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ABSTRACT

To confirm that the expressive power of ReLU neural networks grows with their
depth, the function Fn = max{0, x1, . . . , xn} has been considered in the litera-
ture. A conjecture by Hertrich, Basu, Di Summa, and Skutella [NeurIPS 2021]
states that any ReLU network that exactly represents Fn has at least dlog2(n+1)e
hidden layers. The conjecture has recently been confirmed for networks with in-
teger weights by Haase, Hertrich, and Loho [ICLR 2023].
We follow up on this line of research and show that, within ReLU networks whose
weights are decimal fractions, Fn can only be represented by networks with at
least dlog3(n + 1)e hidden layers. Moreover, if all weights are N -ary fractions,
then Fn can only be represented by networks with at least Ω( lnn

ln lnN ) layers. These
results are a partial confirmation of the above conjecture for rational ReLU net-
works, and provide the first non-constant lower bound on the depth of practically
relevant ReLU networks.

1 INTRODUCTION

An important aspect of designing neural network architectures is to understand which functions can
be exactly represented by a specific architecture. Here, we say that a neural network, transforming n
input values into a single output value, (exactly) represents a function f : Rn → R if, for every
input x ∈ Rn, the neural network reports output f(x). Understanding the expressiveness of neural
network architectures can help to, among others, derive algorithms (Arora et al., 2018; Khalife
et al., 2024; Hertrich & Sering, 2024) and complexity results (Goel et al., 2021; Froese et al., 2022;
Bertschinger et al., 2023; Froese & Hertrich, 2023) for training networks.

One of the most popular classes of neural networks are feedforward neural networks with ReLU
activation (Goodfellow et al., 2016). Their capabilities to approximate functions is well-studied
and led to several so-called universal approximation theorems, e.g., see (Cybenko, 1989; Hornik,
1991). For example, from a result by Leshno et al. (1993) it follows that any continuous function
can be approximated arbitrarily well by ReLU networks with a single hidden layer. In contrast
to approximating functions, the understanding of which functions can be exactly represented by a
neural network is much less mature. A central result by Arora et al. (2018) states that the class
of functions that are exactly representable by ReLU networks is the class of continuous piecewise
linear (CPWL) functions. In particular, they show that every CPWL function with n inputs can be
represented by a ReLU network with dlog2(n+ 1)e hidden layers. It is an open question though for
which functions this number of hidden layers is also necessary.

An active research field is therefore to derive lower bounds on the number of required hidden
layers. Arora et al. (2018) show that two hidden layers are necessary and sufficient to repre-
sent max{0, x1, x2} by a ReLU network. However, there is no single function which is known
to require more than two hidden layers in an exact representation. In fact, Hertrich et al. (2021)
formulate the following conjecture.
Conjecture 1. For every integer k with 1 ≤ k ≤ dlog2(n+ 1)e, there exists a function f : Rn → R
that can be represented by a ReLU network with k hidden layers, but not with k − 1 hidden layers.

Hertrich et al. (2021) also show that this conjecture is equivalent to the statement that any ReLU
network representing max{0, x1, . . . , x2k} requires k + 1 hidden layers. That is, if the conjecture
holds true, the lower bound of dlog2(n + 1)e by Arora et al. (2018) is tight. While Conjecture 1 is
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open in general, it has been confirmed for two subclasses of ReLU networks, namely networks all of
whose weights only take integer values (Haase et al., 2023) and, for n = 4, so-called H-conforming
neural networks (Hertrich et al., 2021).

In this article, we follow this line of research by deriving a non-constant lower bound on the number
of hidden layers in ReLU networks all of whose weights are N -ary fractions. Recall that a rational
number is an N -ary fraction if it can be written as z

Nt for some integer z and non-negative integer t.
Theorem 2. Let n and N be positive integers, and let p be a prime number that does not divide N .
Every ReLU network with weights being N -ary fractions requires at least dlogp(n + 1)e hidden
layers to exactly represent the function max{0, x1, . . . , xn}.
Corollary 3. Every ReLU network all of whose weights are decimal fractions requires at
least dlog3(n+ 1)e hidden layers to exactly represent max{0, x1, . . . , xn}.

While Theorem 2 does not resolve Conjecture 1 because it makes no statement about general real
weights, note that in most applications floating point arithmetic is used (IEEE, 2019). That is, in neu-
ral network architectures used in practice, one is actually restricted to weights beingN -ary fractions.
::::::::
Moreover,

:::::
when

:::::::::::
quantization,

:::
see,

::::
e.g.,

:::::::::::::::::::
(Gholami et al., 2022)

:
is

::::
used

::
to

:::::
make

:::::
neural

::::::::
networks

::::
more

:::::::
efficient

::
in

:::::
terms

::
of

:::::::
memory

::::
and

::::::
speed,

::::::
weights

::::
can

:::::::
become

:::::::::::
low-precision

:::::::
decimal

::::::::
numbers,

:::
cf.,

:::
e.g.,

::::::::::::::::
(Nagel et al., 2020)

:
.
:
Consequently, Theorem 2 provides, to the best of our knowledge, the first

non-constant lower bound on the depth of practically relevant ReLU networks.

Relying on Theorem 2, we also derive the following lower bound.
Theorem 4. There is a constant C > 0 such that, for all integers n,N ≥ 3, every ReLU network
with weights beingN -ary fractions that represents max{0, x1, . . . , xn} has depth at leastC · lnn

ln lnN .

Theorem 4, in particular, shows that there is no constant-depth ReLU network that exactly repre-
sents max{0, x1, . . . , xn} if all weights are rational numbers all having a common denominator N .

In view of the integral networks considered by Haase et al. (2023), we stress that our results do not
simply follow by scaling integer weights to rationals, which has already been discussed in Haase
et al. (2023, Sec. 1.3). We therefore extend the techniques by Haase et al. (2023) to make use
of number theory and polyhedral combinatorics to prove our results that cover standard number
representations of rationals on a computer.

Outline To prove our main results, Theorems 2 and 4, the rest of the paper is structured as follows.
First, we provide some basic definitions regarding neural networks that we use throughout the article,
and we provide a brief overview of related literature. Section 2 then provides a short summary
of our overall strategy to prove Theorems 2 and 4 as well as some basic notation. The different
concepts of polyhedral theory and volumes needed in our proof strategy are detailed in Section 2.1,
whereas Section 2.2 recalls a characterization of functions representable by a ReLU neural network
from the literature, which forms the basis of our proofs. In Section 3, we derive various properties
of polytopes associated with functions representable by a ReLU neural network, which ultimately
allows us to prove our main results in Section 3.3. The paper is concluded in Section 4.

Basic Notation for ReLU Networks To describe the neural networks considered in this article,
we introduce some notation. We denote by Z, N, and R the sets of integer, positive integer, and real
numbers, respectively. Moreover, Z+ and R+ denote the sets of non-negative integers and reals,
respectively.

Let k ∈ Z+. A feedforward neural network with rectified linear units (ReLU) (or simply ReLU
network in the following) with k + 1 layers can be described by k + 1 affine transformations
t(1) : Rn0 → Rn1 , . . . , t(k+1) : Rnk → Rnk+1 . It exactly represents a function f : Rn → R if
and only if n0 = n, nk+1 = 1, and the alternating composition

t(k+1) ◦ σ ◦ t(k) ◦ σ ◦ · · · ◦ t(2) ◦ σ ◦ t(1)

coincides with f , where, by slightly overloading notation, σ denotes the component-wise application
of the ReLU activation function σ : R → R, σ(x) = max{0, x} to vectors in any dimension. For
each i ∈ {1, . . . , k + 1} and x ∈ Rni−1 , let t(i)(x) = A(i)x + b(i) for some A(i) ∈ Rni×ni−1

and b(i) ∈ Rni . The entries of A(i) are called weights and those of b(i) are called biases of the
network. The network’s depth is k + 1, and the number of hidden layers is k.
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The set of all functions Rn → R that can be represented exactly by a ReLU network of depth k + 1
is denoted by ReLUn(k). Moreover, if R ⊆ R is a ring, we denote by ReLUR

n (k) the set of all
functions Rn → R that can be represented exactly by a ReLU network of depth k + 1 all of whose
weights are contained in R. Throughout this paper, we will mainly work with the rings Z, R, or the
ring of N -ary fractions.

The set ReLUR
n (0) is the set of affine functions f(x1, . . . , xn) = b+a1x1 + · · ·+anxn with b ∈ R,

and a1, . . . , an ∈ R. It can be directly seen from the definition of ReLU networks that, for k ∈ N,
one has f ∈ ReLUR

n (k) if and only if f(x) = u0 + u1 max{0, g1(x)}+ · · ·+ um max{0, gm(x)}
holds for some m ∈ N, u0 ∈ R, u1, . . . , um ∈ R, and functions g1, . . . , gm ∈ ReLUR

n (k − 1).

Related Literature Regarding the expressiveness of ReLU networks, Hertrich et al. (2021) show
that four layers are needed to exactly represent max{0, x1, . . . , x4} if the network satisfies the tech-
nical condition of being H-conforming. By restricting the weights of a ReLU network to be integer,
Haase et al. (2023) prove that ReLUZ

n(k − 1) ( ReLUZ
n(k) for every k ≤ dlog2(n + 1)e. In

particular, max{0, x1, . . . , x2k} /∈ ReLUZ
2k(k). If the activation function is changed from ReLU

to x 7→ 1{x>0}, Khalife et al. (2024) show that two hidden layers are both necessary and sufficient
for all functions representable by such a network.

If one is only interested in approximating a function, Safran et al. (2024) show
that max{0, x1, . . . , xn} can be approximated arbitrarily well by ReLUZ

n(2)-networks
::
of

:::::
width

:::::::
n(n+ 1)

:::::
with

::::::
respect

:::
to

:::
the

:::
L2 :::::

norm
:::
for

::::::::::
continuous

::::::::::
distributions. By increasing the depth of

these networks, they also derive upper bounds on the required width in such an approximation.
The results by Safran et al. (2024) belong to the class of so-called universal approximation the-
orems, which describe the ability to approximate classes of functions by specific types of neu-
ral networks, see, e.g., (Cybenko, 1989; Hornik, 1991; Barron, 1993; Pinkus, 1999; Kidger &
Lyons, 2020).

::::::::
However,

:::::::::::::::::::
Vardi & Shamir (2020)

:::::
show

:::
that

:::::
there

:::
are

:::::::::
significant

:::::::::
theoretical

::::::
barriers

::
for

::::::::::::::
depth-separation

::::::
results

:::
for

::::::::::::::::
polynomially-sized

:::::::::::::::::
ReLUn(k)-networks

:::
for

::::::
k ≥ 3,

::
by

::::::::::
establishing

::::
links

::
to

:::
the

:::::::::
separation

::
of

::::::::
threshold

::::::
circuits

::
as

::::
well

::
as
:::
to

:::::::
so-called

:::::::::::
natural-proof

:::::::
barriers.

:
When tak-

ing specific data into account, Lee et al. (2024) derive lower and upper bounds on both the depth and
width of a neural network that correctly classifies a given data set. More general investigations of
the relation between the width and depth of a neural network are discussed, among others, by Arora
et al. (2018); Eldan & Shamir (2016); Hanin (2019); Raghu et al. (2017); Safran & Shamir (2017);
Telgarsky (2016).

2 PROOF STRATEGY AND THEORETICAL CONCEPTS

To prove Theorems 2 and 4, we extend the ideas of Haase et al. (2023). We therefore provide a very
concise summary of the arguments of Haase et al. (2023). Afterwards, we briefly mention the main
ingredients needed in our proofs, which are detailed in the following subsections.

A central ingredient for the results by Haase et al. (2023) is a polyhedral characterization of all func-
tions in ReLUn(k), which has been derived by Hertrich (2022). This characterization links functions
representable by a ReLU network and so-called support functions of polytopes P ⊆ Rn all of whose
vertices belong to Zn, so-called lattice polytopes. It turns out that the function max{0, x1, . . . , xn}
in Theorems 2 and 4 can be expressed as the support function of a particular lattice polytope Pn ⊆
Rn. By using a suitably scaled version Voln of the classical Euclidean volume in Rn, one can
achieve Voln(P ) ∈ Z for all lattice polytopes P ⊆ Rn. Haase et al. (2023) then show that, if the
support function hP of a lattice polytope P ⊆ Rn can be exactly represented by a ReLU network
with k hidden layers, all faces of P of dimension at least 2k−1

::
2k

:
have an even normalized volume.

For n = 2k, however, Voln(Pn) is odd. Hence, its support function cannot be represented by a
ReLU network with k hidden layers.

We show that the arguments of Haase et al. (2023) can be adapted by replacing the divisor 2 with an
arbitrary prime number p. Another crucial insight is that the theory of mixed volumes can be used
to analyze the behavior of Voln(A+B) for the Minkowski sum A+B := {a+ b : a ∈ A, b ∈ B}
of lattice polytopes A,B ⊂ Rn. The Minkowski-sum operation is also involved in the polyhedral
characterization of Hertrich (2022), and so it is also used by Haase et al. (2023), who provide a
version of Theorem 2 for integer weights. They, however, do not directly use mixed volumes. A key
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observation used in our proofs, and obtained by a direct application of mixed volumes, is that the
map associating to a lattice polytope P the coset of Voln(P ) modulo a prime number p is additive
when n is a power of p. Combining these ingredients yields Theorems 2 and 4.

Some Basic Notation The standard basis vectors in Rn are denoted by e1, . . . , en, whereas 0
denotes the null vector in Rn. Throughout the article, all vectors x ∈ Rn are column vectors, and
we denote the transposed vector by x>. If x is contained in the integer lattice Zn, we call it a lattice
point. For vectors x, y ∈ Rn, their scalar product is given by x>y. For m ∈ N, we will write [m] for
the set {1, . . . ,m}. The convex-hull operator is denoted by conv, and the base-b logarithm by logb,
while the natural logarithm is denoted ln.

The central function of this article is max{0, x1, . . . , xn}, which we abbreviate by Fn.

2.1 BASIC PROPERTIES OF POLYTOPES AND LATTICE POLYTOPES

As outlined above, the main tools needed to prove Theorems 2 and 4 are polyhedral theory and
different concepts of volumes. This section summarizes the main concepts and properties that we
need in our argumentation in Section 3. For more background, we refer the reader to the monographs
(Beck & Robins, 2020; Hug & Weil, 2020; Schneider, 2014).

Polyhedra, Lattice Polyhedra, and Their Normalized Volume A polytope P ⊆ Rn is the con-
vex hull conv(p1, . . . , pm) of finitely many points p1, . . . , pm ∈ Rn. We introduce the family

P(S) := {conv(p1, . . . , pm) : m ∈ N, p1, . . . , pm ∈ S}
of all non-empty polytopes with vertices in S ⊆ Rn, and for d ∈ {0, . . . , n}, we also introduce

Pd(S) := {P ∈ P(S) : dim(P ) ≤ d}.

:
. Thus, P(Rn) is the family of all polytopes in Rn and P(Zn) is the family of all lattice polytopes
in Rn.

::
For

::::::::::::::
d ∈ {0, . . . , n},

::
we

::::
also

::::::::
introduce

:::
the

::::::
family

Pd(S) := {P ∈ P(S) : dim(P ) ≤ d}.
:::::::::::::::::::::::::::::::

::
of

::::::::
polytopes

:::
of

:::::::::
dimension

::
at
:::::

most
:::
d,

:::::
where

::::
the

:::::::::
dimension

:::
of

:
a
::::::::

polytope
:::
P

::
is

:::::::
defined

::
as

:::
the

::::::::
dimension

:::
of

::
its

:::::
affine

:::::
hull,

:::
i.e.,

:::
the

:::::::
smallest

::::::
affine

:::::::
subspace

:::
of

:::
Rn

:::::::::
containing

:::
P .

:
The Euclidean

volume voln on Rn is the n-dimensional Lebesgue measure, scaled so that voln is equal to 1 on
the unit cube [0, 1]d. Note that measure-theoretic subtleties play no role in our context since we re-
strict the use of voln to P(Rn). The normalized volume Voln in Rn is the n-dimensional Lebesgue
measure normalized so that Voln is equal to 1 on the standard simplex ∆n := conv(0, e1, . . . , en).
Clearly, Voln = n! · voln and Voln takes non-negative integer values on lattice polytopes.

Support Functions Let
::
For

::
a
::::::::
polytope P = conv(p1, . . . , pm) ⊆ Rnbe a polytope. The

:
,
::
its

support function of P is
hP (x) := max{x>y : y ∈ P},

and it is well-known that hP (x) = max{p>1 x, . . . , p>mx}. Consequently, max{0, x1, . . . , xn} from
Theorems 2 and 4 is the support function of ∆n.

Mixed Volumes For sets A,B ⊆ Rn, we introduce the Minkowski sum
A+B := {a+ b : a ∈ A, b ∈ B}

and the multiplication
λA = {λa : a ∈ A}

of A by a non-negative factor λ ∈ R+. For an illustration of the Minkowski sum, we refer to
Figure 2. Note that, if S ∈ {Rn,Zn} and A,B ∈ P(S), then A+B ∈ P(S), too. If A and B are
(lattice) polytopes, then A + B is also a (lattice) polytope, and the support functions of A,B and
A+B are related by hA+B = hA + hB .

If (G,+) is an Abelian semi-group
::::
(i.e.,

:
a
::
set

::::
with

:::
an

:::::::::
associative

:::
and

:::::::::::
commutative

:::::
binary

:::::::::
operation),

we call a map φ : P(Rn) → G Minkowski additive if the Minkowski addition on P(Rn) gets pre-
served by φ in the sense that φ(A+B) = φ(A) + φ(B) holds for all A,B ∈ P(Rn).

The following is a classical result of Minkowski.

4
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Theorem 5 (see, e.g., (Schneider, 2014, Ch. 5)). There exists a unique functional, called the mixed
volume,

V: P(Rn)n → R,
with the following properties valid for all P1, . . . , Pn, A,B ∈ P(Rn) and α, β ∈ R+:

(a) V is invariant under permutations, i.e. V(P1, . . . , Pn) = V(Pσ(1), . . . , Pσ(n)) for every permu-
tation σ on [n].

(b) V is Minkowski linear in all input parameters, i.e.

V(P1, . . . Pi−1, αA+ βB, Pi+1, . . . , Pn) =αV(P1, . . . Pi−1, A, Pi+1, . . . , Pn)

+βV(P1, . . . Pi−1, B, Pi+1, . . . , Pn)

for all,
:::
for

:::
all i ∈ [n]. ,

::
it
:::::
holds

::::
that

V(P1, . . . Pi−1, αA+ βB, Pi+1, . . . , Pn) =
:::::::::::::::::::::::::::::::::::

αV(P1, . . . Pi−1, A, Pi+1, . . . , Pn)
::::::::::::::::::::::::::::

+
:
βV(P1, . . . Pi−1, B, Pi+1, . . . , Pn)
::::::::::::::::::::::::::::

(c) V is equal to Voln on the diagonal, i.e., V(A, . . . , A) = Voln(A).

We refer to Chapter 5 of the monograph by Schneider (2014) on the Brunn-Minkowski theory for
more information on mixed volumes, where also an explicit formula for the mixed volume is pre-
sented. Our definition of the mixed volume differs by a factor of n! from the definition in Schneider
(2014) since we use the normalized volume Voln rather than the Euclidean volume voln to fix
V(P1, . . . , Pn) in the case P1 = . . . = Pn. Our way of introducing mixed volumes is customary
in the context of algebraic geometry. It is known that, for this normalization, V(P1, . . . , Pn) ∈ Z+

when P1, . . . , Pn are lattice polytopes; see, for example, (Maclagan & Sturmfels, 2015, Ch. 4.6).
From the defining properties one can immediately see that, forA,B ∈ P(Rn), one has the analogue
of the binomial formula

:
,
:::::
which

:::
we

:::
will

:::::
prove

::
in
:::::::::
Appendix

:::
A.2

:::
for

:::
the

::::
sake

::
of

::::::::::::
completeness:

:

Voln(A+B) =

n∑
i=0

(
n

i

)
V(A, . . . , A︸ ︷︷ ︸

i

, B, . . . , B︸ ︷︷ ︸
n−i

). (1)

Normalized Volume of Non-Full-Dimensional Polytopes So far, we have introduced the normal-
ized volume Voln : P(Rn) → R+, i.e., if P ∈ P(Rn) is not full-dimensional, then Voln(P ) = 0.
We also associate with a polytope P ∈ Pd(Zn) of dimension at most d an appropriately normalized
d-dimensional volume by extending the use of Vold : P(Zd) → Z+ to Vold : Pd(Zn) → Z+. In
the case dim(P ) < d, we define Vold(P ) = 0. If d = 0, let Vold(P ) = 1. In the non-degenerate
case d = dim(P ) ∈ N, we fix Y to be the affine hull of P and consider a bijective affine map
T : Rd → Y satisfying T (Zd) = Y ∩Zn. For such choice of T , we have T−1(P ) ∈ P(Zd). It turns
out that the d-dimensional volume of T−1(P ) depends only on P and not on T so that we define
Vold(P ) := Vold(T

−1(P )). Based on (Beck & Robins, 2020, Corollary 3.17 and §5.4), there is the
following intrinsic way of introducing Vold(P ). Let G(P ) denote the number of lattice points in P .
Then, for t ∈ Z+, one has Vold(P ) := d! · limt→∞

1
td
G(tP ).

Remark 6. For every d-dimensional affine subspace Y ⊆ Rn which is affinely spanned by d + 1
lattice points, we can define Vold for every polytope P ∈ P(Y ), which is not necessarily a lattice
polytope, by the same formula Vold(P ) := Vold(T

−1(P )), using an auxiliary map T : Rd → Y
described above. Consequently, by replacing the dimension n with d and the family of polytopes
P(Rn) with the family P(Y ) in Minkowski’s Theorem 5, we can introduce the notion of mixed
volumes for polytopes in P(Y ). More specifically, we will make use of the mixed volumes of lattice
polytopes in P(Y ∩ Zn).

Normalized Volume of the Affine Join The following proposition, borrowed from Haase et al.
(2023), addresses the divisibility properties of the convex hull of the union of lattice polytopes that
lie in skew affine subspaces.
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x

y

z

P1

P2
conv(P1 ∪ P2)

Figure 1: Illustration of the convex hull of a
polytope and a point, relating to Proposition 7.

x

y

P1

P2

P1 + P2

Figure 2: Illustration of the Minkowski sum of
two polytopes, relating to Example 12.

Proposition 7 (Haase et al. 2023, Lemma 6). LetA,B ∈ P(Zn) be polytopes of dimensions i ∈ Z+

and j ∈ Z+, respectively, such that P := conv(A∪B) is of dimension i+ j+ 1. Then Voli+j(P ) is
divisible by Voli(A) Volj(B). In particular, if i = 0, then P is a pyramid over B whose normalized
volume Vol1+j(B) is divisible by the normalized volume Volj(B) of its base B.

For an example illustration, see Figure 1. Since P1 and P2 lie in skew affine subspaces, Proposition 7
applies. Indeed, Vol3(conv(P1 ∪ P2)) = 12 is divisible by Vol2(P1) = 6 (and Vol0(P2) = 1).

2.2 A POLYHEDRAL CRITERION FOR FUNCTIONS REPRESENTABLE WITH k HIDDEN
LAYERS

Next to the geometric concepts that we discussed before, the second main building block of our
proofs is the polyhedral characterization of ReLUn(k) by Hertrich (2022). In the following, we
introduce the necessary concepts and present Hertrich’s characterization.

Note thatFn is positively homogeneous, i.e., for all λ ∈ R+ and x ∈ Rn, one hasFn(λx) = λFn(x).
For positively homogeneous functions f , Hertrich et al. (2021) show that f ∈ ReLUn(k) if and only
if there exists a ReLU network of depth k+1 all of whose biases are 0. This result easily generalizes
to ReLU networks with weights being restricted to a ring R. We therefore denote by ReLUR,0

n (k)
the set of all n-variate positively homogeneous functions representable by ReLU networks with k
hidden layers, weights in R, and all biases being 0. Moreover, ReLUR,0

n :=
⋃∞
k=0 ReLUR,0

n (k).

To formulate the characterization by Hertrich (2022), we define the sum-union closure for a family
of polytopes X in Rn as

SU(X ) :=

{
m∑
i=1

conv(Ai ∪Bi) : m ∈ N, Ai, Bi ∈ X , i ∈ [m]

}
.

The k-fold application of the operation gives the k-fold sum-union closure SUk(X ). In other words,
SU0(X ) = X and SUk(X ) = SU(SUk−1(X )) for k ∈ N. We will apply the k-fold sum-union
closure to P0(S), the set of all 0-dimensional polytopes of the form {s}, with s ∈ S.

The set SUk(X ) forms a semi-group with respect to Minkowski-addition since, directly from the
definition

:::::::::::
representation

::
of

::::::::
elements

::
of

:::::::
SUk(X )

:::
as

::::
sums

::::
with

:::::::::
arbitrarily

:::::
many

:::::::::
summands, one sees

that SUk(X ) is closed under Minkowski addition. For an illustration of the Minkowski sum, we
refer to Figure 2.
Theorem 8 ((Hertrich, 2022, Thm. 3.35) for R = R and (Haase et al., 2023, Thm. 8) for R = Z).
Let R be R or Z. Then

ReLUR,0
n (k) = {hA − hB : A,B ∈ SUk(P0(Rn))}.

Corollary 9. Let k ∈ Z+ and R be R or Z. Let P ∈ P(Rn). Then, the support function hP of P
satisfies hP ∈ ReLUR

n (k) if and only if P +A = B for some A,B ∈ SUk(P0(Rn)).

Proof. By Theorem 8, we have that hP ∈ ReLUR
n (k) if and only if hP = hB − hA for some

A,B ∈ SUk(P0(Rn)). The equation hP = hB − hA can be rewritten as hB = hP + hA = hP+A,

6
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as support functions are Minkowski additive. Furthermore, every polytope is uniquely determined
by its support function, see (Hug & Weil, 2020), so hP+A = hB is equivalent to P +A = B.

The characterization of ReLUR,0
n (k) via SUk(P0(Rn)) as well as the geometric concepts of vol-

umes will allow us to prove Theorem 2. The core step of our proof is to show that Fn, which is
the support function of ∆n, is not contained in ReLUZ,0

n (k) for small k. As we will see later, it
turns out to be useful to not work exclusively with full-dimensional polytopes in SUk(P0(Zn)),
but with some of their lower-dimensional faces. The next lemma provides the formal mechanism
that we use, namely if P ∈ SUk(P0(Zn)) and F is a face of P , then hF /∈ ReLUZ

n(k) implies
also hP /∈ ReLUZ

n(k). We defer the lemma’s proof to Appendix A.1.1.

Lemma 10. Let k ∈ Z+. Then, for all P ∈ SUk(P0(Zn)) and u ∈ Rn, the face of P in direction u,
given by

Pu := {x ∈ P : u>x = hP (u)},

belongs to SUk(P0(Zn)). In other words, SUk(P0(Zn)) is closed under taking non-empty faces.

3 RESULTS AND PROOFS

The goal of this section is to prove Theorems 2 and 4 for the ring R of N -ary fractions. To this
end, we will rescale Fn by a suitable scalar λ ∈ N such that the containment Fn ∈ ReLUR

n (k)

is equivalent to λFn ∈ ReLUZ
n(k). To show that λFn /∈ ReLUZ

n(k) if k is too small, we use a
volume-based argument. More precisely, we show that, for lattice polytopes P ⊆ Rn whose support
functions hP are contained in ReLUZ

n(k) and suitably defined dimensions d and prime numbers p,
their volumes Vold(P ) are divisible by p. In contrast, Vold(λ∆n) is not divisible by p, and thus,
λFn /∈ ReLUZ

n(k). This strategy is inspired by the proof of Haase et al. (2023) for Fn /∈ ReLUZ
n(k),

where related results are shown for the special case p = 2. Our results, however, are more general
and do not follow directly from their results.

To pursue this strategy, Sections 3.1 and 3.2 derive novel insights into volumes Vold(P ) of lattice
polytopes P whose support functions hp are contained in ReLUZ

n(k). These insights are then used
in Section 3.3 to prove Theorems 2 and 4.

3.1 DIVISIBILITY OF NORMALIZED VOLUMES BY A PRIME

To understand the divisibility of Vold by a prime number mentioned above, we investigate cases
in which Vold : Pd(Zn)→ Z modulo a prime is Minkowski additive. To make this precise, we
introduce some notation.

For a, b ∈ Z and m ∈ N we write a ≡m b if a − b is divisible by m. This is called the congruence
of a and b modulo m. The coset [z]m of z ∈ Z modulo m is the set of all integers congruent
to z modulo m, and we denote the set of all such cosets by Zm. The addition of cosets is defined
by [a]m+[b]m := [a+ b]m for a, b ∈ Z. Endowing Zm with the addition operation + yields a group
of order m.

The following is an easy-to-prove but crucial observation. It states that when we consider lattice
polytopes in a d-dimenensional subspace Y ⊆ Rn spanned by d lattice points, the volume Vold,
taken modulo a prime number p, is an additive functional when d is a power of p.

Proposition 11. Let d = pt ≤ n be a power of a prime number p, with t ∈ N. Let P1, . . . , Pm ∈
Pd(Zn) be such that

∑m
i=1 Pi ∈ Pd(Zn). Then,

Vold

( m∑
i=1

Pi

)
≡p

m∑
i=1

Vold(Pi).

Proof. Note that by the assumption
∑m
i=1 Pi ∈ Pd(Zd) all of the Pi’s lie, up to appropriate trans-

lation, in a d-dimensional vector subspace Y of Rd, which is spanned by d lattice points. There is
no loss of generality in assuming that Pi ⊆ Y and, in view of Remark 6, we can use the mixed

7
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volume functional on d-tuples of polytopes from P(Y ), which will give an integer value for poly-
topes in P(Y ∩ Zn). By an inductive argument, it is sufficient to consider the case m = 2. It is
well known that if d is a power of p, the binomial coefficients

(
d
1

)
, . . . ,

(
d
d−1

)
in (1) are divisible

by p, see, e.g., Mihet (2010, Cor. 2.9). Thus, (1) implies Vold(P1 + P2) ≡p Vold(P1) + Vold(P2)
for P1, P2 ∈ P(Y ∩ Zn).

Example 12. Consider the polytope P1 + P2 ∈ P2(Z2) for the rectangle P1 = [2, 5] × [0, 1] ∈
P2(Z2) and the shifted standard simplex P2 = ∆2 + {(0, 2)>} ∈ P2(Z2) as depicted in Figure 2.
In the picture, P1 + P2 is decomposed into regions in such a way that the volume of the mixed
area V(P1, P2) can be read off. In view of the equality Vol2(P1 + P2) = V(P1 + P2, P1 + P2) =
V(P1, P1) + 2 V(P1, P2) + V(P2, P2) = Vol2(P1) + 2 V(P1, P2) + Vol2(P2), see (1), the total
volume of the unshaded part of P1 +P2 must be exactly 2 V(P1, P2). For p = 2 we have Vol2(P1 +
P2) = 15 ≡2 6 + 1 = Vol2(P1) + Vol2(P2), i.e., the parity of Vol2(P1 + P2) is indeed that of
Vol2(P1) + Vol2(P2). In contrast, divisibility by p = 3 does not match, as 15 6≡3 7. However, this
does not contradict Proposition 11, as d = 2 is not a power of p = 3.

To derive divisibility properties of Vold(P ) for lattice polytopes P with hP ∈ ReLUZ
n(k), we make

use of the characterization of ReLUZ
n(k) via the SU-operator. Recall that one of the two defining

operations of SU is conv(A ∪ B) for suitable polytopes A and B. A crucial observation is that for
certain dimensions d, the divisibility of Vold(conv(A ∪ B)) by a prime number is inherited from
particular lower-dimensional faces of A and B.
Proposition 13. Let d = pt ≤ n be a power of a prime number p, with t ∈ N. Moreover, let P =
conv(A ∪B) ∈ Pd(Zn) for A,B ∈ Pd(Zn). If Volpt−1(F ) ≡p 0 for all pt−1-dimensional faces F
of A and B, then Volpt(P ) ≡p 0.

Note that this result also holds trivially if no face of dimension pt−1 exists. We defer the proof of
this result to Appendix A.1.2.

3.2 MODULAR OBSTRUCTION ON THE VOLUME FOR REALIZABILITY WITH k HIDDEN
LAYERS

Equipped with the previously derived results, we have all ingredients together to prove the afore-
mentioned results on the divisibility of Vold(P ) for lattice polytopes P with hP ∈ ReLUZ

n(k).
Theorem 14. Let d = pt ≤ n be a power of a prime number p, with t ∈ N. Let k ∈ [t] and
P ∈ SUk(P0(Zn)). Then Volpk(F ) ≡p 0 for all pk-dimensional faces Fof P .

Proof. We argue by induction on k. If k = 1, then SU1(P0(Zn)) consists of lattice zonotopes.
These are polytopes of the form P = S1 + · · ·+ Sm, where S1, . . . , Sm are line segments joining a
pair of lattice points. One has Vold(P ) ≡p Vold(

∑m
i=1 Si) ≡p

∑m
i=1 Vold(Si), by Proposition 11,

arriving at Vold(P ) ≡p 0, since Vold(Si) = 0 for all i as d > 1 ≥ dim(Si).

In the inductive step, assume k ≥ 2 and that the assertion has been verified for SUk−1(P0(Zn)).
Recall that every P ∈ SUk(P0(Zn)) can be written as P =

∑m
i=1 conv(Ai∪Bi) for some polytopes

Ai, Bi ∈ SUk−1(P0(Zn)). By the induction hypothesis, the pk−1-dimensional normalized volumes
of the pk−1-dimensional faces of Ai and Bi are divisible by p. Consequently, by Proposition 13, the
pk-dimensional normalized volumes of the pk-dimensional faces of conv(Ai∪Bi) are divisible by p.
Since SUk(P0(Zn)) is closed under taking faces (see Lemma 10), Proposition 11 applied to the pk-
dimensional faces of P implies that the pk-dimensional normalized volume of the pk-dimensional
faces of P is divisible by p.

Theorem 15. Let d = pt ≤ n be a power of a prime number p, with t ∈ N. Let P be a lattice
polytope in Pd(Rn). If hP ∈ ReLUZ

n(k), k ∈ [t], then Vold(P ) is divisible by p.

Proof. By Corollary 9, we have P + A = B for some A,B ∈ SUk(P0(Zn)). Then, by
Proposition 11, one has Vold(P + A) ≡p Vold(P ) + Vold(A) ≡p Vold(B), which means that
Vold(P ) ≡p Vold(A) − Vold(B). By Theorem 14, both Vold(A) and Vold(B) are divisible by p.
This shows that Vold(P ) is divisible by p.

8
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3.3 PROOFS OF MAIN RESULTS

We now turn to the proofs of Theorems 2 and 4. Let N ∈ N and recall that a rational number is an
N -ary fraction if it is of the form z

Nt with z ∈ Z and t ∈ Z+. For N = 2 and N = 10, one has
binary and decimal fractions, used in practice in floating point calculations. Clearly, every binary
fraction is also a decimal fraction, because z

2t = 5tz
10t .

In order to relate ReLU networks with fractional weights to ReLU networks with integer weights,
we can simply clear denominators, as made precise in the following lemma.
Lemma 16. Let f : Rn → R be exactly representable by a ReLU network with k hidden layers and
with rational weights all having M as common denominator. Then Mk+1f ∈ ReLUZ

n(k).

Proof. We proceed by induction on k. For the base case k = 0, f is an affine func-
tion f(x1, . . . , xn) = b + a1x1 + · · · + anxn with b ∈ R and Ma1, . . . ,Man ∈ Z, from
which the claim is immediately evident. Now let k ≥ 1 and consider a k-layer network with
rational weights with common denominator M representing f . Then f is of the form f(x) =
u0 + u1 max{0, g1(x)} + · · · + um{0, gm(x)} with m ∈ N, where all g1, . . . , gm are functions
representable with k − 1 hidden layers and all the weights, i.e., u1, . . . , um and the ones used in
expressions for g1, . . . , gm, are rational numbers with M as a common denominator. Multiplying
with Mk+1 we obtain

Mk+1f(x) = Mk+1u0 +Mu1 ·max{0,Mkg1(x)}+ . . .+Mum ·max{0,Mkgm(x)},
where the weights Mu1, . . . ,Mum are integer. By the induction hypothesis, for every i ∈ [m], we
have Mkgi ∈ ReLUZ

n(k − 1), and hence Mk+1f ∈ ReLUZ
n(k).

We are now ready to prove our main results.

Proof of Theorem 2. Let k = dlogp(n + 1)e − 1, i.e., k is the unique non-negative integer satisfy-
ing pk < n+1 ≤ pk+1. If Fn was representable by a ReLU network with k hidden layers andN -ary
fractions as weights, max{0, x1, . . . , xpk} = Fn(x1, . . . , xpk , 0, . . . 0) would also be representable
in this way. Thus, it suffices to consider the case n = pkand to show the lower bound k + 1 on the
number of layers in this case.

Recall that Fn is the support function h∆n of the standard simplex. Suppose, for the sake of con-
tradiction, that Fn can be represented by a ReLU network with k hidden layers and weights be-
ing N -ary fractions. Let t ∈ N be large enough such that all weights are representable as z

Nt for
some z ∈ Z. We use Lemma 16 with M = N t to clear denominators. That is, N t(k+1)Fn is
representable by an integer-weight ReLU network with k hidden layers. Since Fn is homogeneous,
we can assume that the network is homogeneous, too (Hertrich et al., 2021, Proposition 2.3). Ob-
serve that N t(k+1)Fn is the support function of N t(k+1)∆n, whose normalized volume satisfies
Voln(N t(k+1)∆n) ≡p Nnt(k+1) Voln(∆n) = Nnt(k+1) · 1 6≡p 0. Hence, N t(k+1)∆n is a polytope
indimension pk

::::
Rpk whose normalized volume is not divisible by p, but whose support function is

represented by an integer-weight ReLU network with k hidden layers. This contradicts Theorem 15.
Hence, Fn is not representable by a ReLU network with k hidden layers and weights being N -ary
fractions.

If N = 10, we can use p = 3 in Theorem 2, so Corollary 3 is an immediate consequence. The
bound dlog3(n+1)e in Corollary 3 is optimal up to a constant factor, as Fn is representable through
a network with integral weights and dlog2(n+ 1)e hidden layers (Arora et al., 2018). A major open
question raised by Hertrich et al. (2021) is whether this kind of result can be extended to networks
whose weights belong to a larger domain like the field of rational numbers or, ideally, the field of
real numbers.

We can also show that the expressive power of ReLU networks with weights being decimal fractions
grows gradually when the depth k is increasing in the range from 1 to O(log n).
Corollary 17. For each n ∈ N and each integer k ∈ {1, . . . , dlog3 ne}, within n-variate functions
that are described by ReLU networks with weights being decimal fractions, there are functions
representable using 2k but not using k hidden layers.

9
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Proof. The function max{0, x1, . . . , x3k}
:::::::
Function

::::
F3k is not representable through k hidden layers

and weights being decimal fractions. Since 3k ≤ 22k, this function
:::
F3k

:
is representable with 2k

hidden layers (and integer weights).

By making use of Theorem 2, we now present the proof of Theorem 4.

Proof of Theorem 4. Our goal is to
::
To

:
make use of Theorem 2to find a lower bound on the depth

of a rational ReLU network that represents Fn and all of whose weights are N -ary fractions. To
this end, we need to find a prime number p that does not divide N . Let pi denote the i-th prime
number, i.e., p1 = 2, p2 = 3, p3 = 5 etc. Moreover, assume that the prime number decomposition
of N consists of t distinct primes, i.e., N = pm1

i1
· · · pmt

it
where m1, . . . ,mt ∈ N and i1 < · · · < it.

Choose the minimal prime p that is not contained in {pi1 , . . . , pit}, that is, the minimal prime not
dividingN . Since {p1, . . . , pt+1} has a prime not contained in {pi1 , . . . , pit}, we see that p ≤ pt+1.

To get a more concrete upper bound on p, we make use of the prime number theorem (Hardy &
Wright, 2008, Ch. XXII), which is a fundamental result in number theory. The theorem states
that limi→∞

pi
i ln i = 1. Consequently, p ≤ pt+1 ≤ 2t ln t when t ≥ T , where T ∈ N is large

enough. We first stick to the case t ≥ T and then handle the border case t < T .

For lnN we have

lnN =

t∑
j=1

mj ln pij ≥
t∑

j=1

ln pij ≥
t∑

j=1

ln(j + 1) ≥
∫ t+1

1

lnxdx = (t+ 1) ln(t+ 1)− t

for all t ≥ T . Thus, lnN ≥ 1/2t ln t. This implies ln lnN ≥ ln t + ln ln t − ln 2. Compare this
to ln p ≤ ln 2 + ln t + ln ln t. So, we see that ln lnN ≥ C ln p with an absolute constant C > 0.
Hence, we can invoke Theorem 2 for p, getting that the number of layers needed to represent Fn
with integer weights is at least logp n, where logp n ≥ lnn/ln p ≥ C · lnn/ln lnN . In the case t < T ,
we observe that p ≤ pT and obtain the lower bound logp n = lnn/ln p ≥ lnn/ln pT . Since T is fixed,
the factor ln pT in the denominator is an absolute constant.

4 CONCLUSIONS

In summary, we proved that a lower bound for the number of hidden layers needed to exactly rep-
resent the function max{0, x1, . . . , xn} with a ReLU network with weights being N -ary fractions
is dlogp(n + 1)e, where p is a prime number that does not divide N . For p = 3, this covers the
cases of binary fractions as well as decimal fractions, two of the most common practical settings.
Moreover, it shows that the expressive power of ReLU networks grows for every N up to O(log n).
In

:::
the case of rational weights

:::
that

:::
are

::::::
N -ary

::::::::
fractions

:::
for

:::
any

:::::
fixed

::
N , even allowing arbitrarily

large denominators for any given N and arbitrary width does not facilitate exact representations of
low constant depth.

Theorem 4 can be viewed as a partial confirmation of Conjecture 1 for rational weights, as the term
ln lnN is growing extremely slowly in N . If one could replace ln lnN by a constant, the conjecture
would be confirmed for rational weights, up to a constant multiple. As already highlighted in Haase
et al. (2023), confirmation of the conjecture would theoretically explain the significance of max-
pooling in the context of ReLU networks: It seems that the expressive power of ReLU is not enough
to model the maximum of a large number of input variables unless network architectures of high-
enough depth are used. So, enhancing ReLU networks with max-pooling layers could be a way to
reach higher expressive power with shallow networks.

Methodologically, algebraic invariants – such as the d-dimensional volume Vold modulo a prime
number p when d is a power of p – play a key role in showing lower bounds for the depth of neural
networks. It

:::
Our

:::::
proof

::::::::
approach

::::::::
provides

::
an

::::::::
algebraic

:::::::
template

:::
for

::
a

::::::
general

::::::::::
“separation

:::::::
strategy”

::
to

:::::
tackle

::::::::
problems

:::
on

:::::::::
separation

:::
by

:::::
depth.

:::
In

:::
the

:::::::
ambient

:::::::
Abelian

::::::
group

::::::
(G,+)

:::
of

::
all

:::::::
possible

:::::::
functions

::::
that

::::
can

::
be

::::::::::
represented

::::::
within

::
a

:::::
given

::::::
model,

:::
one

::::
has

:
a
::::::

nested
::::::::
sequence

:::
of

::::::::
subgroups

:::::::::::::::::::
G0 ⊆ G1 ⊆ G2 ⊆ · · · , ::::

with
:::
Gk:::::::::

consisting
::
of

::::::::
functions

:::::::::::
representable

:::
by

:
k
::::::
layers.

:::
To

::::::::::
demonstrate

:::
that

::
an

::::::::
inclusion

:::::::::::
Gk ⊆ Gk+1 :

is
::::::

strict,
:::
one

:::::
could

::::
look

:::
for

::
an

::::::::
invariant

:::
that

::::
can

:::::::::
distinguish

:::
Gk::::

from
:::::
Gk+1 :

–
::::
this

:
is
::
a
:::::
group

:::::::::::::
homomorphism

::
φ
:::
on

::
G

:::
that

::
is

::::
zero

:::
on

:::
Gk :::

but
:::
not

::::
zero

::
on

:::::
some

:::::::::
f ∈ Gk+1.
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::::
Most

::::::
likely,

:::
the

:::::::
invariant

:::::
needs

:::
to

::
be

:::::::
“global”

:::
in

:::
the

:::::
sense

::::
that,

::
if

::::
φ(f)

::
is

::::::::
computed

:::::
from

:::
the

:::
NN

:::::::::::
representation

::
of

::
f ,

::::
then

::
it

:::::
would

::::::::::
accumulate

:::
the

::::::::::
contribution

::
of

::
all

:::
the

:::::
nodes

::
of

:::
the

:::
NN

::
in

:::
one

:::::
single

::::
value

::::
and

:::::
would

:::
not

:::::
keep

::::
track

::
of

:::
the

:::::::
number

::
of

:::
the

:::::
nodes

::::
and,

:::
by

::::
this,

::::::::
disregard

::
the

::::::
widths

:::
of

::
the

:::::
layers.

:::
In

:::
the

:::::::
concrete

:::::
case

:::
we

:::::::
handled

::
in

:::
this

:::::::::::
contribution,

:::
the

::::::
group

::
G

:::
we

::::::
choose

::
is

::::::::
ReLUZ,0,

:::::::
whereas

::
the

::::::::
invariant

:::
that

:::
we

::::::
employ

:::
has

::::::
values

::
in

:::
Zp :::

and
::
is

:::::
based

::
on

:::
the

::::::::::
computation

::
of

:::
the

::::::
volume

::
of

:::::
lattice

:::::::::
polytopes.

:::
In

:::
the

:::::::
original

::::::
setting

::
of

:::::::::
Conjecture

:::
1,

:::
one

:::
has

:::
to

::::
deal

::::
with

:::
the

::::::
nested

::::
chain

::
of

::::::::
subspaces

::::::::::::::::
Gk = ReLUR,0(k)

::
of

:::
the

:::
the

:::::::::::::::::
infinite-dimensional

:::::
vector

:::::
space

:::::::::::::
G = ReLUR,0,

:::::
which

:::::
makes

::
it

::::::
natural

::
to

::::::
choose

::
as

:::
an

:::::::
invariant

::
a

:::::
linear

::::::::
functional

::::::::::
φ : G→ R.

:::
To

:::::
make

::::::
further

:::::::
progress,

:
it
:
is therefore worthwhile continuing to investigate the connection between ReLU networks and

discrete polyhedral geometry, algebra, and number theory in order to settle Conjecture 1 for arbitrary
rational weights

::
in

:::::::
general.

::::::
Finally,

:::
we

::::
raise

:
a
::::::::
question

::
on

:::
the

::::
role

::
of

:::
the

::::
field

::
of

:::
real

::::::::
numbers

::
in

:::::::::
Conjecture

::
1.

:::::
Does

:::
the

:::::
choice

::
of

:
a
:::::::
subfield

::
of

::
R

::::::
matter

::
in

:::::
terms

::
of

:::
the

:::::::::::::
expressiveness?

:::::
More

::::::::
formally,

::
we

::::::
phrase

:

Question 18.
::
Let

::
S

:::
be

:
a
:::::::
subfield

::
of

::
R

:::
and

::::::
k ∈ N

:::
and

:::
let

::::::::::
f : Rn → R

:::
be

:
a
:::::::
function

::::::::::
expressible

::
via

:
a
:::::
ReLU

:::::::
network

::::
with

:::::::
weights

::
in

::
S.

::
If
::
f

::
is

:::::::::
expressible

::
by

::
a
:::::
ReLU

:::::::
network

::::
with

::
k

::::::
hidden

:::::
layers

:::
and

::::::
weights

::
in

:::
R,

:
is
::
it
::::
also

:::::::::
expressible

::
by

::
a
:::::
ReLU

:::::::
network

::::
with

::
k

:::::
hidden

::::::
layers

:::
and

:::::::
weights

::
in

:::
S?

::::
What

:
is
:::
the

:::::::
answer

::
for

:::::::
S = Q?

:

::
If,

:::
for

:::::::
S = Q,

:::
the

::::::
answer

::
to

:::
the

::::::
above

:::::::
question

::
is

:::::::
positive,

::::
then

:::
the

:::::::
version

::
of

::::::::::
Conjecture

:
1
::::
with

::::::
rational

:::::::
weights

::
is

::::::::
equivalent

:::
to

::
the

:::::::
original

:::::::::
conjecture

::::
with

::::
real

:::::::
weights,

:::::
which

::::::
might

::
be

:
a
::::::
helpful

:::::
insight

:::::::
towards

:::::::
solving

:::::::::
Conjecture

::
1.
:::

If
:::
the

::::::
answer

::
is

::::::::
negative,

::::
then

:::
the

:::::::::
conjecture

::::::
would

::::
have

:
a

:::::
subtle

::::::::::
dependence

::
on

:::
the

:::::::::
underlying

::::
field

:::
of

::::::
weights.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

REFERENCES

Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understanding deep neural
networks with rectified linear units. In International Conference on Learning Representations
(ICLR), 2018.

A.R. Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE
Transactions on Information Theory, 39(3):930–945, 1993. doi: 10.1109/18.256500.

Matthias Beck and Sinai Robins. Computing the continuous discretely, 2020.

Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, and Simon We-
ber. Training fully connected neural networks is ∃R-complete. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural
Information Processing Systems, volume 36, pp. 36222–36237. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/71c31ebf577ffdad5f4a74156daad518-Paper-Conference.pdf.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(303–314), 1989.

Ronen Eldan and Ohad Shamir. The power of depth for feedforward neural networks. In JMLR:
Workshop and Conference Proceedings, volume 49, pp. 1–34, 2016.

Vincent Froese and Christoph Hertrich. Training neural networks is NP-hard in fixed dimension.
In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 44039–44049. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/8948a8d039ed52d1031db6c7c2373378-Paper-Conference.pdf.

Vincent Froese, Christoph Hertrich, and Rolf Niedermeier. The computational complexity of ReLU
network training parameterized by data dimensionality. Journal of Artificial Intelligence Re-
search, 74:1775–1790, 2022.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and Kurt Keutzer.
Low-Power Computer Vision: Improving the Efficiency of Artificial Intelligence, chapter A Survey
of Quantization Methods for Efficient Neural Network Inference. Chapman and Hall/CRC, 1
edition, 2022.

Surbhi Goel, Adam R. Klivans, Pasin Manurangsi, and Daniel Reichman. Tight hardness results for
training depth-2 ReLU networks. In 12th Innovations in Theoretical Computer Science Confer-
ence (ITCS), 2021.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

Christian Alexander Haase, Christoph Hertrich, and Georg Loho. Lower bounds on the depth of
integral ReLU neural networks via lattice polytopes. In International Conference on Learning
Representations (ICLR), 2023.

Boris Hanin. Universal function approximation by deep neural nets with bounded width and ReLU
activations. Mathematics, 7(10):992, 2019.

Godfrey Harold Hardy and Edward Maitland Wright. An Introduction To The Theory Of Num-
bers. Oxford University Press, 6th edition, 07 2008. ISBN 9780199219858. doi: 10.1093/oso/
9780199219858.001.0001. URL https://doi.org/10.1093/oso/9780199219858.
001.0001.

Christoph Hertrich. Facets of Neural Network Complexity. PhD thesis, Technische Universität
Berlin, Berlin, 2022. URL http://dx.doi.org/10.14279/depositonce-15271.

Christoph Hertrich and Leon Sering. ReLU neural networks of polynomial size for exact maximum
flow computation. Mathematical Programming, 2024. doi: 10.1007/s10107-024-02096-x.

12

https://proceedings.neurips.cc/paper_files/paper/2023/file/71c31ebf577ffdad5f4a74156daad518-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/71c31ebf577ffdad5f4a74156daad518-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/8948a8d039ed52d1031db6c7c2373378-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/8948a8d039ed52d1031db6c7c2373378-Paper-Conference.pdf
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1093/oso/9780199219858.001.0001
https://doi.org/10.1093/oso/9780199219858.001.0001
http://dx.doi.org/10.14279/depositonce-15271


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Christoph Hertrich, Amitabh Basu, Marco Di Summa, and Martin Skutella. Towards lower bounds
on the depth of ReLU neural networks. Advances in Neural Information Processing Systems, 34:
3336–3348, 2021.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural Net-
works, 4(2):251–257, 1991. ISSN 0893-6080. doi: https://doi.org/10.1016/0893-6080(91)
90009-T. URL https://www.sciencedirect.com/science/article/pii/
089360809190009T.

Daniel Hug and Wolfgang Weil. Lectures on Convex Geometry. Springer Cham, 2020.

IEEE. IEEE standard for floating-point arithmetic. IEEE Std 754-2019 (Revision of IEEE 754-
2008), pp. 1–84, 2019. doi: 10.1109/IEEESTD.2019.8766229. URL https://doi.org/
10.1109/IEEESTD.2019.8766229.

Sammy Khalife, Hongyu Cheng, and Amitabh Basu. Neural networks with linear threshold ac-
tivations: structure and algorithms. Mathematical Programming, 206:333–356, 2024. doi:
10.1007/s10107-023-02016-5.

Patrick Kidger and Terry Lyons. Universal Approximation with Deep Narrow Networks. In Jacob
Abernethy and Shivani Agarwal (eds.), Proceedings of Thirty Third Conference on Learning The-
ory, volume 125 of Proceedings of Machine Learning Research, pp. 2306–2327. PMLR, 09–12
Jul 2020. URL https://proceedings.mlr.press/v125/kidger20a.html.

Carl W. Lee and Francisco Santos. Handbook of Discrete and Computational Geometry, chapter 16:
Subdivisions and Triangulations of Polytopes. Discrete Mathematics and Its Applications. CRC
Press, Boca Raton, FL, 3rd edition, 2017.

Sangmin Lee, Abbas Mammadov, and Jong Chul Ye. Defining neural network architecture through
polytope structures of datasets. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian
Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st
International Conference on Machine Learning, volume 235 of Proceedings of Machine Learning
Research, pp. 26789–26836. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.
press/v235/lee24q.html.

Moshe Leshno, Vladimir Ya. Lin, Allan Pinkus, and Shimon Schocken. Multilayer feed-
forward networks with a nonpolynomial activation function can approximate any func-
tion. Neural Networks, 6(6):861–867, 1993. ISSN 0893-6080. doi: https://doi.org/10.
1016/S0893-6080(05)80131-5. URL https://www.sciencedirect.com/science/
article/pii/S0893608005801315.

Diane Maclagan and Bernd Sturmfels. Introduction to Tropical Geometry, volume 161 of Graduate
Studies in Mathematics. American Mathematical Society, 2015.

Dorel Mihet. Legendre’s and Kummer’s theorems again. Resonance, 15(12):1111–
1121, 2010. doi: 10.1007/s12045-010-0123-4. URL https://doi.org/10.1007/
s12045-010-0123-4.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
down? adaptive rounding for post-training quantization. In Proceedings of the 37th International
Conference on Machine Learning, ICML’20. JMLR.org, 2020.

Allan Pinkus. Approximation theory of the MLP model in neural networks. Acta Numerica, 8:
143–195, 1999. doi: 10.1017/S0962492900002919.

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On the
expressive power of deep neural networks. In Doina Precup and Yee Whye Teh (eds.), Pro-
ceedings of the 34th International Conference on Machine Learning, volume 70 of Proceed-
ings of Machine Learning Research, pp. 2847–2854. PMLR, 06–11 Aug 2017. URL https:
//proceedings.mlr.press/v70/raghu17a.html.

Itay Safran and Ohad Shamir. Depth-width tradeoffs in approximating natural functions with neural
networks. In Proceedings of the 34th International Conference on Machine Learning, Sydney,
Australia, PMLR 70, pp. 2979–2987, 2017.

13

https://www.sciencedirect.com/science/article/pii/089360809190009T
https://www.sciencedirect.com/science/article/pii/089360809190009T
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
https://proceedings.mlr.press/v125/kidger20a.html
https://proceedings.mlr.press/v235/lee24q.html
https://proceedings.mlr.press/v235/lee24q.html
https://www.sciencedirect.com/science/article/pii/S0893608005801315
https://www.sciencedirect.com/science/article/pii/S0893608005801315
https://doi.org/10.1007/s12045-010-0123-4
https://doi.org/10.1007/s12045-010-0123-4
https://proceedings.mlr.press/v70/raghu17a.html
https://proceedings.mlr.press/v70/raghu17a.html


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Itay Safran, Daniel Reichman, and Paul Valiant. How Many Neurons Does it Take to Approximate
the Maximum?, pp. 3156–3183. 2024. doi: 10.1137/1.9781611977912.113. URL https:
//epubs.siam.org/doi/abs/10.1137/1.9781611977912.113.

Rolf Schneider. Convex bodies: the Brunn–Minkowski theory, volume 151. Cambridge university
press, 2014.

Matus Telgarsky. Benefits of depth in neural networks. In Vitaly Feldman, Alexander Rakhlin,
and Ohad Shamir (eds.), 29th Annual Conference on Learning Theory, volume 49 of Proceed-
ings of Machine Learning Research, pp. 1517–1539, Columbia University, New York, New
York, USA, 23–26 Jun 2016. PMLR. URL https://proceedings.mlr.press/v49/
telgarsky16.html.

Gal Vardi and Ohad Shamir. Neural networks with small weights and depth-separation barriers.
In Proceedings of the 34th International Conference on Neural Information Processing Systems,
NIPS ’20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

A APPENDIX

A.1 DEFERRED PROOFS

In this appendix, we provide the proofs missing in the main part of the article. For convenience of
reading, we restate the corresponding statements.

A.1.1 PROOF OF LEMMA 10

This appendix provides the missing proof of the following lemma.

Lemma 10. Let k ∈ Z+. Then, for all P ∈ SUk(P0(Zn)) and u ∈ Rn, the face of P in direction u,
given by

Pu := {x ∈ P : u>x = hP (u)},

belongs to SUk(P0(Zn)). In other words, SUk(P0(Zn)) is closed under taking non-empty faces.

Proof. Throughout the proof, let X = P0(Zn). The proof is by induction on k. For k = 0, we have
SU0(X ) = X . Since every polytope in P0(Zn) consists of a single point s, every non-empty face of
such a polytope also just consists of s, and is therefore contained in P0(Zn). Thus, the claim holds.

Now let k ≥ 1 and assume the assertion holds for k− 1. Furthermore, let u ∈ Rn and P ∈ SUk(X )

with P =
∑m
i=1 conv(Ai ∪ Bi) for some m ∈ N, Ai, Bi ∈ SUk−1(X ), i ∈ [m]. By definition

and Minkowski additivity of the support function, we have Pu = (
∑m
i=1 conv(Ai ∪ Bi))u =∑m

i=1(conv(Ai ∪ Bi))u. Moreover, for each i ∈ [m], conv(Ai ∪ Bi)u is equal to Aui , Bui , or
conv(Aui ∪Bui ) depending on whether hAi

(u) > hBi
(u), hAi

(u) < hBi
(u), or hAi

(u) = hBi
(u),

respectively. In any case, we obtain a representation of Pu that shows its membership in SUk(X ),
since Ai, Bi ∈ SUk−1(X ) for all i ∈ [m] by the induction hypothesis.

A.1.2 PROOF OF PROPOSITION 13

The goal of this section is to prove the following statement.

Proposition 13. Let d = pt ≤ n be a power of a prime number p, with t ∈ N. Moreover, let P =
conv(A ∪B) ∈ Pd(Zn) for A,B ∈ Pd(Zn). If Volpt−1(F ) ≡p 0 for all pt−1-dimensional faces F
of A and B, then Volpt(P ) ≡p 0.

To prove this result, we need two auxiliary results that we provide next.

Proposition 19. Let m, s, d ∈ N and s < d ≤ n. If P ∈ Pd(Zn) such that Vols(F ) ≡m 0 for all
s-dimensional faces F of P , then Vold(P ) ≡m 0.
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Proof. Note that we can restrict our attention to the case d = s + 1: Once the case d = s + 1
is settled, it follows that the divisibility of Voli(F ) by m for i-dimensional faces F of P implies
divisibility of Voli+1(G) bym for all (i+1)-dimensional facesG of P . Hence, iterating from i = s
to i = d− 1, we obtain the desired assertion. So, assume d = s+ 1.

Let P be a d-dimensional lattice polytope with facets having a normalized (d− 1)-dimensional vol-
ume divisible by m. We pick a vertex a of P and subdivide P into the union of the non-overlapping
pyramids of the form conv({a} ∪ F ), where F is a facet of P . By Proposition 7, the normalized d-
dimensional volume of conv({a} ∪ F ) is divisible by Vold−1(F ). Since by assumption Vold−1(F )
is divisible by m, we conclude that also Vold(P ) is divisible by m, because Vold is additive as it is
based on a Lebesgue measure.

The second result analyzes the structure of conv(A∪B) in terms of a particular subdivision. Given
a polytope P ∈ P(Rn) of dimension d, a subdivision of P is a finite collection C ⊆ P(Rn) such
that (i) P =

⋃
C∈C C; (ii) for each C ∈ C, the polytope C has dimension d; (iii) for any two

distinct C,C ′ ∈ C, the polytope C ∩ C ′ is a proper face of both C and C ′. The elements C ∈ C are
called the cells of subdivision C, cf. (Lee & Santos, 2017).
Proposition 20 (Haase et al. 2023, Prop. 10). For two polytopes A,B ∈ P(Rn), there exists a
subdivision of conv(A∪B) such that each full-dimensional cell is of the form conv(F∪G), where F
and G are faces of A and B, respectively, such that dim(F ) + dim(G) + 1 = d.

The term “full-dimensional” in Proposition 20 as well as in the original formulation of Haase et al.
(2023, Prop. 10) refers to faces that have the same dimension as conv(A ∪ B), while its authors
make no assumption on whether that dimension is equal to n (but Haase et al. (2023) note in their
proof that such an assumption would be without loss of generality).

We are now able to prove Proposition 13.

Proof of Proposition 13. Let P = conv(A ∪ B). We apply Proposition 20 for obtaining a subdivi-
sion of P into d-dimensional polytopes P1 = conv(F1 ∪ G1), . . . , Pm = conv(Fm ∪ Gm), where
for each s ∈ [m], Fs and Gs are faces of A and B, respectively, and dim(Fs) + dim(Gs) + 1 = d.
That is, P is the union of polytopes whose relative interiors are disjoint. Consequently, Vold(P ) =
Vold(P1)+· · ·+Vold(Pm). It therefore suffices to show that Vold(Ps) ≡p 0 for every such polytope
Ps with s ∈ [m].

For given s ∈ [m] and faces Fs and Gs of A and B, respectively, denote their dimensions as i
resp. j. Since i + j = d − 1 = pt − 1, the dimension of Fs or Gs is at least pt−1 (if this was not
the case, we would have i + j ≤ 2(pt−1 − 1) < pt − 1, which is a contradiction). By symmetry
reasons, we assume without loss of generality that i ≥ pt−1. Then, by Proposition 19, Voli(Fs) is
divisible by p. Consequently, by Proposition 7, the normalized volume of conv(Fs ∪ Gs) is also
divisible by p.

A.2
::::::
PROOF

:::
OF

:::::::::
BINOMIAL

::::::::::
FORMULA

:::
FOR

:::::::
MIXED

:::::::::
VOLUMES

:::
The

:::::::::::
symmetry

::::::
and

:::::::::::::::
multilinearity

::::
of

::::::
the

:::::::::::::::
mixed-volume

:::::::::::
functional

::::::::
makes

:::::::::::
computations

:::::
with

::::
it

:::::::
similar

::::
in

:::::::
nature

::::
to

:::::::::::
calculations

::::::
with

::::
an

::::::::
n-term

::::::::
product.

:::
Say,

:::::
the

::::::::
identity

::::::::::::::::::::::::
(x+ y)2 = x2 + 2xy + y2

::::::
over

::::::
reals

:::::::::::
corresponds

::::
to

::::
the

::::::::
identity

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Vol2(A+B) = V(A+B,A+B) = V(A,A) + 2 V(A,B) + V(B,B) = Vol2(A) + 2 V(A,B) + Vol2(B)

::
for

::::::
planar

:::::::::
polytopes

::::
A,B

::::
and

:::
the

::::
way

:::
of

:::::::
deriving

:::
the

:::::
latter

:::::::
identity

::
is

:::::::::
completely

:::::::::
analogous

::
to

:::::::
deriving

:::
the

::::::
identity

:::
for

::::::::
(x+ y)2

::
by

:::::::::
expanding

::::::::
brackets.

::::
Very

:::::
much

::
in

:::
the

:::::
same

::::
way,

:::
the

:::::::
binomial

::::::
identity

::::::::::::::::::::::::
(x+ y)n =

∑n
i=0

(
n
i

)
xiyn−i

::::::::::
corresponds

:::
to

::
the

:::::::
identity

:
(1).

:::::
Here

::
is

:
a
::::::
formal

:::::
proof:

:

:::
We

:::
use

:::
the

:::::::
notation

:::::::
P0 = B

:::
and

:::::::
P1 = A.

:::::
Then

:

Voln(P0 + P1) = V(P0 + P1, . . . , P0 + P1)
::::::::::::::::::::::::::::::::::::

::
by

::::::::
Property

:::
(c)

::
in

::::::::
Theorem

::
5.

::::::
Using

::::::::
Property

:::
(b)

::
in

::::::::
Theorem

::
5

:::
for

::::
each

::
of

:::
the

::
n
::::::

inputs
::
of

:::
the

::::::::::::
mixed-volume

:::::::::
functional,

:::
we

:::::
obtain

:

Voln(P0 + P1) =
∑

i1∈{0,1}

· · ·
∑

in∈{0,1}

V(Pi1 , · · · , Pin),

::::::::::::::::::::::::::::::::::::::::::::
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:::::
where

:::
the

::::::::
right-had

:::
side

::
is
::
a

::::
sum

::::
with

::
2n

::::::
terms.

::::::::
However,

:::::
many

::
of

:::
the

:::::
terms

:::
are

:::::::
actually

:::::::
repeated,

::::::
because

::::::::::::::
V(Pi1 , . . . , Pin)

:::::
does

:::
not

::::::
depend

:::
on

:::
the

:::::
order

::
of
::::

the
::::::::
polytopes

::
in
::::

the
:::::
input:

::::
this

:::::
mixed

::::::
volume

:::::::
contains

:::::::::::
i1 + · · ·+ in::::::

copies
::
of

:::
P1 :::

and
::::::::::::::::
n− (i1 + · · ·+ in)

::::::
copies

::
of

:::
P0.

:::::::
Hence,

V(Pi1 , . . . , Pin) = V(P0, . . . , P0︸ ︷︷ ︸
n−(i1+···in)

, P1, . . . , P1︸ ︷︷ ︸
i1+···+in

).

::::::::::::::::::::::::::::::::::::::

::
In

:::::
order

:::
to
::::::::

convert
::::

our
::::::::

2n-term
:::::

sum
::::

into
::::

an
::::::::::::

(n+ 1)-term
:::::

sum,
::::

for
::::::

each
::::::

choice
:::

of
::::::::::::::::::::::::::
i = i1 + · · ·+ in ∈ {0, . . . , n}, ::

we
::::
can

::::::::
determine

:::
the

:::::::
number

::
of

::::::
choices

::
of

::::::::::::::::
i1, . . . , in ∈ {0, 1}:::

that
:::::
satisfy

:::::::::::::::
i = i1 + · · ·+ in.

:::::
This

:::::::::::
corresponds

::
to

::::::::
choosing

::
an

:::::::::
i-element

::::::
subset

::::::::::::::
{t ∈ [n] : it = 1}

::
in

::
the

:::::::::
n-element

:::
set

::::::::::
{1, . . . , n}.

::::
That

:::
is,

:::
the

:::::::
number

::
of

::::
such

:::::::
choices

::
is

:::
the

::::::::
binomial

:::::::::
coefficient

:::

(
n
i

)
.

::::::
Hence,

:::
our

::::::::::::
representation

::::
with

::
2n

:::::
terms

:::::::
amounts

:::
to

Voln(P0 + P1) =

n∑
i=0

(
n

i

)
V(P0, . . . , P0︸ ︷︷ ︸

n−i

, P1, . . . , P1︸ ︷︷ ︸
i

).

::::::::::::::::::::::::::::::::::::::::::::

16


	Introduction
	Proof Strategy and Theoretical Concepts
	Basic Properties of Polytopes and Lattice Polytopes
	A Polyhedral Criterion for Functions Representable With k Hidden Layers

	Results and Proofs
	Divisibility of Normalized Volumes by a Prime
	Modular Obstruction on Volume for Realizability With k Hidden Layers
	Proofs of Main Results

	Conclusions
	Appendix
	Deferred Proofs
	Proof of Lemma 10
	Proof of Proposition 13

	Proof of Binomial Formula for Mixed Volumes


