settings immediately. We summarize our
contributions as follows.

1.1. Our Results

Reductions from multiclass classification to binary classification (Section 3) Let C ⊆ YX be a
multiclass concept class, with a finite graph dimension (denoted by dG, see Definition 3). Note that
any multiclass concept class (with finite label space) is learnable if and only if its graph dimension
is finite.

• We construct a sample compression scheme for multiclass classes of size O(f(dG(C)) log|Y|)
(Theorem 4).
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• Assuming the reconstruction function of the compression scheme for binary classes either
outputs a majority vote of concepts from C or selects a concept within the concept class C
(proper compression), we construct a sample compression for C of size O(f(dG(C))), even
when infinite label sets are allowed (Theorem 7). This result is interesting in light of the fact
that a primary method for constructing binary schemes uses majority votes.

• Assuming the existence of a stable sample compression scheme for binary concept classes,
we construct a sample compression scheme for C of size f(dG(C)) for finite label sets (The-
orem 9). Stable compression ensures that removing any point outside the compression set
does not affect the output of the compression function. A notable example of such a com-
pression scheme is the SVM algorithm. For infinite label sets, we introduce an infinitized
version of compression schemes, which allows us to prove analogous results (Theorem 11
and Theorem 13). Surprisingly, we show that a finite VC dimension is not sufficient for
such a compression to exist, unlike standard compression schemes. Additionally, we show
that while finite Littlestone dimension implies infinitized compression, the converse does not
hold.

Reductions from regression to binary classification (Section 4) Let C ⊆ [0, 1]X be a real-valued
concept class, with a finite pseudo-dimension (denoted by dP, see Definition 15).

• We construct an ϵ-approximate sample compression scheme for real-valued concept classes of
size O

(
f(dP(C)) log 1

ϵ

)
for the ℓ∞ loss, and O

(
f(dP(C))1p log

1
ϵ

)
for the ℓp loss, p ∈ [1,∞)

(Theorem 16).

• Assuming binary concept classes have a compression scheme in one of the following forms:
majority vote, proper, or stable compression scheme, we construct an ϵ-approximate sample
compression for real-valued concept classes of size O(f(dP(C))) for any ℓp loss, p ∈ [1,∞]
(Theorem 18 and Theorem 19).

• We demonstrate that, in certain cases, we can construct exact compression schemes for re-
gression by using infinitized compression schemes (Theorem 21), or reduce the problem to
multiclass classification with infinite labels (Theorem 22).

Note that our compression scales with the pseudo-dimension, which is known to be sufficient but
not necessary for learnability. Whether we can have a similar reduction with the fat-shattering
dimension is an open problem.

Reductions from adversarially robust classification to binary classification (Section 5) Let
C ⊆ {0, 1}X be a binary-valued concept class with a finite VC dimension. Let U : X → 2X be a
perturbation function. In this setting, the loss of a concept c on (x, y) is supz∈U(x) 1[c(z) ̸= y].

• For bounded perturbation sets, letting M = supx∈X |U(x)|, we construct an adversarially
robust sample compression of size O(f(dVC(C)) logM) (Theorem 26). We get an improved
compression size O(f(dVC)) if C admits a binary stable compression scheme (Theorem 27).

• We show that, in contrast to non-robust binary classification, where constant-size sample com-
pression schemes exist for any learnable concept class, there is a robustly learnable concept
class that does not admit any such scheme (Theorem 29). This negative result was observed
also in multiclass classification (Pabbaraju, 2024) and list learning (Hanneke et al., 2024).
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1.2. Other Related Work

Sample compression schemes have proven useful in a wide range of learning settings, particularly
when the uniform convergence property either fails to hold or provides suboptimal rates. These
applications include binary classification (Graepel et al., 2005; Moran and Yehudayoff, 2016; Bous-
quet et al., 2020), multiclass classification (Daniely et al., 2015; Daniely and Shalev-Shwartz, 2014;
David et al., 2016; Brukhim et al., 2022), regression (Hanneke et al., 2018, 2019; Attias et al., 2023,
2024), active learning (Wiener et al., 2015), density estimation (Ashtiani et al., 2020), adversarially
robust learning (Montasser et al., 2019, 2020, 2021, 2022; Attias et al., 2022a; Attias and Hanneke,
2023), learning with partial concepts (Alon et al., 2022), and demonstrating Bayes-consistency for
nearest-neighbor methods (Gottlieb et al., 2014; Kontorovich et al., 2017). In fact, sublinear com-
pressibility (with respect to sample size) and learnability are known to be equivalent for general
learning problems (David et al., 2016).

A well-known approach for constructing sample compression schemes for general concept
classes involves a weak-to-strong boosting procedure, where the resulting compression size is ex-
ponential in the combinatorial dimension of the problem in the worst case (Moran and Yehudayoff,
2016; David et al., 2016; Hanneke et al., 2019; Attias et al., 2024). These types of compressions are
specifically referred to as majority vote compression schemes in this paper (see Definition 6). An-
other construction for general finite concept classes was provided by Moran et al. (2017). There is
also extensive literature on improved compression schemes for specific cases, such as Floyd (1989);
Helmbold et al. (1992); Floyd and Warmuth (1995); Ben-David and Litman (1998); Chernikov and
Simon (2013); Kuzmin and Warmuth (2007); Rubinstein et al. (2009); Rubinstein and Rubinstein
(2012); Livni and Simon (2013).

Bousquet et al. (2020) introduced the notion of stable compression schemes, whose choice
of compression set is unaffected by removing points not in the compression set. The merit of
such compression is that it provides an optimal generalization bound (improving by a log factor
upon a generic compression scheme) for concept classes with such a scheme, for example, learning
halfspaces with SVM, maximum classes, and intersection-closed classes. Hanneke and Kontorovich
(2021) used similar techniques to provide novel or improved data-dependent generalization bounds
for several learning problems.

2. Preliminaries

For any set A, define A∗ to be the set of finite sequences, where the elements are taken from A. For
any c : X → Y , a finite sequence S = (x1, y1), . . . , (xn, yn), and a loss function ℓ : Y × Y →
[0, 1], define the empirical loss of c on S to be Lℓ

S(c) = 1
n

∑n
i=1 ℓ(c(xi), yi). In multiclass and

binary classification we use the zero-one loss ℓ0−1(y, ŷ) = 1[y ̸= ŷ]. In regression we use the ℓp
loss, ℓp(y, ŷ) = |y − ŷ|p, for p ∈ [1,∞). For ℓ∞ loss, define Lℓ∞

S (c) = max1≤i≤n |c(xi) − yi|.
Additionally, S is realizable if there exists c ∈ C such that Lℓ

S(c) = 0.

Definition 1 (Sample Compression Schemes) Given a concept class C ⊆ YX , define a sample
compression scheme by the two following functions:

• A compression function κ : (X ×Y)∗ → (X ×Y)∗×{0, 1}∗, which maps any finite sequence
S to a finite sequence (compression set) S′ ⊆ S and a finite bitstring b.1.

1. For anything of the form S ⊆ T , where either can be a sequence or a set, we will write S ⊆ T to mean that
{x : x ∈ S} ⊆ {x : x ∈ T}
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• A reconstruction function ρ : (X×Y)∗×{0, 1}∗ → YX which maps any possible compression
set to a predictor.

The sample compression scheme is of size k if for any sequence S, for κ(S) = (S′, b), it holds
that |S′|+ |b| ≤ k.

Given a loss function ℓ : Y×Y → [0, 1], a concept class C ⊆ YX , and ϵ > 0, consider the following
types of sample compression schemes:

• Exact Agnostic: For all finite S, Lℓ
S(ρ(κ(S))) ≤ infc∈C L

ℓ
S(c).

• Exact Realizable: For all finite realizable S, Lℓ
S(ρ(κ(S))) = 0.

• ϵ-approximate Agnostic: For all finite S, Lℓ
S(ρ(κ(S))) ≤ infc∈C L

ℓ
S(c) + ϵ.

• ϵ-approximate Realizable: For all finite realizable S, Lℓ
S(ρ(κ(S))) ≤ ϵ.

Unless explicitly specified in this paper, when referring to “sample compression schemes,” we
mean exact realizable sample compression schemes using the zero-one loss function, i.e., for a real-
izable sequence S = (x1, y1), (x2, y2), . . . , (xn, yn), ρ(κ(S)) outputs a sample-consistent predic-
tor: ρ(κ(S))(xi) = yi for all 1 ≤ i ≤ n. Additionally, if it is not clarified whether the compression
scheme is exact or approximate, the compression scheme can be assumed to be exact.

Definition 2 (VC Dimension (Vapnik and Chervonenkis, 1971)) We say that x1, . . . , xn ∈ X
are shattered by C ⊆ {0, 1}X if {(c(x1), . . . , c(xn)) : c ∈ C} = {0, 1}n. The Vapnik-Chervonenkis
(VC) dimension of a binary concept class C, denoted by dVC(C), is the largest nonnegative integer
n ∈ N for which there exist x1, . . . , xn ∈ X that are shattered in C.

The sample compression conjecture (Littlestone and Warmuth, 1986; Floyd and Warmuth, 1995;
Warmuth, 2003) states that for classes with finite VC dimension, there exists a compression scheme
of size O(dVC).

3. Compression for Multiclass Classification

In this section, we tackle the problem of multiclass compression by reducing it to the binary setting.
In multiclass classification, the finiteness of the graph dimension of a concept class characterizes
learnability when the label set is finite (albeit with non-optimal sample complexity in general).
David et al. (2016) demonstrated that, in such cases, a sample compression scheme of size 2O(dG)

can be constructed, with the compression size notably independent of the sample size. However,
Pabbaraju (2024) showed that when the label set is infinite, there exist concept classes where any
sample compression scheme must grow at least logarithmically with the sample size.

Therefore, we explore reductions from multiclass compression to binary compression under the
assumption of a finite graph dimension. It is important to note that the graph dimension alone is
sufficient but not necessary for multiclass learnability when the number of labels is infinite.

Definition 3 (Graph Dimension (Natarajan, 1989; Ben-David et al., 1992)) A set of points
x1, . . . , xn ∈ X is G-shattered by C ⊆ YX if there exist y1, . . . , yn ∈ Y such that

{(1[c(x1) = y1],1[c(x2) = y2], . . . ,1[c(xn) = yn]) : c ∈ C} = {0, 1}n.
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The graph dimension of a multiclass concept class C, denoted by dG(C), is the largest nonnegative
integer n ∈ N for which there exist x1, . . . , xn ∈ X that are G-shattered by C.

Consider a multiclass concept class C ⊆ YX . For any S = (x1, y1), (x2, y2), . . . (xn, yn) realizable
by C, define the “inflated” set SY as follows

SY = {((xi, y),1[y = yi]) : i ∈ [n], y ∈ Y} . (1)

Define CY as follows,
CY = {gc : c ∈ C}, (2)

where gc : X × Y → {0, 1} is defined such that gc(x, y) = 1[c(x) = y]. This inflation operation
transforms the multiclass prediction problem into a binary classification problem: for each original
example (xi, yi), we create |Y| binary-labeled examples, where the positive label indicates the cor-
rect class. Similarly, each multiclass concept c is transformed into a binary concept gc that identifies
correct label predictions. In the following, we construct a multiclass sample compression scheme
for classes of finite labels and finite graph dimension, via a reduction to the binary setting.

Theorem 4 (Reducing Multiclass Compression Schemes to Binary Compression Schemes)
Suppose that for binary concept classes with finite VC dimension dVC < ∞, there exists a sam-
ple compression scheme of size f(dVC). Then, for multiclass concept classes with a finite la-
bel set |Y| and a graph dimension dG < ∞, there exists a sample compression scheme of size
O(f(dG) log |Y|).

Proof Let C ⊆ YX be a multiclass concept class. Consider the inflated dataset SY (Equation 1)
and the class CY (Equation 2). Denote dVC(CY) = dVC and dG(C) = dG. It is straightforward to
show that dVC = dG. To show the≤ direction, we have that for any (x1, y1), . . . , (xn, yn) shattered
by CY , all the xi’s must be distinct (otherwise, there is an (x, yj1), (x, yj2) with yj1 ̸= yj2 that are
shattered, and are both assigned value 1 by a concept in CY , which implies that there exists an c ∈ C
such that c(x) = yj1 and c(x) = yj2 , which is not possible). Thus, x1, . . . , xn are G-shattered in
C via labels y1, . . . , yn. To show the ≥ direction, consider x1, . . . ., xn G-shattered in C via labels
y1, . . . , yn. It is clear that (x1, y1), . . . , (xn, yn) are shattered in CY .

Suppose CY has a binary compression scheme (κb,ρb), then we construct a compression scheme
(κ, ρ) for C as follows. Compression: Given a dataset S = {(x1, y1), . . . , (xn, yn)} realizable by
C, construct κ(S) as follows. Inflate S to SY . Note that SY is realizable by CY , and dVC = dG. We
can apply κb to SY to get a compression of size f(dG). The compression points will be of the form
((x, y), z), z ∈ {0, 1}. For the points where z = 1, we have that (x, y) = (xi, yi) for some i, so we
can add that to κ(S), contributing 1 for each. For the points where z = 0, we need log |Y| bits to
add that to κ(S). Thus, our compression size will be≤ f(dG)+f(dG) log |Y| = O(f(dG) log |Y|).
Reconstruction: Our compression has enough information for us to retrieve the result of κb(CY).
We can directly apply ρb on this to get the desired result.

For classes with graph dimension 1 we can get a tighter result, but for general concept classes
and binary compression schemes it is an open problem whether we can remove the log|Y| factor
from the compression size in Theorem 4.
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A sample compression scheme for graph dimension 1 We show that any concept class C with
graph dimension 1 admits a sample compression scheme of size 1. The proof is in Appendix B. The
idea is based on a technique of Ben-David (2015) which established a sample compression scheme
of size 1 for binary classes with VC dimension 1. Although our result has been previously shown
by Samei et al. (2014), the proof presented here uses a different technique and may offer additional
insights.

Open Problem 5 Suppose all binary concept classes with VC dimension dVC have a sample com-
pression scheme of size f(dVC). Does every multiclass class with graph dimension dG have a
sample compression scheme of size O(f(dG))?

3.1. Additional Assumption: Existence of Proper or Majority Vote Binary Compression

We can derive tighter results for sample compression schemes with particular reconstruction func-
tions, such as majority votes of concepts in the class. Majority votes are a natural choice for recon-
struction functions, as many known sample compression schemes are based on boosting methods
with such a property (Moran and Yehudayoff, 2016; David et al., 2016; Hanneke et al., 2019; Attias
et al., 2024). We also define a proper compression scheme where the reconstruction function returns
a concept from the class.

Definition 6 Given a concept class C, a compression scheme is a proper compression scheme if for
every finite S ∈ (X × Y)∗ , the reconstruction ρ(κ(S)) returns a concept c ∈ C.

A binary function f : X → {0, 1} is a majority of concepts from C ⊆ {0, 1}X if there exists
a finite Cf ⊆ C such that for all x ∈ X , f(x) = Maj(c(x) : c ∈ Cf ), where Maj(·) takes in a
sequence and returns the majority element (picking zero to break ties). A compression scheme is a
majority vote compression scheme if for every finite S ∈ (X × Y)∗, ρ(κ(S)) outputs a majority of
concepts from C.

Theorem 7 (Multiclass, Reductions with Proper / Majority Vote Compression Schemes)
Suppose any binary concept class C with VC dimension dVC < ∞ has a compression scheme of
size f(dVC) that is either a proper compression scheme or a majority vote compression scheme (see
Definition 6). Then any multiclass concept class (allowing infinite label sets) with a finite graph
dimension dG <∞ admits a compression scheme of size O(f(dG)).

In particular, we recover the best known bounded-size multiclass compression scheme of size 2O(dG)

(David et al., 2016), via a reduction to binary compression.
Proof Suppose CY (Equation 2) has a binary compression scheme (κb,ρb), which is either a proper
compression scheme or a majority vote compression scheme. Consider h = ρb(T ) for any T in the
image of κb and any possible finite realizable S given to κb as an input. We claim that for all x ∈ X ,
h(x, y) equals 1 for at most one y. To show this, we consider two cases: 1) h is proper, and 2) h is a
majority of concepts from the concept class. In the first case, since h is proper in CY , h(x, y) must
equal 1 for exactly one y ∈ Y . Now consider the second case, where h is a majority of concepts
Ch ⊆ C. Notice that for any fixed x ∈ X , c(x, y) = 1 for exactly |Ch| pairs (c, y) in Ch × Y (since
for any c ∈ Ch, there exists exactly one y ∈ Y such that c(x, y) = 1). Thus, in order for h(x, y) to
be 1, c(x, y) must be 1 for strictly more than |Ch|/2 concepts c from Ch. Therefore, h(x, y) = 1 for
at most one y ∈ Y .
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We now construct a compression scheme (κ, ρ) for C as follows. Compression: Given realiz-
able S = (x1, y1), . . . , (xn, yn), let T = {((xi, yi), 1) : i ∈ [n]}. We let our compression κ(S)
return the (x, y) pairs from κb(T ), which have size O(f(dG)). Reconstruction: We have that
κb(T ) = {((x, y), 1) : (x, y) ∈ κ(S)}, so we can immediately recover κb(T ). Since ρb(κb(T )) is
correct on all possible T and predicts 1 for at most one y for each x, we can conclude that ρb(κb(T ))
is correct on all of SY . Note that if the reconstruction ρb is proper, then it will output exactly one
1 for each x. Additionally, it the reconstruction is a majority of learners from the class, where we
break ties to favor predicting 0, then it will output at most one 1 for each x.

3.2. Additional Assumption: Existence of Stable Binary Compression

By assuming the existence of stable sample compression schemes for binary classification, we can
derive tighter results, including a reduction that is independent of the size of the label space, as-
suming the label space is finite. A stable compression scheme ensures that removing any point out-
side the compression set does not affect the output of the compression function. Natural examples
where such schemes exist include thresholds, halfspaces, maximum classes, and intersection-closed
classes. A notable example for halfspaces is the Support Vector Machine (SVM) algorithm: points
outside the d + 1 support vectors can be removed, and the remaining support vectors still form a
valid compression set. The formal definition is as follows.

Definition 8 (Stable Compression Schemes (Bousquet et al., 2020)) A sample compression
scheme is stable if for any sequence S over (X × Y), and any T : κ(S) ⊆ T ⊆ S, it holds that
κ(T ) = κ(S) 2.

Theorem 9 (Multiclass, Reductions with Stable Compression Schemes) Suppose that for
binary concept classes with finite VC dimension dVC <∞, there exists a stable sample compression
scheme of size f(dVC). Then, for multiclass concept classes with a finite graph dimension dG <∞
and finite label space, there exists a stable sample compression scheme of size O(f(dG)).

Proof Given a class C with dG(C) = dG, consider CY (Equation 2). We construct the following
compression scheme. Compression: We first inflate S to SY and apply κb. Define

κ′b(SY) := {((x, y),1[y = yi]) : x appears in κb(SY), (x, yi) ∈ S, y ∈ Y},

i.e., it is an inflated κb(SY) to include all the labels for each x. Since the compression scheme
is stable, and since κb(SY) ⊆ κ′b(SY) ⊆ SY , we must have that κb(κ′b(SY)) = κb(SY). We can let
κ(S) return the (xi, yi) pairs such that xi is a member of κb(SY). This will have size O(f(dG)).
Reconstruction: Given κ(S), we can reconstruct κ′b(SY) by inflating the dataset to include all
labels for each x in κ(S). Then, we can apply κb to get κb(SY) (using the fact that it is a stable
compression scheme), and then apply ρb to get the desired compression result.

2. Some notations:

• If there is a ⊆ sign and any of the sides is of the form (S, b) for a sequence S and a bitstring b, we can interpret it
to be S. For example, (S, b) ⊆ T will be interpreted as S ⊆ T .

• Also, we will sometimes apply κ to something of the form (T, b) (for example, something like κ(κ(S))). In this
case, we can interpret it to be κ(T ).
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We now show that the above compression scheme is stable. Let (κ, ρ) be the multiclass com-
pression scheme above, and let (κb, ρb) be the binary stable compression scheme above. Let
S = (x1, y1), . . . , (xn, yn) be realizable, and consider T such that κ(S) ⊆ T ⊆ S. We want
to show that κ(T ) = κ(S). Inflate S to SY as above, and inflate T to TY similarly. κ(S) ⊆ T , and
in the inflated dataset TY includes all the labels for each x ∈ T , so κb(SY) ⊆ TY . Additionally
since T ⊆ S, we get

κb(SY) ⊆ TY ⊆ SY .

Since the binary compression scheme is stable, this gives that κb(TY) = κb(SY). Thus, κ(T ) =
κ(S), as desired.

We prove a similar result for infinite label sets, where we require that the compression scheme on
CY (Equation 2) can handle infinite sets. For a set A, we denote by A∞ the set of (possibly infinite)
sequences whose elements are taken from A. A (possibly infinite) sequence S ∈ (X × Y)∞ is
realizable if there exists a c ∈ C such that for all (x, y) ∈ S, c(x) = y. We define infinite
compression schemes as follows:

Definition 10 (Infinitized Sample Compression Scheme) Given a concept class C ⊆ YX , define
an infinitized sample compression scheme by the two following functions:

• A compression function κ : (X × Y)∞ → (X × Y)∗ × {0, 1}∗ which maps any (possibly
infinite) sequence S to a finite sequence (compression set) S′ ⊆ S and a finite bitstring b.

• A reconstruction function ρ : (X ×Y)∗×{0, 1}∗ → YX , which maps any possible compres-
sion set to a predictor.

Additionally, for any realizable S ∈ (X × Y)∞, ρ(κ(S))(x) = y for all (x, y) ∈ S. The infinitized
sample compression scheme is of size k if for any realizable sequence S ∈ (X × Y)∞, for κ(S) =
(S′, b), |S′|+ |b| ≤ k.

Appendix A includes a discussion of standard and infinitized sample compression schemes, where
we demonstrate the distinctions between these two notions. We show that a finite VC dimension
is not sufficient for the existence of a bounded-size infinitized sample compression scheme. For
example, thresholds on the real line have a finite VC dimension but do not admit an infinitized
compression scheme. Additionally, we show that a finite Littlestone dimension is sufficient (but
not necessary) for a bounded-size infinitized compression scheme. We leave as an open problem
the question of characterizing which concept classes admit a bounded-size infinitized compression
scheme.

One can study infinitized compression schemes in more general settings, such as compression
with general losses, agnostic compression, and approximate compression. We do not attempt to do
so in this paper, and we focus instead on exact realizable infinitized compression with the zero-one
loss.

Theorem 11 (Multiclass, |Y| =∞, Reductions with Stable Infinitized Compression Schemes)
Let C ⊂ YX be a multiclass concept class. If CY (see Equation 2) has an infinitized stable com-

pression scheme of size k, then C has a stable compression scheme of size k.

9
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The idea to prove the theorem is to consider an infinitized compression scheme (κb, ρb) over the
infinite set SY . The result follows directly via the arguments of the proof of Theorem 9, the details
are omitted here to avoid repetition.

The requirement for a sample compression scheme to be infinitized is rather strong since we
require ρ(κ(S)) to be consistent with any finite or infinite S. Instead, we relax the definition, by
defining an “inflated” compression scheme, which will be defined below formally. The idea is that
instead of considering all infinite sets S, we only require the accuracy guarantee to hold for sets S
that are supported by a finite number of x ∈ X .

Definition 12 (Inflated Compression Scheme) Given a concept class C ⊂ {0, 1}(X×Y), define an
inflated compression scheme by the following two functions:

• A compression function κ : (X ×Y ×{0, 1})∞ → (X ×Y ×{0, 1})∗×{0, 1}∗ which maps
any (possibly infinite) sequence S to a finite sequence (compression set) S′ ⊆ S and a finite
bitstring b.

• A reconstruction function ρ : (X × Y × {0, 1})∗ × {0, 1}∗ → {0, 1}(X×Y), which maps any
possible compression set to a predictor.

Additionally, for any realizable sequence S ∈ (X × Y × {0, 1})∞ where |{x ∈ X : ∃y ∈ Y, z ∈
{0, 1} s.t. ((x, y), z) ∈ S}| < ∞, it must hold that ρ(κ(S))((x, y)) = z for all ((x, y), z) ∈ S.
The inflated sample compression scheme is of size k if for any such realizable sequence S, where
κ(S) = (S′, b), we have |S′|+ |b| ≤ k.

Theorem 13 (Multiclass, |Y| =∞, Reductions with Stable Inflated Compression Schemes)
Let C ⊂ YX be a multiclass concept class. If CY (see Equation 2) has a stable inflated compression
scheme of size k, then C has a stable compression scheme of size k.

The proof follows similar reasoning as Theorem 11 and is omitted here for brevity. Inflated com-
pression schemes are more practical, and there are natural settings where such compression schemes
are relevant. For example, consider the following example.

Example 1 (Concept Class with Inflated Stable Compression Scheme: Piecewise Thresholds)
Consider the class C ⊆ YX , where X = Y = R, of two piecewise thresholds, i.e. {gt,y1,y2 :
t, y1, y2 ∈ R} where

gt,y1,y2(x) =

{
y1 if x ≤ t,

y2 if x > t.

For a concept c, the class CY will map (x, y) to 1 or 0 depending on whether c(x) = y. We
construct a stable inflated compression scheme for this class. For a set S of points of the form
((x, y), z), discard the points for which there is no other point with the corresponding x value and
the label equal to 1. Then, for each y ∈ Y that appears in the set, compress to the leftmost and
rightmost datapoints of the form ((x, y), 1). To predict the value at an (x, y) pair, we can check
the compression scheme to find the leftmost and rightmost points xl, xr in X for which y occurs.
If xl ≤ x ≤ xr, predict 1, and otherwise, predict 0. This gives a compression scheme of size 4,
that is also stable, since removing points from S that are not in κ(S) will not affect the output of
κ. This proof can be generalized to the class of k piecewise thresholds, which has an inflated stable
compression scheme of size 2k.

10
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3.3. Agnostic Multiclass Sample Compression Scheme

We show that our results simply extend to agnostic sample compression (see Definition 1).

Theorem 14 (Reducing Agnostic Multiclass Compression to Binary Compression Schemes)
Suppose that for binary classes with VC dimension dVC < ∞, there exists a sample compression
scheme of size f(dVC). Then, for a multiclass class with a finite graph dimension dG < ∞ and a
finite label set |Y|, there exists an agnostic sample compression scheme of size O(f(dG) log |Y|).

Proof Consider S = (x1, y1), . . . , (xn, yn). Run Empirical Risk Minimization (ERM) to compute
an ĉ that minimizes the empirical loss:

inf
c∈C

1

n

n∑
i=1

1[c(xi) ̸= yi].

Denote the examples on which ĉ is correct as S′ = (xi1 , yi1), . . . , (xik , yik), for some indices
i1, i2, . . . , ik. Consider CY (see Equation 2). We can inflate the labels to S′

Y = {((xij , y),1[yij =
y]) : 1 ≤ j ≤ k}. This is realizable by CY , so we can apply the binary compression scheme to this
class and construct our multiclass compression scheme as in the proof of Theorem 4.

We can prove the agnostic version of Theorem 7 and Theorem 9 similarly, by finding the largest
realizable subsequence in the training set and applying it for the realizable compression scheme on
this subsequence.

4. Compression for Regression

In this section, we tackle the problem of compression in a regression setting with the ℓp loss by
reducing it to the binary setting. Our compression size depends on the pseudo-dimension, which is
known to be sufficient but not necessary for learnability. We leave as an important open problem
the question of whether our reductions could work for concept classes with a finite fat-shattering di-
mension. It is known that (without reductions) it is possible to construct such compression schemes
of size 1

ϵ2
O(fatcϵ) (for some c > 0), in both realizable and agnostic settings (Hanneke et al., 2019;

Attias et al., 2024). The pseudo-dimension is defined as follows.

Definition 15 (Pseudo-Dimension (Pollard, 1984, 1990)) A set of points x1, x2, . . . , xn is
P-shattered by C ⊆ [0, 1]X if there exist y1, y2, . . . , yn ∈ [0, 1] such that

{(1[c(x1) ≤ y1],1[c(x2) ≤ y2], . . . ,1[c(xn) ≤ yn]) : c ∈ C} = {0, 1}n.

The pseudo-dimension of a real-valued concept class C, denoted by dP(C) is the largest nonnegative
integer n ∈ N for which there exist x1, x2, . . . , xn ∈ X that are P-shattered by C.

Let C ⊆ [0, 1]X be a real-valued class. Let C≤ consist of functions gc : X × [0, 1] → {0, 1} where
gc(x, y) = 1[c(x) ≤ y]. For any ϵ ∈ (0, 1), define the ϵ-discretized label set Yϵ to be

Yϵ =
{
cϵ : c ∈

{
0, 1, 2, . . . ,

⌊
1

ϵ

⌋}}
∪ {1} . (3)

11
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For any realizable sequence S = (x1, y1), (x2, y2), . . . , (xn, yn) in (X × [0, 1])n, and for any ϵ ∈
(0, 1), let Sϵ be defined as the following inflated dataset:

Sϵ =
n⋃

i=1

{((xi, y),1[yi ≤ y]) : y ∈ Yϵ} , (4)

corresponding to the output of a sample-consistent concept from C≤ on X × Yϵ.

Theorem 16 (Reducing (Approximate) Compression for ℓp Regression to Binary) Suppose
that for binary classes with VC dimension dVC < ∞, there exists a sample compression scheme
of size f(dVC). Then, for a [0, 1]-real-valued class with pseudo-dimension dP < ∞, there is an
ϵ-approximate compression scheme with respect to the ℓ∞ loss with size O(f(dP) log(

1
ϵ )). Further-

more, for p ∈ [1,∞), there is an ϵ-approximate compression scheme with respect to the ℓp loss of

size O
(
f(dP) log(

1
ϵ
)

p

)
.

Proof Denote the pseudo-dimension dP(C) = dP. We first consider a compression scheme for ℓ∞
loss. We show that dVC(C≤) = dP. First, we show the≤ direction. Consider (x1, y1), (x2, y2), . . . ,
(xn, yn) shattered by the binary class C≤. All the xi’s must be distinct, as otherwise, two points
(x, yj1), (x, yj2) with yj1 < yj2 would require gc(x, yj2) < gc(x, yj1) for some gc to achieve shat-
tering, contradicting the monotonicity of gc in y for fixed x ∈ X . Since the n points are shattered,
this means that for all b ∈ {0, 1}n, there exists a gc ∈ C≤ such that gc(xi, yi) = bi. By the definition
of gc, this implies that for all b ∈ {0, 1}n, there exists a c ∈ C such that for all i = 1, . . . , n, if
bi = 1, then c(xi) ≤ yi, and if bi = 0, then c(xi) > yi. Thus, x1, x2, . . . , xn P-shatter C via
labels y1, y2, . . . , yn. Now we show the ≥ direction. Suppose x1, x2, . . . , xn P-shatter C via labels
y1, y2, . . . , yn. This implies that for all b ∈ {0, 1}n, there exists a c ∈ C such that for all i, if bi = 1,
then c(xi) > yi, and if bi = 0, then c(xi) ≤ yi, i.e. if bi = 1, then gc(xi, yi) = 0, and if bi = 0,
then gc(xi, yi) = 1. Thus, (x1, y1), (x2, y2), . . . , (xn, yn) are shattered by C.

We then consider the class C≤. Consider a sequence S = (x1, y1), . . . , (xn, yn) ∈ (X ×
[0, 1])n realizable by C. Assuming C≤ has a binary compression scheme (κb, ρb), we construct an
ϵ-approximate compression scheme as follows. Compression: Inflate S to Sϵ and apply κb to Sϵ.
κb(Sϵ) will have at most f(dP) points and ≤ f(dP) additional bits. The elements of κb(Sϵ) are of
the form (x, y) where x ∈ X and y ∈ Yϵ. To construct κ(S), we can encode κb(S) as follows:
For each (x, y) in κb(Sϵ), there is an x ∈ X that was inflated to create (x, y) (contributes 1 to
the compression size), and one can use O(log 1

ϵ ) bits to encode y (since y ∈ {1} ∪ {cϵ : 0 ≤
c ≤ ⌊1ϵ ⌋}, and c requires O(log 1

ϵ ) bits to encode). Thus, the compression size is O(f(dP) log
1
ϵ ).

Reconstruction: κ(S) includes enough information for us to recover κb(Sϵ), so we can apply ρb
to κb(Sϵ). For each x value, the output as we increase y over the multiples of ϵ will be 0 for a
(possibly empty) contiguous region, and then 1 for a contiguous region up to 1. We can pick any y
in the boundary to get a reconstruction that is within ϵ of the true value.

To analyze compression in the ℓp setting, notice that the losses are in [0, 1], so in order for the
ℓp loss to be ≤ ϵ, it must hold that 1

n

∑n
i=1 |ρ(κ(S))(xi) − yi|p ≤ ϵ. The left-hand side is upper-

bounded by maxni=1 |ρ(κ(S))(xi)−yi|p, so it is sufficient that maxni=1 |ρ(κ(S))(xi)−yi|p to be≤ ϵ.

Taking the pth root of both sides, it follows that maxni=1 |ρ(κ(S))(xi) − yi| ≤ ϵ
1
p , which implies

that the ℓ∞ loss must be at most ϵ
1
p . We can plug in the compression bound for ϵ

1
p -approximate ℓ∞

compression to get a compression bound of O
(
f(dP) log(

1
ϵ1/p

)
)
= O

(
f(dP) log(

1
ϵ
)

p

)
.
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Open Problem 17 Suppose all binary concept classes with VC dimension dVC have a sample com-
pression scheme of size f(dVC). Does every [0, 1]-valued concept class with a finite fat-shattering
dimension (at any scale) admit an ϵ-approximate ℓ∞ compression scheme of size
O(f(fatcϵ)polylog(

1
ϵ , fatcϵ)) for some c > 0, where fatγ is the fat-shattering dimension of the

concept class at scale γ?

4.1. Additional Assumptions: Majority Votes, Proper, and Stable Compression Schemes

By assuming the existence of majority votes, proper, or stable sample compression schemes for
binary classification, we can derive stronger results (similarly to Theorem 7 and Theorem 9 in the
multiclass setting).

Theorem 18 (Regression, Approx. Compression, Reductions with Majority Vote Compression)
Suppose any binary concept class C with VC dimension dVC < ∞ has a compression scheme of

size f(dVC), which is a proper or a majority vote compression scheme (see Definition 6). Then for
any p ∈ [1,∞], any class with pseudo-dimension dP < ∞ admits an ϵ-approximate compression
scheme, with respect to the ℓp loss, of size O(f(dP)).

Proof We only prove the result for the ℓ∞ loss. Note that since the losses are in [0, 1], the ℓp loss is
upper bounded by the ℓ∞ loss, so the result for ℓ∞ loss will imply the result for the ℓp loss.

Suppose C≤ has a binary compression scheme (κb, ρb) which is either a proper compression
scheme or a majority vote compression scheme. Consider g = ρb(T ) for any T in the image of κb
on the image of any finite realizable S. We claim that for all x ∈ X , there exists an r ∈ [0, 1] such
that for y ∈ Y , if y < r, then g(x, y) = 0, and if y ≥ r, g(x, y) = 1. If the compression scheme is
proper, we can just let r = c(x) and we are done. Consider the case where the compression scheme
is a majority vote compression scheme. Suppose the majority reconstruction is taken from some
finite C′≤ ⊆ C. Fix x ∈ X , and increase y over Y . |{c ∈ C≤′ : c(x, y) = 1} | is monotonically non-
decreasing and equal to |C′≤| for y = 1. |

{
c ∈ C′≤ : c(x, y) = 0

}
| is monotonically non-increasing

and equal to 0 for y = 1. Both sets have the same sum over all pairs (x, y). Therefore, as y increases,
the majority starts at 0 for a (possibly empty) prefix, becomes 1 eventually for some y = r (possibly
at y = 0), and remains 1 as y increases.

We can now construct a compression scheme (κ, ρ) for C as follows. Compression: Given
realizable S = (x1, y1), . . . , (xn, yn), consider Sϵ (Equation 4). We can input to κb the set T ,
which for every 1 ≤ i ≤ n, contains ((xi, y), 1) for the smallest y ∈ Yϵ that is≥ yi, and ((xi, y), 0)
for the largest y ∈ Yϵ that is < yi (this may not exist, in which case do not include it in T ). Applying
κb to T will return f(dP) points in Sϵ. κ can output the (xi, yi) pairs responsible for κb(T ), and for
each point, use two bits: the first one to indicate if the corresponding ((x, y), 0) pair in T was output
by κb, and the second one to indicate if the corresponding ((x, y), 1) pair in T was output by κ(b).
We use at most three bits for each point, so the compression size is at most 3f(dP). Reconstruction:
We have shown that the output of κ(Sϵ) has elements of the form (x, y) and at most three bits per
point. We can use this information to recover the points in κb(T ). Then, compute ρb(κb(T )), which
is guaranteed to be correct on T , and has the property that as y increases, it outputs 0 for a (possibly
empty) prefix and 1 for a suffix. To find the ϵ-approximate output for an input x ∈ X , iterate over
the elements in Yϵ in increasing order, and output the first element for which ρb(κb(x, y)) = 1.
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Theorem 19 (Regression, Approximate Compression, Reductions with Stable Compression)
Suppose any binary concept class C with VC dimension dVC <∞ has a stable compression scheme
of size f(dVC). Then, for any p ∈ [1,∞], any class with pseudo-dimension dP < ∞ admits an
ϵ-approximate compression scheme, with respect to ℓp loss, of size O(f(dP)).

Proof As in Theorem 18, we only prove the result for ℓ∞, and that will imply the result for general
ℓp. Assume there is a stable binary compression scheme (κb, ρb) for C≤. Compression: Inflate S to
Sϵ, and run κb on Sϵ. This will return O(f(dP)) points. Since the compression scheme is stable, we
convert this to Tϵ where T corresponds to the (xi, yi) pairs for which xi ∈ κb(Sϵ). We can represent
Tϵ via T , giving a compression size f(dP). Reconstruction: Reinflate T to Tϵ, and κ(Tϵ) gives the
desired binary predictor in C≤.

We are able to compute an ϵ-approximate sample compression scheme with size O(f(dP)), as-
suming the binary compression scheme is a majority vote, proper, or stable. It is notable that this
bound is independent of ϵ, suggesting the possibility of extending similar results to exact compres-
sion schemes. The above results lead to the following open problem, which has multiple subprob-
lems:

Open Problem 20 Suppose any binary concept class C with VC dimension dVC < ∞ has a com-
pression scheme of size f(dVC).

1. If the binary compression scheme is either proper, majority vote, or stable, does every class
with pseudo-dimension dP <∞ admit an exact compression scheme of size O(f(dP))?

2. If there are no assumptions on the binary compression scheme, given ϵ > 0 and p ∈ [1,∞],
does every class with pseudo-dimension dP < ∞ admit an ϵ-approximate compression
scheme of size O(f(dP)) for ℓp loss?

3. If there are no assumptions on the binary compression scheme, does every class with
pseudo-dimension dP <∞ admit an exact compression scheme of size O(f(dP))?

If we assume the existence of a stable infinitized or inflated compression scheme for CY (see Equa-
tion 2), we can establish an exact compression (rather than approximate), similarly to Theorem 11
and Theorem 13 in the multiclass setting. The proofs follow similar reasoning as Theorem 19 and
are omitted here for brevity.

Theorem 21 (Regression, Exact Compression, Infinitized Stable Binary Assumption)
Let C have pseudo-dimension dP. If CY (Equation 2) has an infinitized or inflated stable compression
scheme of size k, then C admits a stable (exact) compression scheme of size k.

The following theorem slightly deviates from the theme of earlier proofs about reductions to bi-
nary compression. Instead, this is a reduction from realizable regression to multiclass classification
with infinite labels, by showing that for any concept class C ⊆ [0, 1]X , it holds that dG(C) ≤ 4dP(C).
Attias et al. (2024) very briefly stated that there is a bounded realizable exact compression scheme
for classes with bounded pseudo-dimension, but we provide the full proof in this paper. The proof
is in Appendix C.
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Theorem 22 (Regression, Exact Compression, Reduction to Multiclass with |Y| =∞)
Suppose any multiclass concept class C with graph dimension dG <∞ has a compression scheme of
size f(dG). Then, any real-valued class with pseudo-dimension dP <∞ has a compression scheme
of size O(f(4dP)). This implies that there is an exact compression scheme of size O(dP2

4dP).

Proof sketch The idea behind the proof is to consider n points x1, x2, . . . , xn that are G-shattered
by C. We use a pigeonhole argument to prune out concepts from C to a subset C′ such that there is
y1, y2, . . . , yn where {(1[c(x1) ≤ y1],1[c(x2) ≤ y2], . . . ,1[c(xn) ≤ yn] : c ∈ C′} is large enough,
such that we can apply Sauer’s lemma to lower bound the pseudo-dimension.

4.2. Agnostic Approximate Compression for Regression

So far, we discussed compression schemes for the realizable case. In the following, we show how
to extend it to the agnostic case.

Theorem 23 (Reducing Agnostic (Approximate) Compression for Regression to Binary) Sup-
pose that for binary classes with VC dimension dVC <∞, there exists a sample compression scheme
of size f(dVC). Then, for a real-valued class with pseudo-dimension dP <∞, there exists an agnos-
tic sample compression scheme with respect to the ℓ∞ loss of size O(f(dP) log(

1
ϵ )). Furthermore,

for p ∈ [1,∞), there exists an agnostic sample compression scheme with respect to the ℓp loss of

size O
(
f(dP) log(

1
ϵ
)

p

)
.

Proof Consider S = (x1, y1), . . . , (xn, yn). Run ERM to compute an ĉ that minimizes the follow-
ing:

inf
c∈C

max
1≤i≤n

|c(xi)− yi|.

Consider the dataset (x1, y′1), . . . , (xn, y
′
n), where we define y′i to be ĉ(xi). This is realizable by the

class C≤ from the proof of Theorem 16, so we can apply the realizable compression scheme to get
a compression size of O(f(dP) log(1/ϵ)). To prove the result for general ℓp loss, we have as in the
proof of Theorem16 that since the losses are in [0, 1], in order for the ℓp loss to be≤ ϵ, it s sufficient

for the ℓ∞ loss to be ≤ ϵ
1
p . Thus, it s sufficient to get an ϵ

1
p -approximate ℓ∞ agnostic compression

scheme, and the one that was just constructed will have size O
(
f(dP) log(

1
ϵ
)

p

)
.

It remains a major open problem to determine whether there exists an exact agnostic com-
pression scheme for regression with the ℓ1 loss of size O(dP), while the best-known result is an
ϵ-approximate agnostic compression scheme of size 1

ϵ2
O(fatcϵ) for some constant c > 0 (see Attias

et al. (2024)).

5. Compression for Adversarially Robust Classification Against Test-Time Attacks

In this section, we tackle the problem of compression in the adversarially robust classification set-
ting, by reducing it to the binary classification problem. In this setting, there is a perturbation
function U : X → 2X that takes an input and outputs a perturbation set, satisfying x ∈ U(x) for
all x ∈ X . A loss is incurred if the input can be perturbed in such a way that the model predicts
a label different from the true label. More specifically, for c ∈ C, x ∈ X , and y ∈ Y , the loss
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function is ℓU (c, x, y) = 1[∃z ∈ U(x) : c(z) ̸= y] at testing time, i.e., there exists some pertur-
bation z ∈ U(x) for which the classifier c predicts a label different from y. Several prior works
have explored the sample complexity of adversarially robust learning, with Montasser et al. (2019);
Attias et al. (2022b) focusing on binary classification and Attias and Hanneke (2023) extending this
to real-valued classes.

To achieve compression in this adversarially robust setting, we focus on scenarios where the
dataset is robustly realizable, meaning that the dataset can be perfectly labeled by a concept regard-
less of how the data is perturbed. We formally define this notion below.

Definition 24 (Robust Realizability) Consider a perturbation function U : X → 2X with x ∈
U(x) for all x ∈ X . Given a binary class C, define (x1, y1), . . . , (xn, yn) to be robustly realizable if

inf
c∈C

1

n

n∑
i=1

sup
z∈U(xi)

1[c(z) ̸= yi] = 0.

Given the notion of robust realizability, we now define an adversarially robust compression scheme
that can compress the dataset while ensuring accuracy on all perturbed examples. For a compression
scheme to be adversarially robust, it must select a small subset of the data and return a predictor that
remains accurate on all data points, even when the inputs are adversarially perturbed. The goal is to
maintain the predictor’s accuracy while reducing the amount of stored data.

Definition 25 (Adversarially Robust Compression Scheme) Given a concept class C and per-
turbation function U , we say that a sample compression scheme (κ, ρ) is adversarially robust if for
any
(x1, y1), . . . , (xn, yn) that is robustly realizable, for all i = 1, . . . , n supz∈U(xi) |ρ(κ(S))(z)−yi| =
0.

We prove the following theorem for adversarially robust compression.

Theorem 26 (Reducing Adversarially Robust Compression to Binary Compression) Let U :
X → 2X be a perturbation function and let M = supx∈X |U(x)| be finite. Suppose any binary
concept class C with VC dimension dVC < ∞ has a sample compression scheme of size f(dVC).
Then, C has an adversarially robust sample compression scheme of size O(f(dVC) logM).

Proof Let S = (x1, y1), . . . , (xn, yn) be a set that is robustly realizable by a class C. Let (κb, ρb)
be a binary compression scheme for C. We construct a compression scheme (κ, ρ) as follows.
Compression: Given S, inflate it to create SU = {(z, yi) : i ∈ [n], z ∈ U(xi)}. Apply κb to SU
to obtain a compression set of size f(dVC). For each point (z, yi) in the compression set, we can
encode z using O(logM) bits by storing its index in U(xi). Thus, the total compression size is
O(f(dVC) logM). Reconstruction: Apply ρb to the compressed set to recover the concept. The
recovered concept will be consistent with all points in SU , and thus robustly consistent with S.

By assuming the existence of stable sample compression schemes for binary classification, we
can derive an adversarial robust compression scheme of size independent of |U(x)|.

Theorem 27 (Robust Compression Assuming Existence of Stable Binary Compression)
Let U : X → 2X be a perturbation function and let M = supx∈X |U(x)| be finite. Suppose any
binary concept class C with VC dimension dVC < ∞ has a stable sample compression scheme of
size f(dVC). Then, C has an adversarially robust sample compression scheme of size O(f(dVC)).
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Proof Let S = (x1, y1), . . . , (xn, yn) be a set that is robustly realizable by a class C. Let (κb, ρb) be
a stable binary compression scheme for C. We construct a compression scheme (κ, ρ) as follows.
Compression: Given S, inflate it to create SU = {(z, yi) : i ∈ [n], z ∈ U(xi)}. Apply κb to SU
to obtain a compression set. By the properties of κb, there exists a set T ⊆ S of size f(dVC) such
that all points in κb(SU ) come from inflating T . Since the compression scheme is stable, we can
output T as our compression, giving a size of f(dVC). Reconstruction: Given T , inflate it to TU
and apply ρb(κb(T )) to reconstruct the concept. Since the binary compression scheme is stable, this
will give the same result as applying ρb to κb(SU ), ensuring robust consistency with S.

Open Problem 28 Let C ⊆ {0, 1}X be a binary concept class with VC dimension dVC < ∞, and
let U : X → 2X be a perturbation function. Suppose X has a sample compression scheme of size
f(dVC). Does there exist an adversarially robust compression scheme of size O(f(dVC)) for C?

5.1. Negative Result for Adversarially Robust Compression

While bounded-size sample compression schemes are known to exist for binary classification prob-
lems with classes of finite VC dimension, we present a negative result for the adversarially robust
setting. Specifically, we show that there exists a robustly learnable concept class that does not ad-
mit any bounded-size sample compression scheme. A similar phenomenon has been observed in
multiclass classification (Pabbaraju, 2024) and list learning (Hanneke et al., 2024). The proof is in
Appendix D.

Theorem 29 (Negative Result for Adversarially Robust Compression) There exists a concept
class which is robustly learnable, but has no bounded-size adversarially robust compression scheme.

Proof sketch To prove this theorem, we consider a partial concept class Cpart, which has VC di-
mension 1 but no bounded-size compression scheme, and constructed in Theorem 6 of Alon et al.
(2022) (summarized in Lemma 39). Let Cpart have domain X , and let each x ∈ X have a unique
twin x′ that lies outside of X , Define X ′ = {x′ : x ∈ X}, and set X̃ as X ∪ X ′. We now define
a new class C ⊆ {0, 1}X̃ , where C = {gc : c ∈ Cpart} and for each x ∈ X , if x ∈ supp(Cpart),
gc(x) = gc(x

′) = c(x), and otherwise, gc(x) = 0 and gc(x
′) = 1. We define the perturbation func-

tion to be U(x) = U(x′) = {x, x′} for all x ∈ X . One can show that if C has a bounded-size robust
compression scheme with respect to U , this will imply that Cpart has a bounded-size compression
scheme, which is not possible by Lemma 39. To show that C is robustly learnable with respect to
U , we consider the one-inclusion graph (Definition 41) and show that it has no cycles. This allows
the edges to be oriented to have a maximum out-degree 1, and it follows that the class is robustly
learnable.
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Appendix A. Discussion about Infinitized Sample Compression Schemes

For binary concept classes with VC dimension dVC, Moran and Yehudayoff (2016) demonstrated
the existence of a constant-size sample compression scheme of size 2O(dVC). However, we show
that when the number of samples is infinite, such a result is no longer possible. Additionally, we
construct an infinitized compression scheme for classes with finite Littlestone dimension. However,
we also show that this is not a necessary condition—there are cases where the Littlestone dimension
is infinite, yet the class still admits an infinitized compression scheme.

Definition 30 (Littlestone Dimension (Littlestone, 1988)) A binary tree is perfect if all internal
nodes have exactly two children, and all leaf nodes are at the same level. It is said to have depth d if
there are 2d−1 vertices. Given a class C, a Littlestone tree is a perfect binary tree, where each vertex
is labeled with an element from X . For each path from the root to a leaf, there exists a concept c ∈ C
such that for each internal node at depth i with label xi, c(xi) = bi, where bi ∈ {0, 1} indicates
whether the path follows the left (bi = 0) or right (bi = 1) child. The Littlestone dimension of C
(denoted as dLD(C)) is the maximum depth of a Littlestone tree of C. If no largest depth exists, set
dLD(C) =∞.

Note that an infinite Littlestone tree implies an infinite Littlestone dimension, but the converse is
not true. A class can have an infinite Littlestone dimension (meaning that for any depth, there exists
a Littlestone tree) without having an infinite Littlestone tree.

For a concept class C, let CS be the version space with respect to S, i.e., {c ∈ C : c(x) =
y for all (x, y)
∈ S}. When the concept class C is clear from the context, we use VS to denote it, and let VS,x,y :=
VS∪{(x,y)}. Additionally, we introduce the following oracle M(f, S). For a function f : X → Y
and a (possibly infinite) sample set S ⊆ X × Y , the oracle M(f, S) returns true if there exists an
(x, y) ∈ S such that f(x) ̸= y, and false otherwise. This oracle allows us to determine whether a
predictor makes any mistakes on the infinite sample set S.

Theorem 31 (Infinitized Compression Scheme for Littlestone Classes) Let a binary concept
class C ⊆ {0, 1}X with a finite Littlestone dimension dLD(C) < ∞. Then, assuming access to
the oracle M(·, ·), there exists an infinitized sample compression scheme (Algorithm 1) of size
O(dLD(C)) for C.

The idea for the sample compression scheme is closely related to Littlestone’s Standard Optimal
Algorithm (SOA) (Littlestone, 1988).
Proof We construct the compression (κ, ρ) as follows. Suppose we are given a set S of (x, y)
pairs (possibly infinite) that is realizable by C. We construct κ(S) via the following process in
Algorithm 1. To prove the compression size, we claim the algorithm will take dLD(C) iterations.
Whenever a mistake is made for some (x, y) at time t, we must have that dLD(VTt+1) < dLD(VTt),
since otherwise, dLD(VTt,x,0) = dLD(VTt,x,1) = dLD(VTt) = k for some k, so we can shatter VTt

using x at the root and the Littlestone trees of depth k for each labeling of x, implying a larger
Littlestone dimension for VTt . Thus, the algorithm takes at most dLD(C) iterations and we have an
infinitized compression scheme of size O(dLD(C)).

While finite Littlestone Dimension implies an infinitized compression, the opposite direction
does not hold – consider the following example:
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Algorithm 1 Infinitized Compression SOA

Input: Concept class C ⊆ {0, 1}X , S = {(xi, yi) : i ∈ I} for some (possibly infinite) index set I.
Initialize:

• Initial compression set T0 ← ∅.

• Let ρ : 2X ×X → {0, 1}, define ρ(T )(x) as follows:

– If (x, y) ∈ T for some y, then predict y.

– If there exists a fixed y such that c(x) = y for all c ∈ CT , predict y.

– Predict according to argmaxy∈{0,1} dLD(VT,x,y), and predict 1 if there is a tie.

For t = 0, 1, . . .:

1. If the predictor ρ(Tt) is wrong for any (x, y) ∈ S (determined using the oracle query
M(ρ(Tt), S)), then let Tt+1 = Tt ∪ {(x, y)}.

2. Otherwise (ρ(Tt) does not make any mistake on S) return the compression κ(S) = Tt.

Example 2 (A Class with Infinite Littlestone Dimension and Infinitized Compression Scheme)
Consider the thresholds on the natural numbers. Here X = N, and C ⊆ {0, 1}X where C =
{ct : t ∈ N} and ct(x) = 1[x ≤ t]. This class has an infinite Littlestone dimension. It also has
a sample compression scheme of size 2 – pick the rightmost point with a label equal to 0 and the
leftmost point with a label equal to 1.

Additionally, there is a class of VC dimension 1 that has no infinitized compression scheme, namely
the thresholds over the real numbers.

Example 3 (VC Class with No Infinitized Compression Scheme) Consider the class of thresh-
olds, C = {ct : t ∈ R} where ct(x) = 1[x ≤ t]. There is no infinitized compression scheme for this
class.

We show there is no infinitized compression scheme for C. We can assume for now that C =
{ct : t ∈ R \ Q}. Let S = Q. Assume there is an compression scheme (κ, ρ) for the class where
|κ| ≤ k. Notice that for any t1, t2 irrational, there exists a rational z such that t1 < z < t2. Thus,
κ(S) must be different for every ct ∈ C. Thus, there must be a one-to-one function from R \ Q to
∪i≤k({0, 1} × S)i. However, the former set is uncountable, while the latter set is countable, so this
is impossible.

Notice that the class C from Example 3 has an infinite Littlestone tree, which naturally leads one
to ask whether classes with an infinite Littlestone tree do not have infinitized compression. Note
that the class in Example 2 has an infinite Littlestone dimension but not an infinite Littlestone tree.
Next, we give an example of a class with an infinite Littlestone tree and a bounded-size compression
scheme.

Example 4 (A Class with Infinite Littlestone Tree and Infinitized Compression Scheme) We
construct a concept class C that has an infinite Littlestone tree (and thus infinite Littlestone dimen-
sion) yet admits a simple infinitized compression scheme of size 1.
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Consider an infinite domain X arranged as an infinite perfect binary tree. For each node u at a
finite depth in the tree, let Pu = x1, x2, . . . , xk be the path from the root to u. Define the concept cu
as follows:

cu(x) =

{
1 x has a right child in Pu

0 otherwise

If u is a left child, cu equals cv where v is u’s parent, so we only need concepts for right children.
Let C = {cu : u is the root or is a right child at finite depth}. This class has an infinite Littlestone
tree since we can construct a prediction tree of arbitrary depth by following paths down the binary
tree. However, C admits a simple compression scheme of size 1: Given a sample S, if no points are
labeled 1, output ∅. Otherwise, output the deepest point u with label 1, and let the reconstruction
predict according to cu.

It is an interesting open problem to characterize when infinitized compression is possible.

Appendix B. A Sample Compression Scheme for Classes with Graph Dimension 1

Lemma 32 (Sample Compression Scheme for Graph Dimension 1) Any concept class C with
graph dimension 1 admits a sample compression scheme of size 1.

Before proving Lemma 32, we summarize some relevant results from Ben-David (2015).

Definition 33 A partial ordering ≤ over a set X is called a “tree ordering” whenever for all
x ∈ X , Ix = {y : x ≤ y} is a linear ordering. Additionally, given a totally ordered set under ≤,
define the deepest element to be the one that is less than or equal to all the others under the ordering
≤.

The following lemma follows from Lemma 4 and Theorem 5 from Ben-David (2015).

Lemma 34 (Tree Orderings for Classes with VC Dimension 1 (Ben-David, 2015)) Consider a
binary class C on X with dVC(C) ≤ 1. Pick any c0 ∈ C. Define a partial ordering ≤ on X as
follows: for x, y ∈ X , let x ≤ y if, for every c ∈ C, c(x) ̸= c0(x) implies c(y) ̸= c0(y). It holds
that ≤ is a tree ordering. Furthermore, for any c ∈ C, {x : c(x) ̸= c0(x)} is a linear ordering.

Ben-David (2015) provides the following sample compression scheme for classes with VC di-
mension 1. Consider S = (x1, y1), . . . , (xn, yn) realizable by some c ∈ C. We can pick a c0 ∈ C and
consider the ordering ≤ from Lemma 34. Identify the deepest point xi ∈ {x ∈ X : c(x) ̸= c0(x)}.
The compression set consists of the single point (xi, yi). For any test point z, if there exists exactly
one possible label value among concepts consistent with (xi, yi) (that is, if |{c(z) : c(xi) = yi,
c ∈ C}| = 1), predict that unique value. Otherwise, default to predicting according to c0.

We introduce some notation and an algorithm that will be used to prove Lemma 32. Consider a
class C for which dG(C) = 1. Pick any c0 ∈ C. For c ∈ C, define gc such that gc(x) = 1[c(x) ̸=
c0(x)]. Note the gc0(x) = 0 for all x. Let C′ = {gc : c ∈ C}. C′ is a binary class with VC dimension
≤ 1. Consider points x1, . . . , xn. We can construct the tree ordering from Lemma 34 with respect
to gc0 on these points, where for any x ≤ y gc(x) ̸= gc0(x) implies gc(y) ̸= gc0(y). Since gc0(x) is
zero for all x, this implies that whenever gc(x) = 1, it must also hold that gc(y) = 1. By Lemma 34,
we have that for every c ∈ C, the set {x : gc(x) = 1} is a linear ordering. Below, we’ll propose
what one may consider a natural first attempt at a compression scheme for multiclass, based on the
binary compression scheme from Ben-David (2015).
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An attempt at a compression scheme: Consider the following attempt at a compression scheme,
given points (x1, y1), (x2, y2), . . . , (xn, yn) realizable by some c ∈ C. Construct the tree from
earlier (constructed from some c0 ∈ C), and compress to the deepest point x where gc(x) = 1. For
a test point z, we can try doing the same as earlier: If there are no ambiguities, predict the only
option. Otherwise, predict according to c0. However, there are some caveats.

For a test point z, if there are no ambiguities, then we are done. Consider the scenario where
there are ambiguities. In the binary case, if x ≤ z, no ambiguities arise as c(z) ̸= c0(z). However,
for multiclass prediction, additional ambiguities may occur for points z with x ≤ z. Below, we will
provide a way to address this issue.

A minor fix to the compression scheme: We can compress via Algorithm 2. The following

Algorithm 2 Sample Compression Scheme for Classes with Graph Dimension 1

Input: Concept class C ⊆ YX , dG(C) ≤ 1, realizable S = (x1, y1), (x2, y2), . . . , (xn, yn) via some
c ∈ C.
Initialize:

• Construct tree ordering≤ from {x1, . . . , xn} (As in Lemma 34 statement, from some c0 ∈ C).

• z1: Deepest point x such that gc(x) = 1

For t = 1, 2, . . .:

• Let St = {z : zt ≤ z, |c′(z) : c′ ∈ C and c′(zt) = c(zt)| > 1}

– If St = ∅, return κ(S) = {(zt, c(zt)}
– Else let zt+1 be the deepest element in St.

For a test point z, define ρ({x, y})(z) to be

ρ({x, y})(z) =

{
h(z) for any h ∈ C with h(x) = y if |{h′(z) : h′ ∈ C and h′(x) = y}| = 1

c0(z) otherwise.

i.e. if there are no ambiguities, predict according to any concept consistent with (x, y), and predict
according to c0 otherwise.

Lemma suffices to prove the correctness of the algorithm.

Lemma 35 In Algorithm 2, when setting zt+1 to be the deepest element in St, {c′ ∈ C : c′(zt+1) =
c(zt+1)} ⊆ {c′ ∈ C : c′(zt) = c(zt)}.

Proof Consider the undirected bipartite graph on {zt, zt+1} × Y , where there is an edge between
(zt, i) and (zt+1, j) whenever there exists an c′ ∈ C such that c′(zt) = i, c′(zt+1) = j.

Since the dG(C) ≤ 1, the graph must be acyclic (Otherwise, consider a cycle. Since the graph is
bipartite, the length of the cycle is at least 4. Picking two disjoint edges e1 = ((zt, i), (zt+1, j)), e2,
we can G-shatter zt and zt+1 with labels i and j using e1, e2, and the two neighbors of e1, contra-
dicting that dG(C) ≤ 1). Thus, we can consider the graph to be an undirected forest. Furthermore,
for any two disjoint edges, both of them must be incident to a leaf. (Otherwise, if there are two
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disjoint edges e1, e2 that are disjoint, and e1 is not incident with a leaf, then we can shatter the two
points as earlier using the labels corresponding to e1 with e1, and the two neighbors of e1).

Now, consider zt and zt+1. Since both of them are on Ix from the tree ordering, it must be
the case that c0(zt) ̸= c(zt) and c0(zt+1) ̸= c(zt+1). Thus, c and c0 will be disjoint in the above
bipartite graph, and thus, c must be incident to a leaf. Since zt+1 ∈ St, (zt, c(zt)) must lie on an
internal node. Thus, (zt+1, c(zt+1)) is a leaf. Thus, when we switch the compression point to zt+1,
{c′ ∈ C : c′(zt+1) = c(zt+1)} ⊆ {c′ ∈ C : c′(zt) = c(zt)}.

Proof [of Lemma 32] Utilizing Lemma 35, we now proceed with the proof of this lemma. Consider
running Algorithm 2. Each time we switch our compression point from zt to zt+1, by Lemma 35,
the space of hypotheses consistent with the compression point becomes a strict subset of what it
was before. Furthermore, zt+1 ̸∈ St+1, and since St+1 ⊆ St, St keeps shrinking as we increase t.
All points in St lie in Iz1 and are larger than zt in the tree ordering. Since Iz1 is finite and St keeps
shrinking, this process must end in a finite number of steps when St becomes empty, at which point
there will be no ambiguities in predicting labels for any test point z ∈ Iz1 .

Appendix C. Exact Compression for Realizable Regression: Proof of Theorem 22

We start with the following Lemma, which will relate the graph dimension and the
pseudo-dimension.

Lemma 36 (Graph Dimension Upper Bound via Pseudo-Dimension) For any concept class
C ⊆ [0, 1]X , it holds that dG(C) ≤ 4dP(C).

Proof Consider n points Sn = {x1, . . . , xn} that are G-shattered (see Definition 3) by C via values
y1, . . . ,
yn, via 2n concepts C0 ⊆ C. Consider C0 supported on x1, . . . , xn. We will consider dP(C0), which
will be a lower bound for dP(C). For any c ∈ C0, define

gc(xi) =


1 c(xi) > yi,

0 c(xi) = yi,

−1 c(xi) < yi.

We will prune concepts to form a sequence C0 ⊇ C1 ⊇ . . . ⊇ Cn, all supported on x1, . . . , xn.
For i = 1, . . . , n, given Ci−1, we can prune out the concepts c for which gc(xi) occurs the least
frequently, i.e. we can do the following:

• Consider ẑ = argminz |{c ∈ Ci−1 : gc(xi) = z}|.

• Set Ci = Ci−1 − {c ∈ Ci−1 : gc(xi) = ẑ}

It now suffices to bound dP(Cn). Let Si := {gc(xi) : c ∈ Cn}. |Si| ≤ 2 for all i, since we
pruned the concepts with the least frequent gc(xi) earlier. Thus, we can construct zi as follows for
1 ≤ i ≤ n:
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zi =


yi 0 ̸∈ Si or |Si| = 1,

yi + ϵ for some ϵ < infc∈Cn,c(xi)>yi c(xi)− yi −1 ̸∈ Si,

yi − ϵ for some ϵ < infc∈Cn,c(xi)<yi yi − c(xi) 1 ̸∈ Si.

Note that (1[c(x1) ≥ z1],1[c(x2) ≥ z2], . . . ,1[c(xn) ≥ zn]) is distinct for all c ∈ Cn, so it suffices
to bound |Cn| and apply Sauer’s Lemma (Sauer, 1972; Vapnik and Chervonenkis, 1971), as follows:
By the construction of Ci for each i, since we remove the smallest set in a partition into three at each
step, it follows that |Ci| ≥ 2

3 |Ci−1|. Thus, |Cn| ≥ 2n(2/3)n Let dP := dP(Cn). By Sauer’s lemma
(taking logs), we have that

dP ln(en/dP) ≥ n(ln 4/3).

We have dP ≥ 1 (since by definition, we shatter each (xi, zi) pair), so the left-hand side can be
upper bounded by dP ln(en) = dP(1 + lnn). Thus, we have that dP ≥ n ln 4/3

1+lnn ≥
1
4n.

Proof [of Theorem 22] Applying Theorem 36 gives that dG(C) ≤ 4dP(C), i.e., the graph dimension
of C is at most 4dP. By our assumption, there exists a compression scheme of size f(dG), so
this implies that there exists a compression scheme of size f(4dP), as desired. The well-known
bound of David et al. (2016) states that there is a bounded sample compression scheme of size
O(dG(C)2dG(C). Using the reduction from pseudo-dimension to graph dimension, where f(x) =
cx2x for some constant c > 0, we get that there is a compression scheme of size O(dP2

4dP).

Appendix D. Existence of Robustly Learnable Class with No Bounded Size
Adversarially Robust Compression Scheme: Proof of Theorem 29

To prove the theorem, we utilize a partial concept class from Alon et al. (2022), which has an
unbounded compression size and VC dimension equal to 1. We begin with some key definitions.

Definition 37 (Partial concept classes (Alon et al., 2022)) A partial concept class is a class of
concepts C ⊆ {0, 1, ∗}X , which consists of partial concepts c : X → {0, 1, ∗} For a c ∈ C,
define supp(c) = {x ∈ X : c(x) ̸= ∗}, which is the set of points where c is defined. A dataset
(x1, y1), . . . , (xn, yn) is realizable if there exists a c ∈ C such that xi ∈ supp(c) for all i, and
c(xi) = yi for all i. A partial concept class C shatters a set x1, . . . , xn if

{(c(x1), c(x2), . . . , c(xn)) : x1, x2, . . . , xn ∈ supp(c)} = {0, 1}n.

The VC dimension of a partial concept class is the largest nonnegative integer n for which there
exist x1, x2, . . . , xn shattered by C.

Definition 38 (Partial concept class compression scheme) Given a class C, a compression
scheme is a partial concept class compression scheme if for any sequence S realizable by C,
ρ(κ(S))(x) = y for all (x, y) ∈ S.

The partial concept class that we will use for our negative result for adversarial robustness is summa-
rized via the following Lemma, which was proved in Theorem 6 of Alon et al. (2022). This Lemma
constructs a partial concept class with VC dimension 1 that does not admit any bounded-size sample
compression scheme.
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Lemma 39 (Partial Concept Class with VC 1 and Unbounded Compression (Alon et al., 2022))
There exists a partial concept class Cpart, such that dVC(Cpart) = 1, but there is no bounded-size

sample compression scheme for Cpart.

In the proof of Theorem 29, we make use of the following class C and perturbation set function
U : Let each x ∈ X have a unique twin x′ outside of X . Define X ′ to be {x′ : x ∈ X}, and X̃
to be X ∪ X ′. Construct C as follows: C = {gc : c ∈ Cpart} where for x ∈ X , if x ∈ supp(c),
gc(x) = gc(x

′) = c(x), and for x ̸∈ supp(c), gc(x) = 0 and gc(x
′) = 1. For x ∈ X , let

U(x) = U(x′) = {x, x′}.

Definition 40 (Adversarially Robust Learnability)
Given a perturbation function U , a class C is robustly learnable if, for any ϵ, δ > 0 and any robustly
realizable distribution P , there exists n = poly(1δ ,

1
ϵ )

3, such that, given n i.i.d. samples from P ,
there is an algorithm that returns a hypothesis ĉ ∈ YX satisfying

P(x,y)∼P [∃z ∈ U(x) : ĉ(z) ̸= y] < ϵ

with probability at least 1− δ over the training sample.

To show that the class is learnable, we use the one-inclusion graph predictor, which we define
as follows. Note that since we are in the robust setting, the definition is slightly different, since we
require the vertices to correspond to robustly realizable sequences.

Definition 41 (One-Inclusion Graph Predictor (Haussler et al., 1994)) Given a concept class
C ⊆ YX and perturbation function U , the One-Inclusion Graph Predictor is an algorithm A :
(X × Y)∗ → {0, 1}X , defined as follows: Given a dataset (x1, y1), . . . , (xn, yn), and test point z
consider the following graph: Let the vertices V be

{(c(x1), . . . , c(xn), c(z)) : c ∈ C, (x1, c(x1)), . . . , (xn, c(xn)), (z, c(z)) robustly realizable by C} .

For any two vertices u = (u1, u2, . . . , un, uz),v = (v1, v2, . . . , vn, vz), there will be an edge
between u and v if there exists exactly one i such that ui ̸= vi.

Orient the edges in the graph to minimize the maximum out-degree, and predict ĉ(z) to be

ĉ(z) =

{
w ∈ {0, 1} if there exists an edge oriented from (y1, . . . , yn, 1− w) to (y1, . . . , yn, w)

w ∈ {0, 1} if (y1, . . . , yn, w) ∈ V and (y1, . . . , yn, 1− w) ̸∈ V.

The predictor can be assumed to have the same orientation, no matter how the vertices are per-
muted.

We now prove the following Lemmas to show the learnability of C.

Lemma 42 (Cycle-free One-Inclusion Graph) Consider the one-inclusion graph, applied to ro-
bustly realizable subsets of X × [0, 1]. This graph has no cycles.

3. There are many definitions of learnability, and it is standard to let n = poly(ddVC(C), log 1
δ
, 1
ϵ
). We adapt the

definition here since our concept class has infinite VC dimension, and we relax the log 1
δ

to 1
δ

.
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Proof Suppose the graph has a cycle. For each edge in the cycle (if we traverse the cycle), the
label of some xi will get flipped. Let i1, . . . , ik be the sequence of indices that are flipped when
we traverse the cycle, Let iℓ1 = iℓ2 = a, with ℓ1 ̸= ℓ2, (ℓ2 − ℓ1 + k) mod k minimal. Since the
difference is minimal, traversing indices from ℓ1 + 1 to ℓ2 − 1 (modulo k) will traverse through
distinct elements. Let one of these elements be b. Since this is a cycle, each element that is flipped
needs to be flipped at least twice, so there exists an element traversing from ℓ2 + 1 . . . ℓ1 − 1 that is
also equal to b. This would imply that a subsequence that is equal to a, b, a, b, so points a and b can
be shattered by Cpart, contradicting that dVC(Cpart) = 1.

Lemma 43 (Robust learnability over X × {0, 1}) C is robustly learnable over X × {0, 1}.

Proof LetP be a realizable distribution overX×{0, 1}. Given a realizable dataset (x1, y1), (x2, y2),
. . . , (xn, yn) of size n sampled i.i.d. from P , the error over P can be expressed as the expected er-
ror over (xn+1, yn+1) ∼ P of the One-Inclusion Graph algorithm on x1, x2, . . . , xn. For i =
1, . . . , n + 1, let ĉ−i be the predictor returned by the one-inclusion graph algorithm on points
x1, x2, . . . , xi−1, xi+1, xi+2, . . . , xn. Let G be the oriented one-inclusion graph over x1, x2, . . . , xn
with respect to C, and for each vertex u, let outdegG(u) be the out-degree of u in G. Let E(G)

def
=

{(u, v) : u is directed towards v in G}. The expected error can be expressed as

E(x1,y1),...,(xn,yn)∼P,(xn+1,yn+1)∼P

[
1[ĉ−(n+1)(xn+1) ̸= yn+1]

]
= E(x1,y1),...,(xn+1,yn+1)∼P,i∼[n+1]}

[
1[ĉ−i(xi) ̸= yi]

]
= E(x1,y1),...,(xn+1,yn+1)∼P,i∼[n+1]

[
1

[(
(y1, .., yi, .., yn+1), (y1, .., 1− yi, .., yn+1)

)
∈ E(G)

]]
= E(x1,y1),...,(xn+1,yn+1)∼P

[
outdegG((y1, . . . , yi, . . . , yn+1))

n

]
.

By Lemma 42, the graph is acyclic. We can orient the edges to have maximum out-degree 1
(the graph is a forest, so we can root each component at an arbitrary node, and direct all the edges
downwards). Thus, the expected error is at most 1

n . Applying Markov’s inequality on the error gives
that the class is robustly learnable.

Lemma 44 (Robust learnability over X̃ × {0, 1}) C is robustly learnable over X̃ × {0, 1}.

Proof Consider a robustly realizable distribution P over X̃ × {0, 1}. Notice that sampling (x, y) ∼
P and then changing the label from z′ to z if x = z′ for some z ∈ X corresponds to sampling
from a robustly realizable distribution from X × {0, 1}. Thus, we can convert all the points to be in
X × {0, 1}, and directly apply the algorithm from Lemma 43 to get the same error.

Proof [of Theorem 29] Consider the class C from above. First, we will show that C has no bounded
compression scheme. Suppose there is an adversarially robust compression scheme for C with
compression function κ and reconstruction function ρ, with size k. We can notice that ρ, κ are also
a valid compression scheme for Cpart, since any dataset that is realizable in Cpart is also robustly
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realizable. Thus, we have a bounded-size compression scheme for Cpart, which is a contradiction to
Lemma 39. Now, it remains to show that C is robustly learnable. This is already true by Lemma 44,
completing the proof of the theorem.

29


	Introduction
	Our Results
	Other Related Work

	Preliminaries
	Compression for Multiclass Classification
	Additional Assumption: Existence of Proper or Majority Vote Binary Compression
	Additional Assumption: Existence of Stable Binary Compression
	Agnostic Multiclass Sample Compression Scheme

	Compression for Regression
	Additional Assumptions: Majority Votes, Proper, and Stable Compression Schemes
	Agnostic Approximate Compression for Regression

	Compression for Adversarially Robust Classification Against Test-Time Attacks
	Negative Result for Adversarially Robust Compression

	Discussion about Infinitized Sample Compression Schemes
	A Sample Compression Scheme for Classes with Graph Dimension 1
	Exact Compression for Realizable Regression: Proof of Theorem 22
	Existence of Robustly Learnable Class with No Bounded Size Adversarially Robust Compression Scheme: Proof of Theorem 29

