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ABSTRACT

To confirm that the expressive power of ReLU neural networks grows with their
depth, the function Fn = max{0, x1, . . . , xn} has been considered in the litera-
ture. A conjecture by Hertrich, Basu, Di Summa, and Skutella [NeurIPS 2021]
states that any ReLU network that exactly represents Fn has at least dlog2(n+1)e
hidden layers. The conjecture has recently been confirmed for networks with in-
teger weights by Haase, Hertrich, and Loho [ICLR 2023].
We follow up on this line of research and show that, within ReLU networks whose
weights are decimal fractions, Fn can only be represented by networks with at
least dlog3(n + 1)e hidden layers. Moreover, if all weights are N -ary fractions,
then Fn can only be represented by networks with at least Ω( lnn

ln lnN ) layers. These
results are a partial confirmation of the above conjecture for rational ReLU net-
works, and provide the first non-constant lower bound on the depth of practically
relevant ReLU networks.

1 INTRODUCTION

An important aspect of designing neural network architectures is to understand which functions can
be exactly represented by a specific architecture. Here, we say that a neural network, transforming n
input values into a single output value, (exactly) represents a function f : Rn → R if, for every
input x ∈ Rn, the neural network reports output f(x). Understanding the expressiveness of neural
network architectures can help to, among others, derive algorithms (Arora et al., 2018; Khalife
et al., 2024; Hertrich & Sering, 2024) and complexity results (Goel et al., 2021; Froese et al., 2022;
Bertschinger et al., 2023; Froese & Hertrich, 2023) for training networks.

One of the most popular classes of neural networks are feedforward neural networks with ReLU
activation (Goodfellow et al., 2016). Their capabilities to approximate functions is well-studied
and led to several so-called universal approximation theorems, e.g., see (Cybenko, 1989; Hornik,
1991). For example, from a result by Leshno et al. (1993) it follows that any continuous function
can be approximated arbitrarily well by ReLU networks with a single hidden layer. In contrast
to approximating functions, the understanding of which functions can be exactly represented by a
neural network is much less mature. A central result by Arora et al. (2018) states that the class
of functions that are exactly representable by ReLU networks is the class of continuous piecewise
linear (CPWL) functions. In particular, they show that every CPWL function with n inputs can be
represented by a ReLU network with dlog2(n+ 1)e hidden layers. It is an open question though for
which functions this number of hidden layers is also necessary.

An active research field is therefore to derive lower bounds on the number of required hidden
layers. Arora et al. (2018) show that two hidden layers are necessary and sufficient to repre-
sent max{0, x1, x2} by a ReLU network. However, there is no single function which is known
to require more than two hidden layers in an exact representation. In fact, Hertrich et al. (2021)
formulate the following conjecture.
Conjecture 1. For every integer k with 1 ≤ k ≤ dlog2(n+ 1)e, there exists a function f : Rn → R
that can be represented by a ReLU network with k hidden layers, but not with k − 1 hidden layers.

Hertrich et al. (2021) also show that this conjecture is equivalent to the statement that any ReLU
network representing max{0, x1, . . . , x2k} requires k + 1 hidden layers. That is, if the conjecture
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holds true, the lower bound of dlog2(n + 1)e by Arora et al. (2018) is tight. While Conjecture 1 is
open in general, it has been confirmed for two subclasses of ReLU networks, namely networks all of
whose weights only take integer values (Haase et al., 2023) and, for n = 4, so-called H-conforming
neural networks (Hertrich et al., 2021).

In this article, we follow this line of research by deriving a non-constant lower bound on the number
of hidden layers in ReLU networks all of whose weights are N -ary fractions. Recall that a rational
number is an N -ary fraction if it can be written as z

Nt for some integer z and non-negative integer t.
Theorem 2. Let n and N be positive integers, and let p be a prime number that does not divide N .
Every ReLU network with weights being N -ary fractions requires at least dlogp(n + 1)e hidden
layers to exactly represent the function max{0, x1, . . . , xn}.
Corollary 3. Every ReLU network all of whose weights are decimal fractions requires at
least dlog3(n+ 1)e hidden layers to exactly represent max{0, x1, . . . , xn}.

While Theorem 2 does not resolve Conjecture 1 because it makes no statement about general real
weights, note that in most applications floating point arithmetic is used (IEEE, 2019). That is, in
neural network architectures used in practice, one is actually restricted to weights being N -ary frac-
tions. Moreover, when quantization, see, e.g., (Gholami et al., 2022) is used to make neural networks
more efficient in terms of memory and speed, weights can become low-precision decimal numbers,
cf., e.g., (Nagel et al., 2020). Consequently, Theorem 2 provides, to the best of our knowledge, the
first non-constant lower bound on the depth of practically relevant ReLU networks.

Relying on Theorem 2, we also derive the following lower bound.
Theorem 4. There is a constant C > 0 such that, for all integers n,N ≥ 3, every ReLU network
with weights beingN -ary fractions that represents max{0, x1, . . . , xn} has depth at leastC · lnn

ln lnN .

Theorem 4, in particular, shows that there is no constant-depth ReLU network that exactly repre-
sents max{0, x1, . . . , xn} if all weights are rational numbers all having a common denominator N .

In view of the integral networks considered by Haase et al. (2023), we stress that our results do not
simply follow by scaling integer weights to rationals, which has already been discussed in Haase
et al. (2023, Sec. 1.3). We therefore extend the techniques by Haase et al. (2023) to make use
of number theory and polyhedral combinatorics to prove our results that cover standard number
representations of rationals on a computer.

Outline To prove our main results, Theorems 2 and 4, the rest of the paper is structured as follows.
First, we provide some basic definitions regarding neural networks that we use throughout the article,
and we provide a brief overview of related literature. Section 2 then provides a short summary
of our overall strategy to prove Theorems 2 and 4 as well as some basic notation. The different
concepts of polyhedral theory and volumes needed in our proof strategy are detailed in Section 2.1,
whereas Section 2.2 recalls a characterization of functions representable by a ReLU neural network
from the literature, which forms the basis of our proofs. In Section 3, we derive various properties
of polytopes associated with functions representable by a ReLU neural network, which ultimately
allows us to prove our main results in Section 3.3. The paper is concluded in Section 4.

Basic Notation for ReLU Networks To describe the neural networks considered in this article,
we introduce some notation. We denote by Z, N, and R the sets of integer, positive integer, and real
numbers, respectively. Moreover, Z+ and R+ denote the sets of non-negative integers and reals,
respectively.

Let k ∈ Z+. A feedforward neural network with rectified linear units (ReLU) (or simply ReLU
network in the following) with k + 1 layers can be described by k + 1 affine transformations
t(1) : Rn0 → Rn1 , . . . , t(k+1) : Rnk → Rnk+1 . It exactly represents a function f : Rn → R if
and only if n0 = n, nk+1 = 1, and the alternating composition

t(k+1) ◦ σ ◦ t(k) ◦ σ ◦ · · · ◦ t(2) ◦ σ ◦ t(1)

coincides with f , where, by slightly overloading notation, σ denotes the component-wise application
of the ReLU activation function σ : R → R, σ(x) = max{0, x} to vectors in any dimension. For
each i ∈ {1, . . . , k + 1} and x ∈ Rni−1 , let t(i)(x) = A(i)x + b(i) for some A(i) ∈ Rni×ni−1

and b(i) ∈ Rni . The entries of A(i) are called weights and those of b(i) are called biases of the
network. The network’s depth is k + 1, and the number of hidden layers is k.
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The set of all functions Rn → R that can be represented exactly by a ReLU network of depth k + 1
is denoted by ReLUn(k). Moreover, if R ⊆ R is a ring, we denote by ReLUR

n (k) the set of all
functions Rn → R that can be represented exactly by a ReLU network of depth k + 1 all of whose
weights are contained in R. Throughout this paper, we will mainly work with the rings Z, R, or the
ring of N -ary fractions.

The set ReLUR
n (0) is the set of affine functions f(x1, . . . , xn) = b+a1x1 + · · ·+anxn with b ∈ R,

and a1, . . . , an ∈ R. It can be directly seen from the definition of ReLU networks that, for k ∈ N,
one has f ∈ ReLUR

n (k) if and only if f(x) = u0 + u1 max{0, g1(x)}+ · · ·+ um max{0, gm(x)}
holds for some m ∈ N, u0 ∈ R, u1, . . . , um ∈ R, and functions g1, . . . , gm ∈ ReLUR

n (k − 1).

Related Literature Regarding the expressiveness of ReLU networks, Hertrich et al. (2021) show
that four layers are needed to exactly represent max{0, x1, . . . , x4} if the network satisfies the tech-
nical condition of being H-conforming. By restricting the weights of a ReLU network to be integer,
Haase et al. (2023) prove that ReLUZ

n(k − 1) ( ReLUZ
n(k) for every k ≤ dlog2(n + 1)e. In

particular, max{0, x1, . . . , x2k} /∈ ReLUZ
2k(k). If the activation function is changed from ReLU

to x 7→ 1{x>0}, Khalife et al. (2024) show that two hidden layers are both necessary and sufficient
for all functions representable by such a network.

If one is only interested in approximating a function, Safran et al. (2024) show
that max{0, x1, . . . , xn} can be approximated arbitrarily well by ReLUZ

n(2)-networks of width
n(n + 1) with respect to the L2 norm for continuous distributions. By increasing the depth of
these networks, they also derive upper bounds on the required width in such an approximation. The
results by Safran et al. (2024) belong to the class of so-called universal approximation theorems,
which describe the ability to approximate classes of functions by specific types of neural networks,
see, e.g., (Cybenko, 1989; Hornik, 1991; Barron, 1993; Pinkus, 1999; Kidger & Lyons, 2020). How-
ever, Vardi & Shamir (2020) show that there are significant theoretical barriers for depth-separation
results for polynomially-sized ReLUn(k)-networks for k ≥ 3, by establishing links to the separa-
tion of threshold circuits as well as to so-called natural-proof barriers. When taking specific data
into account, Lee et al. (2024) derive lower and upper bounds on both the depth and width of a neural
network that correctly classifies a given data set. More general investigations of the relation between
the width and depth of a neural network are discussed, among others, by Arora et al. (2018); Eldan
& Shamir (2016); Hanin (2019); Raghu et al. (2017); Safran & Shamir (2017); Telgarsky (2016).

2 PROOF STRATEGY AND THEORETICAL CONCEPTS

To prove Theorems 2 and 4, we extend the ideas of Haase et al. (2023). We therefore provide a very
concise summary of the arguments of Haase et al. (2023). Afterwards, we briefly mention the main
ingredients needed in our proofs, which are detailed in the following subsections.

A central ingredient for the results by Haase et al. (2023) is a polyhedral characterization of all func-
tions in ReLUn(k), which has been derived by Hertrich (2022). This characterization links functions
representable by a ReLU network and so-called support functions of polytopes P ⊆ Rn all of whose
vertices belong to Zn, so-called lattice polytopes. It turns out that the function max{0, x1, . . . , xn}
in Theorems 2 and 4 can be expressed as the support function of a particular lattice polytope Pn ⊆
Rn. By using a suitably scaled version Voln of the classical Euclidean volume in Rn, one can
achieve Voln(P ) ∈ Z for all lattice polytopes P ⊆ Rn. Haase et al. (2023) then show that, if
the support function hP of a lattice polytope P ⊆ Rn can be exactly represented by a ReLU net-
work with k hidden layers, all faces of P of dimension at least 2k have an even normalized volume.
For n = 2k, however, Voln(Pn) is odd. Hence, its support function cannot be represented by a
ReLU network with k hidden layers.

We show that the arguments of Haase et al. (2023) can be adapted by replacing the divisor 2 with an
arbitrary prime number p. Another crucial insight is that the theory of mixed volumes can be used
to analyze the behavior of Voln(A+B) for the Minkowski sum A+B := {a+ b : a ∈ A, b ∈ B}
of lattice polytopes A,B ⊂ Rn. The Minkowski-sum operation is also involved in the polyhedral
characterization of Hertrich (2022), and so it is also used by Haase et al. (2023), who provide a
version of Theorem 2 for integer weights. They, however, do not directly use mixed volumes. A key
observation used in our proofs, and obtained by a direct application of mixed volumes, is that the
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map associating to a lattice polytope P the coset of Voln(P ) modulo a prime number p is additive
when n is a power of p. Combining these ingredients yields Theorems 2 and 4.

Some Basic Notation The standard basis vectors in Rn are denoted by e1, . . . , en, whereas 0
denotes the null vector in Rn. Throughout the article, all vectors x ∈ Rn are column vectors, and
we denote the transposed vector by x>. If x is contained in the integer lattice Zn, we call it a lattice
point. For vectors x, y ∈ Rn, their scalar product is given by x>y. For m ∈ N, we will write [m] for
the set {1, . . . ,m}. The convex-hull operator is denoted by conv, and the base-b logarithm by logb,
while the natural logarithm is denoted ln.

The central function of this article is max{0, x1, . . . , xn}, which we abbreviate by Fn.

2.1 BASIC PROPERTIES OF POLYTOPES AND LATTICE POLYTOPES

As outlined above, the main tools needed to prove Theorems 2 and 4 are polyhedral theory and
different concepts of volumes. This section summarizes the main concepts and properties that we
need in our argumentation in Section 3. For more background, we refer the reader to the monographs
(Beck & Robins, 2020; Hug & Weil, 2020; Schneider, 2014).

Polyhedra, Lattice Polyhedra, and Their Normalized Volume A polytope P ⊆ Rn is the
convex hull conv(p1, . . . , pm) of finitely many points p1, . . . , pm ∈ Rn. We introduce the family

P(S) := {conv(p1, . . . , pm) : m ∈ N, p1, . . . , pm ∈ S}

of all non-empty polytopes with vertices in S ⊆ Rn. Thus, P(Rn) is the family of all polytopes in
Rn and P(Zn) is the family of all lattice polytopes in Rn. For d ∈ {0, . . . , n}, we also introduce
the family

Pd(S) := {P ∈ P(S) : dim(P ) ≤ d}.
of polytopes of dimension at most d, where the dimension of a polytope P is defined as the dimen-
sion of its affine hull, i.e., the smallest affine subspace of Rn containing P . The Euclidean volume
voln on Rn is the n-dimensional Lebesgue measure, scaled so that voln is equal to 1 on the unit
cube [0, 1]d. Note that measure-theoretic subtleties play no role in our context since we restrict the
use of voln to P(Rn). The normalized volume Voln in Rn is the n-dimensional Lebesgue measure
normalized so that Voln is equal to 1 on the standard simplex ∆n := conv(0, e1, . . . , en). Clearly,
Voln = n! · voln and Voln takes non-negative integer values on lattice polytopes.

Support Functions For a polytope P = conv(p1, . . . , pm) ⊆ Rn, its support function is

hP (x) := max{x>y : y ∈ P},

and it is well-known that hP (x) = max{p>1 x, . . . , p>mx}. Consequently, max{0, x1, . . . , xn} from
Theorems 2 and 4 is the support function of ∆n.

Mixed Volumes For sets A,B ⊆ Rn, we introduce the Minkowski sum

A+B := {a+ b : a ∈ A, b ∈ B}

and the multiplication
λA = {λa : a ∈ A}

of A by a non-negative factor λ ∈ R+. For an illustration of the Minkowski sum, we refer to
Figure 2. Note that, if S ∈ {Rn,Zn} and A,B ∈ P(S), then A+B ∈ P(S), too. If A and B are
(lattice) polytopes, then A + B is also a (lattice) polytope, and the support functions of A,B and
A+B are related by hA+B = hA + hB .

If (G,+) is an Abelian semi-group (i.e., a set with an associative and commutative binary opera-
tion), we call a map φ : P(Rn) → G Minkowski additive if the Minkowski addition on P(Rn) gets
preserved by φ in the sense that φ(A+B) = φ(A) + φ(B) holds for all A,B ∈ P(Rn).

The following is a classical result of Minkowski.
Theorem 5 (see, e.g., (Schneider, 2014, Ch. 5)). There exists a unique functional, called the mixed
volume,

V: P(Rn)n → R,
with the following properties valid for all P1, . . . , Pn, A,B ∈ P(Rn) and α, β ∈ R+:
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(a) V is invariant under permutations, i.e. V(P1, . . . , Pn) = V(Pσ(1), . . . , Pσ(n)) for every permu-
tation σ on [n].

(b) V is Minkowski linear in all input parameters, i.e., for all i ∈ [n], it holds that

V(P1, . . . Pi−1, αA+ βB, Pi+1, . . . , Pn) =αV(P1, . . . Pi−1, A, Pi+1, . . . , Pn)

+βV(P1, . . . Pi−1, B, Pi+1, . . . , Pn)

(c) V is equal to Voln on the diagonal, i.e., V(A, . . . , A) = Voln(A).

We refer to Chapter 5 of the monograph by Schneider (2014) on the Brunn-Minkowski theory for
more information on mixed volumes, where also an explicit formula for the mixed volume is pre-
sented. Our definition of the mixed volume differs by a factor of n! from the definition in Schneider
(2014) since we use the normalized volume Voln rather than the Euclidean volume voln to fix
V(P1, . . . , Pn) in the case P1 = . . . = Pn. Our way of introducing mixed volumes is customary
in the context of algebraic geometry. It is known that, for this normalization, V(P1, . . . , Pn) ∈ Z+

when P1, . . . , Pn are lattice polytopes; see, for example, (Maclagan & Sturmfels, 2015, Ch. 4.6).
From the defining properties one can immediately see that, forA,B ∈ P(Rn), one has the analogue
of the binomial formula, which we will prove in Appendix A.2 for the sake of completeness:

Voln(A+B) =

n∑
i=0

(
n

i

)
V(A, . . . , A︸ ︷︷ ︸

i

, B, . . . , B︸ ︷︷ ︸
n−i

). (1)

Normalized Volume of Non-Full-Dimensional Polytopes So far, we have introduced the nor-
malized volume Voln : P(Rn) → R+, i.e., if P ∈ P(Rn) is not full-dimensional, then Voln(P ) =
0. We also associate with a polytope P ∈ Pd(Zn) of dimension at most d an appropriately normal-
ized d-dimensional volume by extending the use of Vold : P(Zd) → Z+ to Vold : Pd(Zn) → Z+.
In the case dim(P ) < d, we define Vold(P ) = 0. If d = 0, let Vold(P ) = 1. In the non-degenerate
case d = dim(P ) ∈ N, we fix Y to be the affine hull of P and consider a bijective affine map
T : Rd → Y satisfying T (Zd) = Y ∩Zn. For such choice of T , we have T−1(P ) ∈ P(Zd). It turns
out that the d-dimensional volume of T−1(P ) depends only on P and not on T so that we define
Vold(P ) := Vold(T

−1(P )). Based on (Beck & Robins, 2020, Corollary 3.17 and §5.4), there is the
following intrinsic way of introducing Vold(P ). Let G(P ) denote the number of lattice points in P .
Then, for t ∈ Z+, one has Vold(P ) := d! · limt→∞

1
td
G(tP ).

Remark 6. For every d-dimensional affine subspace Y ⊆ Rn which is affinely spanned by d + 1
lattice points, we can define Vold for every polytope P ∈ P(Y ), which is not necessarily a lattice
polytope, by the same formula Vold(P ) := Vold(T

−1(P )), using an auxiliary map T : Rd → Y
described above. Consequently, by replacing the dimension n with d and the family of polytopes
P(Rn) with the family P(Y ) in Minkowski’s Theorem 5, we can introduce the notion of mixed
volumes for polytopes in P(Y ). More specifically, we will make use of the mixed volumes of lattice
polytopes in P(Y ∩ Zn).

Normalized Volume of the Affine Join The following proposition, borrowed from Haase et al.
(2023), addresses the divisibility properties of the convex hull of the union of lattice polytopes that
lie in skew affine subspaces.
Proposition 7 (Haase et al. 2023, Lemma 6). LetA,B ∈ P(Zn) be polytopes of dimensions i ∈ Z+

and j ∈ Z+, respectively, such that P := conv(A∪B) is of dimension i+ j+ 1. Then Voli+j(P ) is
divisible by Voli(A) Volj(B). In particular, if i = 0, then P is a pyramid over B whose normalized
volume Vol1+j(B) is divisible by the normalized volume Volj(B) of its base B.

For an example illustration, see Figure 1. Since P1 and P2 lie in skew affine subspaces, Proposition 7
applies. Indeed, Vol3(conv(P1 ∪ P2)) = 12 is divisible by Vol2(P1) = 6 (and Vol0(P2) = 1).

2.2 A POLYHEDRAL CRITERION FOR FUNCTIONS REPRESENTABLE WITH k HIDDEN
LAYERS

Next to the geometric concepts that we discussed before, the second main building block of our
proofs is the polyhedral characterization of ReLUn(k) by Hertrich (2022). In the following, we
introduce the necessary concepts and present Hertrich’s characterization.
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x

y

z

P1

P2
conv(P1 ∪ P2)

Figure 1: Illustration of the convex hull of a
polytope and a point, relating to Proposition 7.

x

y

P1

P2

P1 + P2

Figure 2: Illustration of the Minkowski sum of
two polytopes, relating to Example 12.

Note thatFn is positively homogeneous, i.e., for all λ ∈ R+ and x ∈ Rn, one hasFn(λx) = λFn(x).
For positively homogeneous functions f , Hertrich et al. (2021) show that f ∈ ReLUn(k) if and only
if there exists a ReLU network of depth k+1 all of whose biases are 0. This result easily generalizes
to ReLU networks with weights being restricted to a ring R. We therefore denote by ReLUR,0

n (k)
the set of all n-variate positively homogeneous functions representable by ReLU networks with k
hidden layers, weights in R, and all biases being 0. Moreover, ReLUR,0

n :=
⋃∞
k=0 ReLUR,0

n (k).

To formulate the characterization by Hertrich (2022), we define the sum-union closure for a family
of polytopes X in Rn as

SU(X ) :=

{
m∑
i=1

conv(Ai ∪Bi) : m ∈ N, Ai, Bi ∈ X , i ∈ [m]

}
.

The k-fold application of the operation gives the k-fold sum-union closure SUk(X ). In other words,
SU0(X ) = X and SUk(X ) = SU(SUk−1(X )) for k ∈ N. We will apply the k-fold sum-union
closure to P0(S), the set of all 0-dimensional polytopes of the form {s}, with s ∈ S.

The set SUk(X ) forms a semi-group with respect to Minkowski-addition since, directly from the
representation of elements of SUk(X ) as sums with arbitrarily many summands, one sees that
SUk(X ) is closed under Minkowski addition.
Theorem 8 ((Hertrich, 2022, Thm. 3.35) for R = R and (Haase et al., 2023, Thm. 8) for R = Z).
Let R be R or Z. Then

ReLUR,0
n (k) = {hA − hB : A,B ∈ SUk(P0(Rn))}.

Corollary 9. Let k ∈ Z+ and R be R or Z. Let P ∈ P(Rn). Then, the support function hP of P
satisfies hP ∈ ReLUR

n (k) if and only if P +A = B for some A,B ∈ SUk(P0(Rn)).

Proof. By Theorem 8, we have that hP ∈ ReLUR
n (k) if and only if hP = hB − hA for some

A,B ∈ SUk(P0(Rn)). The equation hP = hB − hA can be rewritten as hB = hP + hA = hP+A,
as support functions are Minkowski additive. Furthermore, every polytope is uniquely determined
by its support function, see (Hug & Weil, 2020), so hP+A = hB is equivalent to P +A = B.

The characterization of ReLUR,0
n (k) via SUk(P0(Rn)) as well as the geometric concepts of vol-

umes will allow us to prove Theorem 2. The core step of our proof is to show that Fn, which is
the support function of ∆n, is not contained in ReLUZ,0

n (k) for small k. As we will see later, it
turns out to be useful to not work exclusively with full-dimensional polytopes in SUk(P0(Zn)),
but with some of their lower-dimensional faces. The next lemma provides the formal mechanism
that we use, namely if P ∈ SUk(P0(Zn)) and F is a face of P , then hF /∈ ReLUZ

n(k) implies
also hP /∈ ReLUZ

n(k). We defer the lemma’s proof to Appendix A.1.1.

Lemma 10. Let k ∈ Z+. Then, for all P ∈ SUk(P0(Zn)) and u ∈ Rn, the face of P in direction u,
given by

Pu := {x ∈ P : u>x = hP (u)},
belongs to SUk(P0(Zn)). In other words, SUk(P0(Zn)) is closed under taking non-empty faces.
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3 RESULTS AND PROOFS

The goal of this section is to prove Theorems 2 and 4 for the ring R of N -ary fractions. To this
end, we will rescale Fn by a suitable scalar λ ∈ N such that the containment Fn ∈ ReLUR

n (k)

is equivalent to λFn ∈ ReLUZ
n(k). To show that λFn /∈ ReLUZ

n(k) if k is too small, we use a
volume-based argument. More precisely, we show that, for lattice polytopes P ⊆ Rn whose support
functions hP are contained in ReLUZ

n(k) and suitably defined dimensions d and prime numbers p,
their volumes Vold(P ) are divisible by p. In contrast, Vold(λ∆n) is not divisible by p, and thus,
λFn /∈ ReLUZ

n(k). This strategy is inspired by the proof of Haase et al. (2023) for Fn /∈ ReLUZ
n(k),

where related results are shown for the special case p = 2. Our results, however, are more general
and do not follow directly from their results.

To pursue this strategy, Sections 3.1 and 3.2 derive novel insights into volumes Vold(P ) of lattice
polytopes P whose support functions hp are contained in ReLUZ

n(k). These insights are then used
in Section 3.3 to prove Theorems 2 and 4.

3.1 DIVISIBILITY OF NORMALIZED VOLUMES BY A PRIME

To understand the divisibility of Vold by a prime number mentioned above, we investigate cases
in which Vold : Pd(Zn)→ Z modulo a prime is Minkowski additive. To make this precise, we
introduce some notation.

For a, b ∈ Z and m ∈ N we write a ≡m b if a − b is divisible by m. This is called the congruence
of a and b modulo m. The coset [z]m of z ∈ Z modulo m is the set of all integers congruent
to z modulo m, and we denote the set of all such cosets by Zm. The addition of cosets is defined
by [a]m+[b]m := [a+ b]m for a, b ∈ Z. Endowing Zm with the addition operation + yields a group
of order m.

The following is an easy-to-prove but crucial observation. It states that when we consider lattice
polytopes in a d-dimenensional subspace Y ⊆ Rn spanned by d lattice points, the volume Vold,
taken modulo a prime number p, is an additive functional when d is a power of p.

Proposition 11. Let d = pt ≤ n be a power of a prime number p, with t ∈ N. Let P1, . . . , Pm ∈
Pd(Zn) be such that

∑m
i=1 Pi ∈ Pd(Zn). Then,

Vold

( m∑
i=1

Pi

)
≡p

m∑
i=1

Vold(Pi).

Proof. Note that by the assumption
∑m
i=1 Pi ∈ Pd(Zd) all of the Pi’s lie, up to appropriate trans-

lation, in a d-dimensional vector subspace Y of Rd, which is spanned by d lattice points. There is
no loss of generality in assuming that Pi ⊆ Y and, in view of Remark 6, we can use the mixed
volume functional on d-tuples of polytopes from P(Y ), which will give an integer value for poly-
topes in P(Y ∩ Zn). By an inductive argument, it is sufficient to consider the case m = 2. It is
well known that if d is a power of p, the binomial coefficients

(
d
1

)
, . . . ,

(
d
d−1

)
in (1) are divisible

by p, see, e.g., Mihet (2010, Cor. 2.9). Thus, (1) implies Vold(P1 + P2) ≡p Vold(P1) + Vold(P2)
for P1, P2 ∈ P(Y ∩ Zn).

Example 12. Consider the polytope P1 + P2 ∈ P2(Z2) for the rectangle P1 = [2, 5] × [0, 1] ∈
P2(Z2) and the shifted standard simplex P2 = ∆2 + {(0, 2)>} ∈ P2(Z2) as depicted in Figure 2.
In the picture, P1 + P2 is decomposed into regions in such a way that the volume of the mixed
area V(P1, P2) can be read off. In view of the equality Vol2(P1 + P2) = V(P1 + P2, P1 + P2) =
V(P1, P1) + 2 V(P1, P2) + V(P2, P2) = Vol2(P1) + 2 V(P1, P2) + Vol2(P2), see (1), the total
volume of the unshaded part of P1 +P2 must be exactly 2 V(P1, P2). For p = 2 we have Vol2(P1 +
P2) = 15 ≡2 6 + 1 = Vol2(P1) + Vol2(P2), i.e., the parity of Vol2(P1 + P2) is indeed that of
Vol2(P1) + Vol2(P2). In contrast, divisibility by p = 3 does not match, as 15 6≡3 7. However, this
does not contradict Proposition 11, as d = 2 is not a power of p = 3.

To derive divisibility properties of Vold(P ) for lattice polytopes P with hP ∈ ReLUZ
n(k), we make

use of the characterization of ReLUZ
n(k) via the SU-operator. Recall that one of the two defining

7
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operations of SU is conv(A ∪ B) for suitable polytopes A and B. A crucial observation is that for
certain dimensions d, the divisibility of Vold(conv(A ∪ B)) by a prime number is inherited from
particular lower-dimensional faces of A and B.
Proposition 13. Let d = pt ≤ n be a power of a prime number p, with t ∈ N. Moreover, let P =
conv(A ∪B) ∈ Pd(Zn) for A,B ∈ Pd(Zn). If Volpt−1(F ) ≡p 0 for all pt−1-dimensional faces F
of A and B, then Volpt(P ) ≡p 0.

Note that this result also holds trivially if no face of dimension pt−1 exists. We defer the proof of
this result to Appendix A.1.2.

3.2 MODULAR OBSTRUCTION ON VOLUME FOR REALIZABILITY WITH k HIDDEN LAYERS

Equipped with the previously derived results, we have all ingredients together to prove the afore-
mentioned results on the divisibility of Vold(P ) for lattice polytopes P with hP ∈ ReLUZ

n(k).
Theorem 14. Let d = pt ≤ n be a power of a prime number p, with t ∈ N. Let k ∈ [t] and
P ∈ SUk(P0(Zn)). Then Volpk(F ) ≡p 0 for all pk-dimensional faces Fof P .

Proof. We argue by induction on k. If k = 1, then SU1(P0(Zn)) consists of lattice zonotopes.
These are polytopes of the form P = S1 + · · ·+ Sm, where S1, . . . , Sm are line segments joining a
pair of lattice points. One has Vold(P ) ≡p Vold(

∑m
i=1 Si) ≡p

∑m
i=1 Vold(Si), by Proposition 11,

arriving at Vold(P ) ≡p 0, since Vold(Si) = 0 for all i as d > 1 ≥ dim(Si).

In the inductive step, assume k ≥ 2 and that the assertion has been verified for SUk−1(P0(Zn)).
Recall that every P ∈ SUk(P0(Zn)) can be written as P =

∑m
i=1 conv(Ai∪Bi) for some polytopes

Ai, Bi ∈ SUk−1(P0(Zn)). By the induction hypothesis, the pk−1-dimensional normalized volumes
of the pk−1-dimensional faces of Ai and Bi are divisible by p. Consequently, by Proposition 13, the
pk-dimensional normalized volumes of the pk-dimensional faces of conv(Ai∪Bi) are divisible by p.
Since SUk(P0(Zn)) is closed under taking faces (see Lemma 10), Proposition 11 applied to the pk-
dimensional faces of P implies that the pk-dimensional normalized volume of the pk-dimensional
faces of P is divisible by p.

Theorem 15. Let d = pt ≤ n be a power of a prime number p, with t ∈ N. Let P be a lattice
polytope in Pd(Rn). If hP ∈ ReLUZ

n(k), k ∈ [t], then Vold(P ) is divisible by p.

Proof. By Corollary 9, we have P + A = B for some A,B ∈ SUk(P0(Zn)). Then, by
Proposition 11, one has Vold(P + A) ≡p Vold(P ) + Vold(A) ≡p Vold(B), which means that
Vold(P ) ≡p Vold(A) − Vold(B). By Theorem 14, both Vold(A) and Vold(B) are divisible by p.
This shows that Vold(P ) is divisible by p.

3.3 PROOFS OF MAIN RESULTS

We now turn to the proofs of Theorems 2 and 4. Let N ∈ N and recall that a rational number is an
N -ary fraction if it is of the form z

Nt with z ∈ Z and t ∈ Z+. For N = 2 and N = 10, one has
binary and decimal fractions, used in practice in floating point calculations. Clearly, every binary
fraction is also a decimal fraction, because z

2t = 5tz
10t .

In order to relate ReLU networks with fractional weights to ReLU networks with integer weights,
we can simply clear denominators, as made precise in the following lemma.
Lemma 16. Let f : Rn → R be exactly representable by a ReLU network with k hidden layers and
with rational weights all having M as common denominator. Then Mk+1f ∈ ReLUZ

n(k).

Proof. We proceed by induction on k. For the base case k = 0, f is an affine func-
tion f(x1, . . . , xn) = b + a1x1 + · · · + anxn with b ∈ R and Ma1, . . . ,Man ∈ Z, from
which the claim is immediately evident. Now let k ≥ 1 and consider a k-layer network with
rational weights with common denominator M representing f . Then f is of the form f(x) =
u0 + u1 max{0, g1(x)} + · · · + um{0, gm(x)} with m ∈ N, where all g1, . . . , gm are functions
representable with k − 1 hidden layers and all the weights, i.e., u1, . . . , um and the ones used in

8
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expressions for g1, . . . , gm, are rational numbers with M as a common denominator. Multiplying
with Mk+1 we obtain

Mk+1f(x) = Mk+1u0 +Mu1 ·max{0,Mkg1(x)}+ . . .+Mum ·max{0,Mkgm(x)},
where the weights Mu1, . . . ,Mum are integer. By the induction hypothesis, for every i ∈ [m], we
have Mkgi ∈ ReLUZ

n(k − 1), and hence Mk+1f ∈ ReLUZ
n(k).

We are now ready to prove our main results.

Proof of Theorem 2. Let k = dlogp(n + 1)e − 1, i.e., k is the unique non-negative integer satisfy-
ing pk < n+1 ≤ pk+1. If Fn was representable by a ReLU network with k hidden layers andN -ary
fractions as weights, max{0, x1, . . . , xpk} = Fn(x1, . . . , xpk , 0, . . . 0) would also be representable
in this way. Thus, it suffices to consider the case n = pk.

Recall that Fn is the support function h∆n
of the standard simplex. Suppose, for the sake of con-

tradiction, that Fn can be represented by a ReLU network with k hidden layers and weights be-
ing N -ary fractions. Let t ∈ N be large enough such that all weights are representable as z

Nt for
some z ∈ Z. We use Lemma 16 with M = N t to clear denominators. That is, N t(k+1)Fn is
representable by an integer-weight ReLU network with k hidden layers. Since Fn is homogeneous,
we can assume that the network is homogeneous, too (Hertrich et al., 2021, Proposition 2.3). Ob-
serve that N t(k+1)Fn is the support function of N t(k+1)∆n, whose normalized volume satisfies
Voln(N t(k+1)∆n) ≡p Nnt(k+1) Voln(∆n) = Nnt(k+1) · 1 6≡p 0. Hence, N t(k+1)∆n is a polytope
in Rpk whose normalized volume is not divisible by p, but whose support function is represented by
an integer-weight ReLU network with k hidden layers. This contradicts Theorem 15. Hence, Fn is
not representable by a ReLU network with k hidden layers and weights being N -ary fractions.

If N = 10, we can use p = 3 in Theorem 2, so Corollary 3 is an immediate consequence. The
bound dlog3(n+1)e in Corollary 3 is optimal up to a constant factor, as Fn is representable through
a network with integral weights and dlog2(n+ 1)e hidden layers (Arora et al., 2018). A major open
question raised by Hertrich et al. (2021) is whether this kind of result can be extended to networks
whose weights belong to a larger domain like the rational numbers or, ideally, the real numbers.

We can also show that the expressive power of ReLU networks with weights being decimal fractions
grows gradually when the depth k is increasing in the range from 1 to O(log n).
Corollary 17. For each n ∈ N and each integer k ∈ {1, . . . , dlog3 ne}, within n-variate functions
that are described by ReLU networks with weights being decimal fractions, there are functions
representable using 2k but not using k hidden layers.

Proof. Function F3k is not representable through k hidden layers and weights being decimal frac-
tions. Since 3k ≤ 22k, F3k is representable with 2k hidden layers (and integer weights).

By making use of Theorem 2, we now present the proof of Theorem 4.

Proof of Theorem 4. To make use of Theorem 2, we need to find a prime number p that does not
divide N . Let pi denote the i-th prime number, i.e., p1 = 2, p2 = 3, p3 = 5 etc. Moreover, assume
that the prime number decomposition of N consists of t distinct primes, i.e., N = pm1

i1
· · · pmt

it
where m1, . . . ,mt ∈ N and i1 < · · · < it. Choose the minimal prime p that is not contained in
{pi1 , . . . , pit}, that is, the minimal prime not dividing N . Since {p1, . . . , pt+1} has a prime not
contained in {pi1 , . . . , pit}, we see that p ≤ pt+1.

To get a more concrete upper bound on p, we make use of the prime number theorem (Hardy &
Wright, 2008, Ch. XXII), which is a fundamental result in number theory. The theorem states
that limi→∞

pi
i ln i = 1. Consequently, p ≤ pt+1 ≤ 2t ln t when t ≥ T , where T ∈ N is large

enough. We first stick to the case t ≥ T and then handle the border case t < T .

For lnN we have

lnN =

t∑
j=1

mj ln pij ≥
t∑

j=1

ln pij ≥
t∑

j=1

ln(j + 1) ≥
∫ t+1

1

lnxdx = (t+ 1) ln(t+ 1)− t

9
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for all t ≥ T . Thus, lnN ≥ 1/2t ln t. This implies ln lnN ≥ ln t + ln ln t − ln 2. Compare this
to ln p ≤ ln 2 + ln t + ln ln t. So, we see that ln lnN ≥ C ln p with an absolute constant C > 0.
Hence, we can invoke Theorem 2 for p, getting that the number of layers needed to represent Fn
with integer weights is at least logp n, where logp n ≥ lnn/ln p ≥ C · lnn/ln lnN . In the case t < T ,
we observe that p ≤ pT and obtain the lower bound logp n = lnn/ln p ≥ lnn/ln pT . Since T is fixed,
the factor ln pT in the denominator is an absolute constant.

4 CONCLUSIONS

In summary, we proved that a lower bound for the number of hidden layers needed to exactly repre-
sent the function max{0, x1, . . . , xn} with a ReLU network with weights being N -ary fractions is
dlogp(n+1)e, where p is a prime number that does not divideN . For p = 3, this covers the cases of
binary fractions as well as decimal fractions, two of the most common practical settings. Moreover,
it shows that the expressive power of ReLU networks grows for every N up to O(log n). In the
case of rational weights that are N -ary fractions for any fixed N , even allowing arbitrarily large
denominators and arbitrary width does not facilitate exact representations of low constant depth.

Theorem 4 can be viewed as a partial confirmation of Conjecture 1 for rational weights, as the term
ln lnN is growing extremely slowly in N . If one could replace ln lnN by a constant, the conjecture
would be confirmed for rational weights, up to a constant multiple. As already highlighted in Haase
et al. (2023), confirmation of the conjecture would theoretically explain the significance of max-
pooling in the context of ReLU networks: It seems that the expressive power of ReLU is not enough
to model the maximum of a large number of input variables unless network architectures of high-
enough depth are used. So, enhancing ReLU networks with max-pooling layers could be a way to
reach higher expressive power with shallow networks.

Methodologically, algebraic invariants – such as the d-dimensional volume Vold modulo a prime
number p when d is a power of p – play a key role in showing lower bounds for the depth of neural
networks. Our proof approach provides an algebraic template for a general “separation strategy”
to tackle problems on separation by depth. In the ambient Abelian group (G,+) of all possible
functions that can be represented within a given model, one has a nested sequence of subgroups
G0 ⊆ G1 ⊆ G2 ⊆ · · · , with Gk consisting of functions representable by k layers. To demonstrate
that an inclusion Gk ⊆ Gk+1 is strict, one could look for an invariant that can distinguish Gk from
Gk+1 – this is a group homomorphism φ on G that is zero on Gk but not zero on some f ∈ Gk+1.
Most likely, the invariant needs to be “global” in the sense that, if φ(f) is computed from the NN
representation of f , then it would accumulate the contribution of all the nodes of the NN in one single
value and would not keep track of the number of the nodes and, by this, disregard the widths of the
layers. In the concrete case we handled in this contribution, the group G we choose is ReLUZ,0,
whereas the invariant that we employ has values in Zp and is based on the computation of the volume
of lattice polytopes. In the original setting of Conjecture 1, one has to deal with the nested chain
of subspaces Gk = ReLUR,0(k) of the the infinite-dimensional vector space G = ReLUR,0, which
makes it natural to choose as an invariant a linear functional φ : G → R. To make further progress,
it is therefore worthwhile continuing to investigate the connection between ReLU networks and
discrete polyhedral geometry, algebra, and number theory in order to settle Conjecture 1 in general.

Finally, we raise a question on the role of the field of real numbers in Conjecture 1. Does the choice
of a subfield of R matter in terms of the expressiveness? More formally, we phrase
Question 18. Let S be a subfield of R and k ∈ N and let f : Rn → R be a function expressible via
a ReLU network with weights in S. If f is expressible by a ReLU network with k hidden layers and
weights in R, is it also expressible by a ReLU network with k hidden layers and weights in S? What
is the answer for S = Q?

If, for S = Q, the answer to the above question is positive, then the version of Conjecture 1 with
rational weights is equivalent to the original conjecture with real weights, which might be a helpful
insight towards solving Conjecture 1. If the answer is negative, then the conjecture would have a
subtle dependence on the underlying field of weights.
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A APPENDIX

A.1 DEFERRED PROOFS

In this appendix, we provide the proofs missing in the main part of the article. For convenience of
reading, we restate the corresponding statements.

A.1.1 PROOF OF LEMMA 10

This appendix provides the missing proof of the following lemma.

Lemma 10. Let k ∈ Z+. Then, for all P ∈ SUk(P0(Zn)) and u ∈ Rn, the face of P in direction u,
given by

Pu := {x ∈ P : u>x = hP (u)},

belongs to SUk(P0(Zn)). In other words, SUk(P0(Zn)) is closed under taking non-empty faces.

Proof. Throughout the proof, let X = P0(Zn). The proof is by induction on k. For k = 0, we have
SU0(X ) = X . Since every polytope in P0(Zn) consists of a single point s, every non-empty face of
such a polytope also just consists of s, and is therefore contained in P0(Zn). Thus, the claim holds.

Now let k ≥ 1 and assume the assertion holds for k− 1. Furthermore, let u ∈ Rn and P ∈ SUk(X )

with P =
∑m
i=1 conv(Ai ∪ Bi) for some m ∈ N, Ai, Bi ∈ SUk−1(X ), i ∈ [m]. By definition

and Minkowski additivity of the support function, we have Pu = (
∑m
i=1 conv(Ai ∪ Bi))u =∑m

i=1(conv(Ai ∪ Bi))u. Moreover, for each i ∈ [m], conv(Ai ∪ Bi)u is equal to Aui , Bui , or
conv(Aui ∪Bui ) depending on whether hAi(u) > hBi(u), hAi(u) < hBi(u), or hAi(u) = hBi(u),
respectively. In any case, we obtain a representation of Pu that shows its membership in SUk(X ),
since Ai, Bi ∈ SUk−1(X ) for all i ∈ [m] by the induction hypothesis.
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A.1.2 PROOF OF PROPOSITION 13

The goal of this section is to prove the following statement.
Proposition 13. Let d = pt ≤ n be a power of a prime number p, with t ∈ N. Moreover, let P =
conv(A ∪B) ∈ Pd(Zn) for A,B ∈ Pd(Zn). If Volpt−1(F ) ≡p 0 for all pt−1-dimensional faces F
of A and B, then Volpt(P ) ≡p 0.

To prove this result, we need two auxiliary results that we provide next.
Proposition 19. Let m, s, d ∈ N and s < d ≤ n. If P ∈ Pd(Zn) such that Vols(F ) ≡m 0 for all
s-dimensional faces F of P , then Vold(P ) ≡m 0.

Proof. Note that we can restrict our attention to the case d = s + 1: Once the case d = s + 1
is settled, it follows that the divisibility of Voli(F ) by m for i-dimensional faces F of P implies
divisibility of Voli+1(G) bym for all (i+1)-dimensional facesG of P . Hence, iterating from i = s
to i = d− 1, we obtain the desired assertion. So, assume d = s+ 1.

Let P be a d-dimensional lattice polytope with facets having a normalized (d− 1)-dimensional vol-
ume divisible by m. We pick a vertex a of P and subdivide P into the union of the non-overlapping
pyramids of the form conv({a} ∪ F ), where F is a facet of P . By Proposition 7, the normalized d-
dimensional volume of conv({a} ∪ F ) is divisible by Vold−1(F ). Since by assumption Vold−1(F )
is divisible by m, we conclude that also Vold(P ) is divisible by m, because Vold is additive as it is
based on a Lebesgue measure.

The second result analyzes the structure of conv(A∪B) in terms of a particular subdivision. Given
a polytope P ∈ P(Rn) of dimension d, a subdivision of P is a finite collection C ⊆ P(Rn) such
that (i) P =

⋃
C∈C C; (ii) for each C ∈ C, the polytope C has dimension d; (iii) for any two

distinct C,C ′ ∈ C, the polytope C ∩ C ′ is a proper face of both C and C ′. The elements C ∈ C are
called the cells of subdivision C, cf. (Lee & Santos, 2017).
Proposition 20 (Haase et al. 2023, Prop. 10). For two polytopes A,B ∈ P(Rn), there exists a
subdivision of conv(A∪B) such that each full-dimensional cell is of the form conv(F∪G), where F
and G are faces of A and B, respectively, such that dim(F ) + dim(G) + 1 = d.

The term “full-dimensional” in Proposition 20 as well as in the original formulation of Haase et al.
(2023, Prop. 10) refers to faces that have the same dimension as conv(A ∪ B), while its authors
make no assumption on whether that dimension is equal to n (but Haase et al. (2023) note in their
proof that such an assumption would be without loss of generality).

We are now able to prove Proposition 13.

Proof of Proposition 13. Let P = conv(A ∪ B). We apply Proposition 20 for obtaining a subdivi-
sion of P into d-dimensional polytopes P1 = conv(F1 ∪ G1), . . . , Pm = conv(Fm ∪ Gm), where
for each s ∈ [m], Fs and Gs are faces of A and B, respectively, and dim(Fs) + dim(Gs) + 1 = d.
That is, P is the union of polytopes whose relative interiors are disjoint. Consequently, Vold(P ) =
Vold(P1)+· · ·+Vold(Pm). It therefore suffices to show that Vold(Ps) ≡p 0 for every such polytope
Ps with s ∈ [m].

For given s ∈ [m] and faces Fs and Gs of A and B, respectively, denote their dimensions as i
resp. j. Since i + j = d − 1 = pt − 1, the dimension of Fs or Gs is at least pt−1 (if this was not
the case, we would have i + j ≤ 2(pt−1 − 1) < pt − 1, which is a contradiction). By symmetry
reasons, we assume without loss of generality that i ≥ pt−1. Then, by Proposition 19, Voli(Fs) is
divisible by p. Consequently, by Proposition 7, the normalized volume of conv(Fs ∪ Gs) is also
divisible by p.

A.2 PROOF OF BINOMIAL FORMULA FOR MIXED VOLUMES

The symmetry and multilinearity of the mixed-volume functional makes computations with it similar
in nature to calculations with an n-term product. Say, the identity (x+y)2 = x2+2xy+y2 over reals
corresponds to the identity Vol2(A+B) = V(A+B,A+B) = V(A,A)+2 V(A,B)+V(B,B) =
Vol2(A)+2 V(A,B)+Vol2(B) for planar polytopesA,B and the way of deriving the latter identity

14
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is completely analogous to deriving the identity for (x + y)2 by expanding brackets. Very much in
the same way, the binomial identity (x + y)n =

∑n
i=0

(
n
i

)
xiyn−i corresponds to the identity (1).

Here is a formal proof:

We use the notation P0 = B and P1 = A. Then

Voln(P0 + P1) = V(P0 + P1, . . . , P0 + P1)

by Property (c) in Theorem 5. Using Property (b) in Theorem 5 for each of the n inputs of the
mixed-volume functional, we obtain

Voln(P0 + P1) =
∑

i1∈{0,1}

· · ·
∑

in∈{0,1}

V(Pi1 , · · · , Pin),

where the right-had side is a sum with 2n terms. However, many of the terms are actually repeated,
because V(Pi1 , . . . , Pin) does not depend on the order of the polytopes in the input: this mixed
volume contains i1 + · · ·+ in copies of P1 and n− (i1 + · · ·+ in) copies of P0. Hence,

V(Pi1 , . . . , Pin) = V(P0, . . . , P0︸ ︷︷ ︸
n−(i1+···in)

, P1, . . . , P1︸ ︷︷ ︸
i1+···+in

).

In order to convert our 2n-term sum into an (n+1)-term sum, for each choice of i = i1 + · · ·+ in ∈
{0, . . . , n}, we can determine the number of choices of i1, . . . , in ∈ {0, 1} that satisfy i = i1 +
· · · + in. This corresponds to choosing an i-element subset {t ∈ [n] : it = 1} in the n-element
set {1, . . . , n}. That is, the number of such choices is the binomial coefficient

(
n
i

)
. Hence, our

representation with 2n terms amounts to

Voln(P0 + P1) =

n∑
i=0

(
n

i

)
V(P0, . . . , P0︸ ︷︷ ︸

n−i

, P1, . . . , P1︸ ︷︷ ︸
i

).
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